Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(12): e0293923, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38113238

RESUMO

Malaria remains a major public health threat for billions of people worldwide. Infection with obligate intracellular, unicellular parasites from the genus Plasmodium causes malaria. Plasmodium falciparum causes the deadliest form of human malaria. Plasmodium parasites are purine auxotrophic. They rely on purine import from the host red blood cell cytoplasm via equilibrative nucleoside transporters to supply substrates to the purine salvage pathway. We previously developed a high throughput screening assay to identify inhibitors of the P. falciparum Equilibrative Nucleoside Transporter Type 1 (PfENT1). Screening a small molecule library identified PfENT1 inhibitors that blocked proliferation of P. falciparum parasites in in vitro culture. The goal of the current work was to validate a high-resolution model of PfENT1 predicted by the AlphaFold protein structure prediction program. We superimposed the predicted PfENT1 structure on the human homologue structure, hENT1, and developed a structure-based sequence alignment. We mutated the residues in PfENT1 aligned with and flanking the residues in hENT1 that interact with the purine analog, nitrobenzylthioinosine (NBMPR). Mutation of the PfENT1 residues Q135, D287, and R291 that are predicted to form hydrogen bonds to purine nucleosides eliminated purine and pyrimidine transport function in various yeast-based growth and radiolabeled substrate uptake assays. Mutation of two flanking residues, W53 and S290, also resulted in inactive protein. Mutation of L50 that forms hydrophobic interactions with the purine nucleobase reduced transport function. Based on our results the AlphaFold predicted structure for PfENT1 may be useful in guiding medicinal chemistry efforts to improve the potency of our PfENT1 inhibitors.


Assuntos
Malária Falciparum , Malária , Proteínas de Transporte de Nucleobases, Nucleosídeos, Nucleotídeos e Ácidos Nucleicos , Parasitos , Animais , Humanos , Nucleosídeos de Purina/metabolismo , Parasitos/metabolismo , Proteínas de Transporte de Nucleobases, Nucleosídeos, Nucleotídeos e Ácidos Nucleicos/metabolismo , Malária Falciparum/parasitologia , Proteínas de Membrana Transportadoras/metabolismo , Saccharomyces cerevisiae/genética , Transportador Equilibrativo 1 de Nucleosídeo
2.
Nat Commun ; 14(1): 1727, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36977719

RESUMO

By lacking de novo purine biosynthesis enzymes, Plasmodium falciparum requires purine nucleoside uptake from host cells. The indispensable nucleoside transporter ENT1 of P. falciparum facilitates nucleoside uptake in the asexual blood stage. Specific inhibitors of PfENT1 prevent the proliferation of P. falciparum at submicromolar concentrations. However, the substrate recognition and inhibitory mechanism of PfENT1 are still elusive. Here, we report cryo-EM structures of PfENT1 in apo, inosine-bound, and inhibitor-bound states. Together with in vitro binding and uptake assays, we identify that inosine is the primary substrate of PfENT1 and that the inosine-binding site is located in the central cavity of PfENT1. The endofacial inhibitor GSK4 occupies the orthosteric site of PfENT1 and explores the allosteric site to block the conformational change of PfENT1. Furthermore, we propose a general "rocker switch" alternating access cycle for ENT transporters. Understanding the substrate recognition and inhibitory mechanisms of PfENT1 will greatly facilitate future efforts in the rational design of antimalarial drugs.


Assuntos
Malária Falciparum , Proteínas de Transporte de Nucleobases, Nucleosídeos, Nucleotídeos e Ácidos Nucleicos , Humanos , Plasmodium falciparum/metabolismo , Proteínas de Transporte de Nucleosídeos/genética , Proteínas de Transporte de Nucleosídeos/metabolismo , Proteínas de Transporte de Nucleobases, Nucleosídeos, Nucleotídeos e Ácidos Nucleicos/metabolismo , Malária Falciparum/tratamento farmacológico , Nucleosídeos de Purina/metabolismo , Inosina/metabolismo
3.
Mol Microbiol ; 105(3): 426-439, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28509393

RESUMO

Through Minos transposon mutagenesis we obtained A. nidulans mutants resistant to 5-fluorouracil due to insertions into the upstream region of the uncharacterized gene nmeA, encoding a Major Facilitator Superfamily (MFS) transporter. Minos transpositions increased nmeA transcription, which is otherwise extremely low under all conditions tested. To dissect the function of NmeA we used strains overexpressing or genetically lacking the nmeA gene. Strains overexpressing NmeA are resistant to toxic purine analogues, but also, to cadmium, zinc and borate, whereas an isogenic nmeAΔ null mutant exhibits increased sensitivity to these compounds. We provide direct evidence that nmeA overexpression leads to efflux of adenine, xanthine, uric acid and allantoin, the latter two being intermediate metabolites of purine catabolism that are toxic when accumulated cytoplasmically due to relevant genetic lesions. By using a functional GFP-tagged version we show that NmeA is a plasma membrane transporter. Homology modeling and docking approaches identified a single purine binding site and a tentative substrate translocation trajectory in NmeA. Orthologues of NmeA are present in all Aspergilli and other Eurotiomycetes, but are absent from other fungi or non-fungal organisms. NmeA is thus the founding member of a new class of transporters essential for fungal success under specific toxic conditions.


Assuntos
Aspergillus nidulans/metabolismo , Proteínas de Transporte de Nucleobases/metabolismo , Alantoína/metabolismo , Aspergillus nidulans/genética , Transporte Biológico , Clonagem Molecular/métodos , Fluoruracila , Proteínas Fúngicas/metabolismo , Genes Fúngicos/genética , Proteínas de Membrana Transportadoras/metabolismo , Metais/metabolismo , Mutagênese , Proteínas de Transporte de Nucleobases/genética , Proteínas de Transporte de Nucleobases, Nucleosídeos, Nucleotídeos e Ácidos Nucleicos/metabolismo , Nucleosídeos/metabolismo , Purinas , Ácido Úrico/metabolismo , Xantina/metabolismo
4.
Int J Parasitol Drugs Drug Resist ; 6(1): 1-11, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26862473

RESUMO

Infection with Plasmodium falciparum and vivax cause most cases of malaria. Emerging resistance to current antimalarial medications makes new drug development imperative. Ideally a new antimalarial drug should treat both falciparum and vivax malaria. Because malaria parasites are purine auxotrophic, they rely on purines imported from the host erythrocyte via Equilibrative Nucleoside Transporters (ENTs). Thus, the purine import transporters represent a potential target for antimalarial drug development. For falciparum parasites the primary purine transporter is the P. falciparum Equilibrative Nucleoside Transporter Type 1 (PfENT1). Recently we identified potent PfENT1 inhibitors with nanomolar IC50 values using a robust, yeast-based high throughput screening assay. In the current work we characterized the Plasmodium vivax ENT1 (PvENT1) homologue and its sensitivity to the PfENT1 inhibitors. We expressed a yeast codon-optimized PvENT1 gene in Saccharomyces cerevisiae. PvENT1-expressing yeast imported both purines ([(3)H]adenosine) and pyrimidines ([(3)H]uridine), whereas wild type (fui1Δ) yeast did not. Based on radiolabel substrate uptake inhibition experiments, inosine had the lowest IC50 (3.8 µM), compared to guanosine (14.9 µM) and adenosine (142 µM). For pyrimidines, thymidine had an IC50 of 183 µM (vs. cytidine and uridine; mM range). IC50 values were higher for nucleobases compared to the corresponding nucleosides; hypoxanthine had a 25-fold higher IC50 than inosine. The archetypal human ENT1 inhibitor 4-nitrobenzylthioinosine (NBMPR) had no effect on PvENT1, whereas dipyridamole inhibited PvENT1, albeit with a 40 µM IC50, a 1000-fold less sensitive than human ENT1 (hENT1). The PfENT1 inhibitors blocked transport activity of PvENT1 and the five known naturally occurring non-synonymous single nucleotide polymorphisms (SNPs) with similar IC50 values. Thus, the PfENT1 inhibitors also target PvENT1. This implies that development of novel antimalarial drugs that target both falciparum and vivax ENT1 may be feasible.


Assuntos
Antimaláricos/farmacologia , Descoberta de Drogas , Transportador Equilibrativo 1 de Nucleosídeo/antagonistas & inibidores , Proteínas de Transporte de Nucleobases, Nucleosídeos, Nucleotídeos e Ácidos Nucleicos/antagonistas & inibidores , Proteínas de Transporte de Nucleobases, Nucleosídeos, Nucleotídeos e Ácidos Nucleicos/metabolismo , Plasmodium falciparum/efeitos dos fármacos , Plasmodium vivax/efeitos dos fármacos , Proteínas de Protozoários/antagonistas & inibidores , Proteínas de Protozoários/metabolismo , Adenosina/farmacologia , Dipiridamol/farmacologia , Transportador Equilibrativo 1 de Nucleosídeo/genética , Guanosina/farmacologia , Humanos , Concentração Inibidora 50 , Inosina/farmacologia , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Malária Vivax/tratamento farmacológico , Malária Vivax/parasitologia , Malária Vivax/prevenção & controle , Proteínas de Transporte de Nucleobases, Nucleosídeos, Nucleotídeos e Ácidos Nucleicos/genética , Plasmodium falciparum/metabolismo , Plasmodium vivax/genética , Polimorfismo de Nucleotídeo Único , Proteínas de Protozoários/genética , Purinas/metabolismo , Purinas/farmacologia , Pirimidinas/metabolismo , Saccharomyces cerevisiae/genética , Uridina/farmacologia
5.
ACS Chem Biol ; 10(3): 775-83, 2015 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-25602169

RESUMO

Equilibrative transporters are potential drug targets; however, most functional assays involve radioactive substrate uptake that is unsuitable for high-throughput screens (HTS). We developed a robust yeast-based growth assay that is potentially applicable to many equilibrative transporters. As proof of principle, we applied our approach to Equilibrative Nucleoside Transporter 1 of the malarial parasite Plasmodium falciparum (PfENT1). PfENT1 inhibitors might serve as novel antimalarial drugs since PfENT1-mediated purine import is essential for parasite proliferation. To identify PfENT1 inhibitors, we screened 64 560 compounds and identified 171 by their ability to rescue the growth of PfENT1-expressing fui1Δ yeast in the presence of a cytotoxic PfENT1 substrate, 5-fluorouridine (5-FUrd). In secondary assays, nine of the highest activity compounds inhibited PfENT1-dependent growth of a purine auxotrophic yeast strain with adenosine as the sole purine source (IC50 0.2-2 µM). These nine compounds completely blocked [(3)H]adenosine uptake into PfENT1-expressing yeast and erythrocyte-free trophozoite-stage parasites (IC50 5-50 nM), and inhibited chloroquine-sensitive and -resistant parasite proliferation (IC50 5-50 µM). Wild-type (WT) parasite IC50 values were up to 4-fold lower compared to PfENT1-knockout (pfent1Δ) parasites. pfent1Δ parasite killing showed a delayed-death phenotype not observed with WT. We infer that, in parasites, the compounds inhibit both PfENT1 and a secondary target with similar efficacy. The secondary target identity is unknown, but its existence may reduce the likelihood of parasites developing resistance to PfENT1 inhibitors. Our data support the hypothesis that blocking purine transport through PfENT1 may be a novel and compelling approach for antimalarial drug development.


Assuntos
Antimaláricos/farmacologia , Ensaios de Triagem em Larga Escala , Proteínas de Transporte de Nucleobases, Nucleosídeos, Nucleotídeos e Ácidos Nucleicos/antagonistas & inibidores , Plasmodium falciparum/efeitos dos fármacos , Proteínas de Protozoários/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/farmacologia , Trofozoítos/efeitos dos fármacos , Adenosina/metabolismo , Antimaláricos/química , Cultura Axênica , Transporte Biológico/efeitos dos fármacos , Deleção de Genes , Expressão Gênica , Teste de Complementação Genética , Proteínas de Transporte de Nucleobases, Nucleosídeos, Nucleotídeos e Ácidos Nucleicos/genética , Proteínas de Transporte de Nucleobases, Nucleosídeos, Nucleotídeos e Ácidos Nucleicos/metabolismo , Proteínas de Transporte de Nucleosídeos/genética , Proteínas de Transporte de Nucleosídeos/metabolismo , Plasmodium falciparum/crescimento & desenvolvimento , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Bibliotecas de Moléculas Pequenas/química , Relação Estrutura-Atividade , Trofozoítos/crescimento & desenvolvimento , Trofozoítos/metabolismo , Uridina/análogos & derivados , Uridina/farmacologia
6.
Ann N Y Acad Sci ; 1342: 19-28, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25424653

RESUMO

Infection with Plasmodium species parasites causes malaria. Plasmodium parasites are purine auxotrophs. In all life cycle stages, they require purines for RNA and DNA synthesis and other cellular metabolic processes. Purines are imported from the host erythrocyte by equilibrative nucleoside transporters (ENTs). They are processed via purine salvage pathway enzymes to form the required purine nucleotides. The Plasmodium falciparum genome encodes four putative ENTs (PfENT1-4). Genetic, biochemical, and physiologic evidence suggest that PfENT1 is the primary purine transporter supplying the purine salvage pathway. Protein mass spectrometry shows that PfENT1 is expressed in all parasite stages. PfENT1 knockout parasites are not viable in culture at purine concentrations found in human blood (<10 µM). Thus, PfENT1 is a potential target for novel antimalarial drugs, but no PfENT1 inhibitors have been identified to test the hypothesis. Identifying inhibitors of PfENT1 is an essential step to validate PfENT1 as a potential antimalarial drug target.


Assuntos
Antimaláricos/metabolismo , Sistemas de Liberação de Medicamentos/tendências , Descoberta de Drogas/tendências , Proteínas de Transporte de Nucleobases, Nucleosídeos, Nucleotídeos e Ácidos Nucleicos/metabolismo , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/metabolismo , Purinas/metabolismo , Animais , Antimaláricos/administração & dosagem , Humanos , Malária/tratamento farmacológico , Malária/metabolismo , Proteínas de Transporte de Nucleobases, Nucleosídeos, Nucleotídeos e Ácidos Nucleicos/antagonistas & inibidores , Parasitos/efeitos dos fármacos , Parasitos/metabolismo , Plasmodium falciparum/efeitos dos fármacos , Proteínas de Protozoários/antagonistas & inibidores
7.
Curr Opin Struct Biol ; 25: 16-24, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24878340

RESUMO

Ring-shaped nucleic acid translocases and helicases catalyze the directed and processive movement of nucleic acid strands to support essential transactions such as replication, transcription, and chromosome partitioning. Assembled typically as hexamers, ring helicase/translocase systems use coordinated cycles of nucleoside triphosphate (NTP) hydrolysis to translocate extended DNA or RNA substrates through a central pore. Ring formation presents a topological challenge to the engagement of substrate oligonucleotides, and is frequently overcome by distinct loading strategies for shepherding specific motors onto their respective substrates. Recent structural studies that capture different loading intermediates have begun to reveal how different helicase/translocase rings either assemble around substrates or crack open to allow DNA or RNA strand entry, and how dedicated chaperones facilitate these events in some instances. Both prevailing mechanistic models and remaining knowledge gaps are discussed.


Assuntos
DNA Helicases/química , DNA Helicases/metabolismo , Proteínas de Transporte de Nucleobases, Nucleosídeos, Nucleotídeos e Ácidos Nucleicos/química , Proteínas de Transporte de Nucleobases, Nucleosídeos, Nucleotídeos e Ácidos Nucleicos/metabolismo , Chaperonas Moleculares/metabolismo
8.
Science ; 341(6152): 1404-8, 2013 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-24052309

RESUMO

An appropriate balance in glycosylation of proteoglycans is crucial for their ability to regulate animal development. Here, we report that the Caenorhabditis elegans microRNA mir-79, an ortholog of mammalian miR-9, controls sugar-chain homeostasis by targeting two proteins in the proteoglycan biosynthetic pathway: a chondroitin synthase (SQV-5; squashed vulva-5) and a uridine 5'-diphosphate-sugar transporter (SQV-7). Loss of mir-79 causes neurodevelopmental defects through SQV-5 and SQV-7 dysregulation in the epidermis. This results in a partial shutdown of heparan sulfate biosynthesis that impinges on a LON-2/glypican pathway and disrupts neuronal migration. Our results identify a regulatory axis controlled by a conserved microRNA that maintains proteoglycan homeostasis in cells.


Assuntos
Caenorhabditis elegans/fisiologia , Movimento Celular , Epiderme/metabolismo , Proteoglicanas de Heparan Sulfato/biossíntese , MicroRNAs/fisiologia , Neurônios/fisiologia , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/biossíntese , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Glicosilação , Glicosiltransferases/metabolismo , Glipicanas/biossíntese , Glipicanas/genética , Proteoglicanas de Heparan Sulfato/genética , MicroRNAs/genética , Proteínas de Transporte de Monossacarídeos/metabolismo , Proteínas de Transporte de Nucleobases, Nucleosídeos, Nucleotídeos e Ácidos Nucleicos/metabolismo
9.
Extremophiles ; 17(4): 697-8, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23712905

RESUMO

The DNA-translocator ATPase PilF of Thermus thermophilus HB27 is a hexamer built by six identical subunits. Despite the presence of a conserved zinc-binding site in every subunit, only one zinc atom per hexamer was found. Re-examination of the zinc content of PilF purified from cells grown in complex media with different lots of yeast extract revealed six zinc atoms per hexamer. These data demonstrate that the low zinc content reported before was most likely a result of zinc depletion of the yeast extract used.


Assuntos
Proteínas de Bactérias/química , Proteínas de Transporte de Nucleobases, Nucleosídeos, Nucleotídeos e Ácidos Nucleicos/química , Thermus thermophilus/enzimologia , Zinco/análise , Proteínas de Bactérias/metabolismo , Sítios de Ligação , DNA/metabolismo , Proteínas de Transporte de Nucleobases, Nucleosídeos, Nucleotídeos e Ácidos Nucleicos/metabolismo , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo
10.
Int J Food Microbiol ; 161(3): 158-63, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23333341

RESUMO

The distribution and survival of Listeria monocytogenes (L. monocytogenes) in food processing environment is linked to its ability to form biofilms, however the genetic mechanisms remain unclear. In our previous study, a Himar1 mariner-based transposon mutagenesis was performed and 42 mutants were confirmed to have reduced biofilm formation. Among the 42 biofilm deficient mutants, two isolates (s25-10C and s55-1D) harbored single insertion in lmo1386, a gene encoding a putative DNA translocase. The lmo1386 mutants had impaired biofilm formation in both static and flow conditions. The mutant strain s55-1D was complemented by cloning the entire lmo1386 gene into pPL2-gtcAP, a derivative of the integration vector pPL2 with the L. monocytogenes gtcA promoter. The genetically complemented mutant restored its biofilm phenotype, demonstrating the role of lmo1386 in the biofilm formation of L. monocytogenes. The lmo1386 mutant had reduced initial adhesion ability, which could at least partially contribute to the impaired biofilm phenotype. Additionally, the lmo1386 mutant formed elongated cell chains when grown in a nutrient TSBYE media, while no obvious cell morphology changes were observed when grown in the minimal MWB media. Overall, our findings suggest that the disruption of lmo1386, a putative DNA translocase gene affects the biofilm formation of L. monocytogenes on abiotic surfaces, which may further advance the understanding of the complicated process of biofilm formation.


Assuntos
Proteínas de Bactérias/genética , Biofilmes/crescimento & desenvolvimento , Listeria monocytogenes/genética , Proteínas de Transporte de Nucleobases, Nucleosídeos, Nucleotídeos e Ácidos Nucleicos/genética , Aderência Bacteriana , Proteínas de Bactérias/metabolismo , Clonagem Molecular , DNA Bacteriano/genética , Listeria monocytogenes/crescimento & desenvolvimento , Mutagênese Insercional , Proteínas de Transporte de Nucleobases, Nucleosídeos, Nucleotídeos e Ácidos Nucleicos/metabolismo
11.
Future Med Chem ; 4(11): 1461-78, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22857534

RESUMO

Nucleoside transporters play important physiological roles by regulating intra- and extra-cellular concentrations of purine and pyrimidine (deoxy)nucleosides. This review describes the biological function and activity of the two major families of membrane nucleoside transporters that exist in mammalian cells. These include equilibrative nucleoside transporters that transport nucleosides in a gradient-dependent fashion and concentrative nucleoside transporters that import nucleosides against a gradient by coupling movement with sodium transport. Particular emphasis is placed on describing the roles of nucleoside transport in normal physiological processes, including inflammation, cardiovascular function and nutrient transport across the blood-brain barrier. In addition, the role of nucleoside transport in pathological conditions such as cardiovascular disease and cancer are discussed. The potential therapeutic applications of manipulating nucleoside transport activities are discussed, focusing on nucleoside analogs as anti-neoplastic agents. Finally, we discuss future directions for the development of novel chemical entities to measure nucleoside transport activity at the cellular and organismal level.


Assuntos
Proteínas de Transporte de Nucleobases, Nucleosídeos, Nucleotídeos e Ácidos Nucleicos/metabolismo , Nucleosídeos/química , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Barreira Hematoencefálica/efeitos dos fármacos , Doenças Cardiovasculares/tratamento farmacológico , Humanos , Neoplasias/tratamento farmacológico , Proteínas de Transporte de Nucleobases, Nucleosídeos, Nucleotídeos e Ácidos Nucleicos/antagonistas & inibidores , Nucleosídeos/farmacologia , Nucleosídeos/uso terapêutico , Relação Estrutura-Atividade
12.
Nucleic Acids Res ; 39(14): e96, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21596779

RESUMO

Mitochondria play a key role in essential cellular functions. A deeper understanding of mitochondrial molecular processes is hampered by the difficulty of incorporating foreign nucleic acids into organelles. Mitochondria of most eukaryotic species import cytosolic tRNAs. Based on this natural process, we describe here a powerful shuttle system to internalize several types of RNAs into isolated mitochondria. We demonstrate that this tool is useful to investigate tRNA processing or mRNA editing in plant mitochondria. Furthermore, we show that the same strategy can be used to address both tRNA and mRNA to isolated mammalian mitochondria. We anticipate our novel approach to be the starting point for various studies on mitochondrial processes. Finally, our study provides new insights into the mechanism of RNA import into mitochondria.


Assuntos
Mitocôndrias/metabolismo , Proteínas de Transporte de Nucleobases, Nucleosídeos, Nucleotídeos e Ácidos Nucleicos/metabolismo , Transporte de RNA , Sequência de Bases , Larix/genética , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Dados de Sequência Molecular , Edição de RNA , Precursores de RNA/química , Precursores de RNA/metabolismo , Processamento Pós-Transcricional do RNA , RNA Mensageiro/metabolismo , RNA de Transferência/metabolismo , RNA de Transferência de Histidina/química , RNA de Transferência de Histidina/metabolismo , Solanum tuberosum/metabolismo , Tetra-Hidrofolato Desidrogenase/metabolismo
13.
Mol Biochem Parasitol ; 169(1): 40-9, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19818813

RESUMO

Plasmodium falciparum is a purine auxotroph. The transport of purine nucleosides and nucleobases from the host erythrocyte to the parasite cytoplasm is essential to support parasite growth. P. falciparum equilibrative nucleoside transporter 1 (PfENT1) is a major route for purine transport across the parasite plasma membrane. Malarial parasites are sensitive to inhibitors of purine salvage pathway enzymes. The immucillin class of purine nucleoside phosphorylase inhibitors and the adenosine analog, tubercidin, block growth of P. falciparum under in vitro culture conditions. We sought to determine whether these inhibitors utilize PfENT1 to gain access to the parasite cytosol. There is considerable controversy in the literature regarding the K(m) and/or K(i) for purine transport by PfENT1 in the Xenopus oocyte expression system. We show that oocytes metabolize adenosine but not hypoxanthine. For adenosine, metabolism is the rate limiting step in oocyte uptake assays, making hypoxanthine the preferred substrate for PfENT1 transport studies in oocytes. We demonstrate that the K(i) for PfENT1 transport of hypoxanthine and adenosine is in the 300-700microM range. Effects of substrate metabolism on uptake studies may explain conflicting results in the literature regarding the PfENT1 adenosine transport K(m). PfENT1 transports the tubercidin class of compounds. None of the immucillin compounds tested inhibited PfENT1 transport of [(3)H]hypoxanthine or [(3)H]adenosine. Although nucleobases are transported, modifications of the ribose ring in corresponding nucleoside analogs affect substrate recognition by PfENT1. These results provide new insights into PfENT1 and the mechanism by which purine salvage pathway inhibitors are transported into the parasite cytoplasm.


Assuntos
Inibidores Enzimáticos/farmacologia , Redes e Vias Metabólicas/efeitos dos fármacos , Proteínas de Transporte de Nucleobases, Nucleosídeos, Nucleotídeos e Ácidos Nucleicos/antagonistas & inibidores , Proteínas de Transporte de Nucleobases, Nucleosídeos, Nucleotídeos e Ácidos Nucleicos/metabolismo , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/antagonistas & inibidores , Proteínas de Protozoários/metabolismo , Purinas/metabolismo , Animais , Transporte Biológico/efeitos dos fármacos , Cinética , Proteínas de Transporte de Nucleobases, Nucleosídeos, Nucleotídeos e Ácidos Nucleicos/química , Proteínas de Transporte de Nucleobases, Nucleosídeos, Nucleotídeos e Ácidos Nucleicos/genética , Oócitos/química , Oócitos/efeitos dos fármacos , Oócitos/crescimento & desenvolvimento , Oócitos/metabolismo , Plasmodium falciparum/química , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/genética , Plasmodium falciparum/crescimento & desenvolvimento , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Nucleosídeos de Purina/farmacologia , Purinas/química , Pirimidinonas/farmacologia , Tubercidina/farmacologia
14.
Nucleic Acids Res ; 36(17): 5552-61, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18755708

RESUMO

Proteins that participate in the import of cytosolic tRNAs into mitochondria have been identified in several eukaryotic species, but the details of their interactions with tRNA and other proteins are unknown. In the kinetoplastid protozoon Leishmania tropica, multiple proteins are organized into a functional import complex. RIC8A, a tRNA-binding subunit of this complex, has a C-terminal domain that functions as subunit 6b of ubiquinol cytochrome c reductase (complex III). We show that the N-terminal domain, unique to kinetoplastid protozoa, is structurally similar to the appended S15/NS1 RNA-binding domain of aminoacyl tRNA synthetases, with a helix-turn-helix motif. Structure-guided mutagenesis coupled with in vitro assays showed that helix alpha1 contacts tRNA whereas helix alpha2 targets the protein for assembly into the import complex. Inducible expression of a helix 1-deleted variant in L. tropica resulted in formation of an inactive import complex, while the helix 2-deleted variant was unable to assemble in vivo. Moreover, a protein-interaction assay showed that the C-terminal domain makes allosteric contacts with import receptor RIC1 complexed with tRNA. These results help explain the origin of the bifunctionality of RIC8A, and the allosteric changes accompanying docking and release of tRNA during import.


Assuntos
Leishmania tropica/metabolismo , Proteínas Mitocondriais/química , Proteínas de Transporte de Nucleobases, Nucleosídeos, Nucleotídeos e Ácidos Nucleicos/química , RNA de Transferência/metabolismo , Proteínas de Ligação a RNA/química , Sítio Alostérico , Sequência de Aminoácidos , Animais , Leishmania tropica/genética , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Dados de Sequência Molecular , Mutagênese , Proteínas de Transporte de Nucleobases, Nucleosídeos, Nucleotídeos e Ácidos Nucleicos/genética , Proteínas de Transporte de Nucleobases, Nucleosídeos, Nucleotídeos e Ácidos Nucleicos/metabolismo , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Transporte de RNA , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Homologia Estrutural de Proteína
15.
Int J Parasitol ; 38(2): 203-9, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17765902

RESUMO

Hypoxanthine, a nucleobase, serves as the major source of the essential purine group for the intraerythrocytic malaria parasite. In this study we have measured the uptake of hypoxanthine, and that of the related purine nucleobase adenine, by mature blood-stage Plasmodium falciparum parasites isolated from their host cells by saponin-permeabilisation of the erythrocyte and parasitophorous vacuole membranes. The uptake of both [3H]hypoxanthine and [3H]adenine was comprised of at least two components; in each case there was a rapid equilibration of the radiolabel between the intra- and extracellular solutions via a low-affinity transport mechanism, and an accumulation of radiolabel (such that the estimated intracellular concentration exceeded the extracellular concentration) via a higher-affinity process. The uptake of [3H]adenine was studied in more detail. The rapid, low-affinity equilibration of [3H]adenine between the intra-and extracellular solution was independent of the energy status of the parasite whereas the higher-affinity accumulation of the radiolabel was ATP-dependent. A kinetic analysis of adenine uptake revealed that the low-affinity (equilibrative) process had a Km of approximately 1.2mM, similar to the value of 0.82 mM estimated here (using the Xenopus laevis oocyte expression system) for the Km for the transport of adenine by PfENT1, a parasite-encoded member of the 'equilibrative nucleoside/nucleobase transporter' family. The results indicate that nucleobases enter the intraerythrocytic parasite via a rapid, equilibrative process that has kinetic characteristics similar to those of PfENT1.


Assuntos
Eritrócitos/parasitologia , Proteínas de Transporte de Nucleobases/metabolismo , Plasmodium falciparum/metabolismo , Adenina/análise , Adenina/metabolismo , Trifosfato de Adenosina/análise , Trifosfato de Adenosina/metabolismo , Animais , Transporte Biológico , Células Cultivadas , Hipoxantina/análise , Hipoxantina/metabolismo , Malária Falciparum , Proteínas de Transporte de Nucleobases/análise , Proteínas de Transporte de Nucleobases, Nucleosídeos, Nucleotídeos e Ácidos Nucleicos/metabolismo , Oócitos/metabolismo , Parasitologia/métodos , Proteínas de Protozoários/metabolismo , Xenopus laevis
16.
Mol Microbiol ; 60(3): 738-48, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16629674

RESUMO

Like all parasitic protozoa, the human malaria parasite Plasmodium falciparum lacks the enzymes required for de novo synthesis of purines and it is therefore reliant upon the salvage of these compounds from the external environment. P. falciparum equilibrative nucleoside transporter 1 (PfENT1) is a nucleoside transporter that has been localized to the plasma membrane of the intraerythrocytic form of the parasite. In this study we have characterized the transport of purine and pyrimidine nucleosides across the plasma membrane of 'isolated' trophozoite-stage P. falciparum parasites and compared the transport characteristics of the parasite with those of PfENT1 expressed in Xenopus oocytes. The transport of nucleosides into the parasite: (i) was, in the case of adenosine, inosine and thymidine, very fast, equilibrating within a few seconds; (ii) was of low affinity [K(m) (adenosine) = 1.45 +/- 0.25 mM; K(m) (thymidine) = 1.11 +/- 0.09 mM]; and (iii) showed 'cross-competition' for adenosine, inosine and thymidine, but not cytidine. The kinetic characteristics of nucleoside transport in intact parasites matched very closely those of PfENT1 expressed in Xenopus oocytes [K(m) (adenosine) = 1.86 +/- 0.28 mM; K(m) (thymidine) = 1.33 +/- 0.17 mM]. Furthermore, PfENT1 transported adenosine, inosine and thymidine, with a cross-competition profile the same as that seen for isolated parasites. The data are consistent with PfENT1 serving as a major route for the uptake of nucleosides across the parasite plasma membrane.


Assuntos
Membrana Celular/metabolismo , Proteínas de Transporte de Nucleobases, Nucleosídeos, Nucleotídeos e Ácidos Nucleicos/metabolismo , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/metabolismo , Purinas/metabolismo , Pirimidinas/metabolismo , Animais , Eritrócitos/parasitologia , Humanos , Proteínas de Transporte de Nucleosídeos/metabolismo , Oócitos/metabolismo , Plasmodium falciparum/crescimento & desenvolvimento , Xenopus/crescimento & desenvolvimento , Xenopus/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...