Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
J Virol ; 97(10): e0089223, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37772835

RESUMO

IMPORTANCE: The hepatitis C virus is associated with nearly 300,000 deaths annually. At the core of the virus is an RNA-protein complex called the nucleocapsid, which consists of the viral genome and many copies of the core protein. Because the assembly of the nucleocapsid is a critical step in viral replication, a considerable amount of effort has been devoted to identifying antiviral therapeutics that can bind to the core protein and disrupt assembly. Although several candidates have been identified, little is known about how they interact with the core protein or how those interactions alter the structure and thus the function of this viral protein. Our work biochemically characterizes several of these binding interactions, highlighting both similarities and differences as well as strengths and weaknesses. These insights bolster the notion that this viral protein is a viable target for novel therapeutics and will help to guide future developments of these candidate antivirals.


Assuntos
Antivirais , Hepacivirus , Proteínas do Core Viral , Humanos , Antivirais/metabolismo , Antivirais/farmacologia , Hepacivirus/química , Hepacivirus/efeitos dos fármacos , Hepacivirus/metabolismo , Hepatite C/tratamento farmacológico , Hepatite C/virologia , Nucleocapsídeo/antagonistas & inibidores , Nucleocapsídeo/química , Nucleocapsídeo/metabolismo , Proteínas do Core Viral/antagonistas & inibidores , Proteínas do Core Viral/metabolismo , Montagem de Vírus , Replicação Viral , Imagem Individual de Molécula/métodos , Ligação Proteica
2.
Antiviral Res ; 197: 105211, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34826506

RESUMO

AB-506, a small-molecule inhibitor targeting the HBV core protein, inhibits viral replication in vitro (HepAD38 cells: EC50 of 0.077 µM, CC50 > 25 µM) and in vivo (HBV mouse model: ∼3.0 log10 reductions in serum HBV DNA compared to the vehicle control). Binding of AB-506 to HBV core protein accelerates capsid assembly and inhibits HBV pgRNA encapsidation. Furthermore, AB-506 blocks cccDNA establishment in HBV-infected HepG2-hNTCP-C4 cells and primary human hepatocytes, leading to inhibition of viral RNA, HBsAg, and HBeAg production (EC50 from 0.64 µM to 1.92 µM). AB-506 demonstrated activity across HBV genotypes A-H and maintains antiviral activity against nucleos(t)ide analog-resistant variants in vitro. Evaluation of AB-506 against a panel of core variants showed that T33N/Q substitutions results in >200-fold increase in EC50 values, while L30F, L37Q, and I105T substitutions showed an 8 to 20-fold increase in EC50 values in comparison to the wild-type. In vitro combinations of AB-506 with NAs or an RNAi agent were additive to moderately synergistic. AB-506 exhibits good oral bioavailability, systemic exposure, and higher liver to plasma ratios in rodents, a pharmacokinetic profile supporting clinical development for chronic hepatitis B.


Assuntos
Antivirais/farmacologia , Vírus da Hepatite B/efeitos dos fármacos , Proteínas do Core Viral/antagonistas & inibidores , Replicação Viral/efeitos dos fármacos , Animais , Antivirais/farmacocinética , Células Cultivadas , Avaliação Pré-Clínica de Medicamentos , Feminino , Células Hep G2 , Hepatócitos/efeitos dos fármacos , Hepatócitos/virologia , Humanos , Camundongos , Ratos , Montagem de Vírus/efeitos dos fármacos
3.
J Mol Model ; 27(2): 49, 2021 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-33495861

RESUMO

Ebola filovirus (EBOV) is one of the deadliest known infectious agents, and a cause of Western African epidemics from 2013 to 2016. The virus has infected nearly 3000 humans and almost 1900 have died. In the past few years, various small molecules have been discovered to display efficiency against EBOV and some of them have progressed towards clinical trials. Even though continuous attempts have been made to find antiEBOV therapeutics, no potential drugs are yet approved against this viral infection. The development of small antiviral inhibitors has gained tremendous attention in the attempt to overcome EVD. With this background, we seek to offer molecular insights into EBOV VP40 protein inhibition, using all atom molecular mechanics methodology and binding free energy calculations. We have selected five novel reported inhibitors against VP40 protein, namely Comp1, Comp2, Comp3, Comp4, and Comp5, and explored their binding against the same target. It was evident from the analysis that all the inhibitors displayed stability in complex with VP40 protein; however, Comp1 exhibited enhanced stability and compactness. Comp1 unveiled favorable binding, which accounted for positive correlation motions in the active site residues. Likewise, Comp1 revealed the most promising binding (ΔGbind - 40.3504 kcal/mol) as compared to the other four inhibitors, which disclosed relatively less favorable ΔGbind. The highest binding energy of Comp1 to VP40 protein can be primarily endorsed to the upsurge in van der Waals energy by ΔEvdW - 37.1609 kcal/mol and Coulomb energy by ΔEele - 52.7332 kcal/mol. Also, the hydrogen bond network is robust in Comp1-VP40 complex, with four hydrogen bonds, whilst it is less in other inhibitors. The outcomes from this report may assist in the advancement of novel VP40 inhibitors with high selectivity and potency for EVD therapeutics.


Assuntos
Simulação de Dinâmica Molecular , Nucleoproteínas/antagonistas & inibidores , Nucleoproteínas/química , Proteínas do Core Viral/antagonistas & inibidores , Proteínas do Core Viral/química , Aminoácidos/metabolismo , Humanos , Concentração Inibidora 50 , Ligantes , Simulação de Acoplamento Molecular , Estabilidade Proteica , RNA/química , RNA/metabolismo , Termodinâmica
4.
Antiviral Res ; 182: 104917, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32818519

RESUMO

The core (capsid) protein of hepatitis B virus (HBV) is the building block of nucleocapsids where viral DNA reverse transcriptional replication takes place and mediates virus-host cell interaction important for the persistence of HBV infection. The pleiotropic role of core protein (Cp) in HBV replication makes it an attractive target for antiviral therapies of chronic hepatitis B, a disease that affects more than 257 million people worldwide without a cure. Recent clinical studies indicate that core protein allosteric modulators (CpAMs) have a great promise as a key component of hepatitis B curative therapies. Particularly, it has been demonstrated that modulation of Cp dimer-dimer interactions by several chemical series of CpAMs not only inhibit nucleocapsid assembly and viral DNA replication, but also induce the disassembly of double-stranded DNA-containing nucleocapsids to prevent the synthesis of cccDNA. Moreover, the different chemotypes of CpAMs modulate Cp assembly by interaction with distinct amino acid residues at the HAP pocket between Cp dimer-dimer interfaces, which results in the assembly of Cp dimers into either non-capsid Cp polymers (type I CpAMs) or empty capsids with distinct physical property (type II CpAMs). The different CpAMs also differentially modulate Cp metabolism and subcellular distribution, which may impact cccDNA metabolism and host antiviral immune responses, the critical factors for the cure of chronic HBV infection. This review article highlights the recent research progress on the structure and function of core protein in HBV replication cycle, the mode of action of CpAMs, as well as the current status and perspectives on the discovery and development of core protein-targeting antivirals. This article forms part of a symposium in Antiviral Research on "Wide-ranging immune and direct-acting antiviral approaches to curing HBV and HDV infections."


Assuntos
Antígenos do Núcleo do Vírus da Hepatite B , Vírus da Hepatite B/efeitos dos fármacos , Hepatite B Crônica/tratamento farmacológico , Proteínas do Core Viral/antagonistas & inibidores , Animais , Antivirais/uso terapêutico , Replicação do DNA/efeitos dos fármacos , DNA Viral , Células Hep G2 , Humanos , Camundongos , Nucleocapsídeo/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
5.
J Recept Signal Transduct Res ; 40(5): 426-435, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32249640

RESUMO

Outstanding increase of oral absorption, bioavailability, and antiviral efficacy of phosphorylated nucleosides and basic antiviral influence of abacavir is the central idea for the development of new series of phosphorylated abacavir (ABC) derivatives. The designed compounds were primarily screened for antiviral nature against HN protein of NDV and VP7 protein of BTV using the molecular environment approach. Out of all the designed compounds, the compounds which are having higher binding energies against these two viral strains were prompted for the synthesis of the target compounds (5A-K). Among the synthesized title compounds (5A-K), the compounds which have exhibited higher dock scores akin to the rest of the compounds were then selected and screened for the antiviral activity against NDV and BTV infected embryonated eggs and BHK 21 cell lines through the in ovo and in vitro approaches. The results revealed that all the designed compounds have formed higher binding energies against both the targets. Among all, the compounds which are selected based on their dock scores such as 5A, 5F, 5G, 5H, 5I, and 5K against NDV and 5J, 5E, 5I, 5C, 5A, and 5K against BTV have shown significant antiviral activity against HN protein of NDV, VP7 protein of Bluetongue virus in both NDV- and BTV-treated embryonated eggs and BHK 21 cell lines. Hence, it is concluded that, the best lead compounds will stand as the potential antiviral agents and prompted them as virtuous therapeutics against NDV and BTV in future.


Assuntos
Bluetongue/tratamento farmacológico , Didesoxinucleosídeos/farmacologia , Proteína HN/efeitos dos fármacos , Proteínas do Core Viral/antagonistas & inibidores , Animais , Doenças das Aves/tratamento farmacológico , Doenças das Aves/genética , Doenças das Aves/virologia , Bluetongue/genética , Bluetongue/virologia , Vírus Bluetongue/efeitos dos fármacos , Vírus Bluetongue/genética , Vírus Bluetongue/patogenicidade , Simulação por Computador , Didesoxinucleosídeos/química , Doença de Newcastle/tratamento farmacológico , Doença de Newcastle/genética , Doença de Newcastle/virologia , Vírus da Doença de Newcastle/genética , Fosforilação , Ovinos/virologia , Doenças dos Ovinos/tratamento farmacológico , Doenças dos Ovinos/genética , Relação Estrutura-Atividade , Proteínas do Core Viral/genética
6.
Viruses ; 13(1)2020 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-33396288

RESUMO

Filoviruses, such as Ebola virus and Marburg virus, are of significant human health concern. From 2013 to 2016, Ebola virus caused 11,323 fatalities in Western Africa. Since 2018, two Ebola virus disease outbreaks in the Democratic Republic of the Congo resulted in 2354 fatalities. Although there is progress in medical countermeasure (MCM) development (in particular, vaccines and antibody-based therapeutics), the need for efficacious small-molecule therapeutics remains unmet. Here we describe a novel high-throughput screening assay to identify inhibitors of Ebola virus VP40 matrix protein association with viral particle assembly sites on the interior of the host cell plasma membrane. Using this assay, we screened nearly 3000 small molecules and identified several molecules with the desired inhibitory properties. In secondary assays, one identified compound, sangivamycin, inhibited not only Ebola viral infectivity but also that of other viruses. This finding indicates that it is possible for this new VP40-based screening method to identify highly potent MCMs against Ebola virus and its relatives.


Assuntos
Antivirais/farmacologia , Ebolavirus/efeitos dos fármacos , Nucleoproteínas/antagonistas & inibidores , Proteínas do Core Viral/antagonistas & inibidores , Animais , Antivirais/química , Antivirais/uso terapêutico , Chlorocebus aethiops , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Ebolavirus/genética , Regulação Viral da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Doença pelo Vírus Ebola/tratamento farmacológico , Doença pelo Vírus Ebola/virologia , Humanos , Contramedidas Médicas , Estrutura Molecular , Nucleoproteínas/química , Nucleosídeos de Pirimidina/farmacologia , Células Vero , Proteínas do Core Viral/química , Liberação de Vírus/efeitos dos fármacos
7.
Lancet Gastroenterol Hepatol ; 5(2): 152-166, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31711752

RESUMO

BACKGROUND: Therapies with novel mechanisms of action against hepatitis B virus (HBV) infection are being explored with the goal of achieving a functional cure (sustained off-treatment response) without requiring lifelong therapy. We aimed to evaluate the pharmacokinetics, safety, and antiviral activity of ABI-H0731, an investigational inhibitor of the HBV core protein. METHODS: This phase 1, randomised, placebo-controlled study was done in two parts. In part 1, healthy adults without hepatitis B aged 18-65 years at one clinical research centre in New Zealand (eight participants per dose cohort) were randomly assigned (3:1) to receive single oral doses of ABI-H0731 (100, 300, 600, or 1000 mg) or matching placebo, or once-daily or twice-daily doses of ABI-H0731 800 mg or matching placebo for 7 days. In part 2, adults aged 18-65 years at clinical research centres in New Zealand, Australia, the UK, Hong Kong, Taiwan, and South Korea with chronic HBV (12 participants per dose cohort) were randomly assigned (5:1) to receive ABI-H0731 (100, 200, 300, or 400 mg) or matching placebo once daily for 28 days. In part 2, participants were required to have HBeAg-positive or HBeAg-negative chronic HBV infection, with serum HBV DNA concentrations of at least 2 × 104 IU/mL (HBeAg-positive) or 2 × 103 IU/mL (HBeAg-negative) and serum alanine aminotransferase concentrations less than seven times the upper limit of normal. Both parts used simple randomisation, with study participants, site personnel, and study monitors masked to treatment assignments. The primary study objective was dose-related safety and tolerability of ABI-H0731 in healthy volunteers and in participants with chronic HBV infection, assessed in all treated participants. Key secondary assessments included pharmacokinetic analyses and virological responses. This study is registered with ClinicalTrials.gov, identifier NCT02908191 and is completed. FINDINGS: 48 [61%] of 79 healthy volunteers were enrolled in the single-ascending or multiple-ascending dose phase of part 1 between Nov 16, 2016, and Jan, 27, 2017. 38 [55%] of 69 HBV-infected participants were enrolled in part 2 between June 15, 2017, and March 15, 2018. All adverse events were non-specific and of mild or moderate intensity apart from a single HBV-infected participant given the 400 mg dose who developed a severe (grade 3) maculopapular rash and terminated treatment. Overall, the most frequent adverse events of any grade among the 74 participants who received ABI-H0731 were headache (11 [15%]), influenza-like illness (seven [9%]), and dizziness (six [8%]); the most frequent adverse events considered treatment-related were rash (four [5%]) and dizziness (three [4%]). In part 1, ABI-H0731 reached maximum plasma concentrations (Tmax) in 2·50-4·17 h; the mean plasma half-life (t1/2) was 23·5-28·4 h. In part 2, mean maximum HBV DNA declines from baseline were 1·7 log10 IU/mL in the 100 mg dose cohort, 2·1 log10 IU/mL in the 200 mg dose cohort, and 2·8 log10 IU/mL in the 300 mg dose cohort. Across dose cohorts, serum HBV RNA declines correlated with HBV DNA declines. INTERPRETATION: No pattern of treatment-emergent adverse events was observed at ABI-H0731 doses up to 300 mg in individuals with chronic hepatitis B. ABI-H0731 was rapidly absorbed and exhibited a plasma half-life supportive of once-daily dosing. Dose-dependent decreases in serum HBV DNA and RNA concentrations are consistent with the proposed mechanism of action. FUNDING: Assembly Biosciences.


Assuntos
Antivirais/farmacocinética , Antígenos E da Hepatite B/imunologia , Vírus da Hepatite B/imunologia , Hepatite B Crônica/tratamento farmacológico , Proteínas do Core Viral/antagonistas & inibidores , Administração Oral , Adolescente , Adulto , Idoso , Antivirais/administração & dosagem , Relação Dose-Resposta a Droga , Método Duplo-Cego , Feminino , Seguimentos , Vírus da Hepatite B/efeitos dos fármacos , Hepatite B Crônica/metabolismo , Hepatite B Crônica/virologia , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Resultado do Tratamento , Carga Viral/efeitos dos fármacos , Adulto Jovem
8.
J Vet Med Sci ; 81(3): 383-388, 2019 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-30674743

RESUMO

RNA interference (RNAi) can inhibit Influenza A virus (IAV) infection in a gene-specific manner. In this study, we constructed a transgene expressing a short hairpin RNA (shRNA) that targets the noncoding region of the IAV RNA gene encoding nucleoprotein (NP). To investigate the antiviral effects of the shRNA, we generated two transgenic mouse lines with this transgene. Unfortunately, there was no apparent difference in IAV resistance between transgenic and non-transgenic littermates. To further investigate the antiviral effects of the shRNA, we prepared mouse embryonic fibroblasts (MEFs) from transgenic and non-transgenic mice. In experimental infections using these MEFs, virus production of mouse-adapted IAV strain A/Puerto Rico/8/1934 (PR8) in the transgenic MEFs was suppressed by means of the down-regulation of the viral RNA gene transcription in the early stages of infection in comparison with non-transgenic MEFs. These results indicated that expression of the shRNA was able to confer antiviral properties against IAVs to MEFs, although the effects were limited. Our findings suggest that the shRNA targeting the noncoding region of the viral RNA (vRNA) of NP might be a supporting tool in developing influenza-resistant poultry.


Assuntos
Antivirais/uso terapêutico , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Infecções por Orthomyxoviridae/tratamento farmacológico , RNA Interferente Pequeno/uso terapêutico , Animais , Camundongos , Camundongos Transgênicos , Proteínas do Nucleocapsídeo , Proteínas de Ligação a RNA/antagonistas & inibidores , Proteínas de Ligação a RNA/genética , Proteínas do Core Viral/antagonistas & inibidores , Proteínas do Core Viral/genética
9.
Artigo em Inglês | MEDLINE | ID: mdl-30373799

RESUMO

NVR 3-778 is the first capsid assembly modulator (CAM) that has demonstrated antiviral activity in hepatitis B virus (HBV)-infected patients. NVR 3-778 inhibited the generation of infectious HBV DNA-containing virus particles with a mean antiviral 50% effective concentration (EC50) of 0.40 µM in HepG2.2.15 cells. The antiviral profile of NVR 3-778 indicates pan-genotypic antiviral activity and a lack of cross-resistance with nucleos(t)ide inhibitors of HBV replication. The combination of NVR 3-778 with nucleos(t)ide analogs in vitro resulted in additive or synergistic antiviral activity. Mutations within the hydrophobic pocket at the dimer-dimer interface of the core protein could confer resistance to NVR 3-778, which is consistent with the ability of the compound to bind to core and to induce capsid assembly. By targeting core, NVR 3-778 inhibits pregenomic RNA encapsidation, viral replication, and the production of HBV DNA- and HBV RNA-containing particles. NVR 3-778 also inhibited de novo infection and viral replication in primary human hepatocytes with EC50 values of 0.81 µM against HBV DNA and between 3.7 and 4.8 µM against the production of HBV antigens and intracellular HBV RNA. NVR 3-778 showed favorable pharmacokinetics and safety in animal species, allowing serum levels in excess of 100 µM to be achieved in mice and, thus, enabling efficacy studies in vivo The overall preclinical profile of NVR 3-778 predicts antiviral activity in vivo and supports its further evaluation for safety, pharmacokinetics, and antiviral activity in HBV-infected patients.


Assuntos
Antivirais/farmacologia , Benzamidas/farmacologia , Capsídeo/efeitos dos fármacos , DNA Viral/antagonistas & inibidores , Vírus da Hepatite B/efeitos dos fármacos , Hepatite B/tratamento farmacológico , Piperidinas/farmacologia , RNA Viral/antagonistas & inibidores , Animais , Antígenos Virais/genética , Antígenos Virais/metabolismo , Antivirais/sangue , Antivirais/química , Antivirais/farmacocinética , Benzamidas/sangue , Benzamidas/química , Benzamidas/farmacocinética , Capsídeo/química , Capsídeo/metabolismo , DNA Viral/genética , DNA Viral/metabolismo , Avaliação Pré-Clínica de Medicamentos , Feminino , Células Hep G2 , Hepatite B/virologia , Vírus da Hepatite B/genética , Vírus da Hepatite B/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/patologia , Hepatócitos/virologia , Humanos , Masculino , Camundongos , Testes de Sensibilidade Microbiana , Piperidinas/sangue , Piperidinas/química , Piperidinas/farmacocinética , Cultura Primária de Células , RNA Viral/genética , RNA Viral/metabolismo , Proteínas do Core Viral/antagonistas & inibidores , Proteínas do Core Viral/genética , Proteínas do Core Viral/metabolismo , Replicação Viral/efeitos dos fármacos
10.
ACS Infect Dis ; 5(5): 750-758, 2019 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-30582687

RESUMO

An estimated 240 million are chronically infected with hepatitis B virus (HBV), which can lead to liver disease, cirrhosis, and hepatocellular carcinoma. Currently, HBV treatment options include only nucleoside reverse transcriptase inhibitors and the immunomodulatory agent interferon alpha, and these treatments are generally not curative. New treatments with novel mechanisms of action, therefore, are highly desired for HBV therapy. The viral core protein (Cp) has gained attention as a possible therapeutic target because of its vital roles in the HBV life cycle. Several classes of capsid assembly effectors (CAEs) have been described in detail, and these compounds all increase capsid assembly rate but inhibit HBV replication by different mechanisms. In this study, we have developed a thermal shift-based screening method for CAE discovery and characterization, filling a much-needed gap in high-throughput screening methods for capsid-targeting molecules. Using this approach followed by cell-based screening, we identified the compound HF9C6 as a CAE with low micromolar potency against HBV replication. HF9C6 caused large multicapsid aggregates when capsids were assembled in vitro and analyzed by transmission electron microscopy. Interestingly, when HBV-expressing cells were treated with HF9C6, Cp was excluded from cell nuclei, suggesting that this compound may inhibit nuclear entry of Cp and capsids. Furthermore, mutational scanning of Cp suggested that HF9C6 binds the known CAE binding pocket, indicating that key Cp-compound interactions within this pocket have a role in determining the CAE mechanism of action.


Assuntos
Antivirais/química , Antivirais/farmacologia , Vírus da Hepatite B/efeitos dos fármacos , Proteínas do Core Viral/antagonistas & inibidores , Internalização do Vírus/efeitos dos fármacos , Células Hep G2 , Vírus da Hepatite B/fisiologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/virologia , Humanos , Montagem de Vírus/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
11.
J Am Chem Soc ; 140(45): 15261-15269, 2018 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-30375863

RESUMO

Heteroaryldihydropyrimidines (HAPs) are antiviral small molecules that enhance assembly of HBV core protein (Cp), lead to assembly of empty and defective particles, and suppress viral replication. These core protein allosteric modulators (CpAMs) bind to the pocket at the interface between two Cp dimers and strengthen interdimer interactions. To investigate the CpAM mechanism, we wanted to examine the cellular distributions of Cp and the CpAM itself. For this reason, we developed a fluorescently labeled CpAM, HAP-ALEX. In vitro, HAP-ALEX modulated assembly of purified Cp and at saturating concentrations induced formation of large structures. HAP-ALEX bound capsids and not dimers, making it a capsid-specific molecular tag. HAP-ALEX labeled HBV in transfected cells, with no detectable background with a HAP-insensitive Cp mutant. HAP-ALEX caused redistribution of Cp in a dose-dependent manner consistent with its 0.7 µM EC50, leading to formation of large puncta and an exclusively cytoplasmic distribution. HAP-ALEX colocalized with the redistributed Cp, but large puncta accumulated long before they appeared saturated with the fluorescent CpAM. CpAMs affect HBV assembly and localization; with a fluorescent CpAM both drug and target can be identified.


Assuntos
Antivirais/farmacologia , Corantes Fluorescentes/farmacologia , Vírus da Hepatite B/efeitos dos fármacos , Pirimidinas/farmacologia , Proteínas do Core Viral/antagonistas & inibidores , Antivirais/química , Corantes Fluorescentes/química , Testes de Sensibilidade Microbiana , Modelos Moleculares , Estrutura Molecular , Pirimidinas/química , Replicação Viral/efeitos dos fármacos
12.
Artigo em Inglês | MEDLINE | ID: mdl-30224531

RESUMO

The capsid of the hepatitis B virus is an attractive antiviral target for developing therapies against chronic hepatitis B infection. Currently available core protein allosteric modulators (CpAMs) mainly affect one of the two major types of protein-protein interactions involved in the process of capsid assembly, namely, the interaction between the core dimers. Compounds targeting the interaction between two core monomers have not been rigorously screened due to the lack of screening models. We report here a cell-based assay in which the formation of core dimers is indicated by split luciferase complementation (SLC). Making use of this model, 2 compounds, Arbidol (umifenovir) and 20-deoxyingenol, were identified from a library containing 672 compounds as core dimerization regulators. Arbidol and 20-deoxyingenol inhibit the hepatitis B virus (HBV) DNA replication in vitro by decreasing and increasing the formation of core dimer and capsid, respectively. Our results provided a proof of concept for the cell model to be used to screen new agents targeting the step of core dimer and capsid formation.


Assuntos
Antivirais/farmacologia , Diterpenos/farmacologia , Regulação Viral da Expressão Gênica , Vírus da Hepatite B/efeitos dos fármacos , Indóis/farmacologia , Multimerização Proteica/efeitos dos fármacos , Proteínas do Core Viral/antagonistas & inibidores , Capsídeo/efeitos dos fármacos , Capsídeo/metabolismo , Capsídeo/ultraestrutura , Linhagem Celular , Replicação do DNA/efeitos dos fármacos , DNA Viral/antagonistas & inibidores , DNA Viral/biossíntese , DNA Viral/genética , Genes Reporter , Células HEK293 , Vírus da Hepatite B/genética , Vírus da Hepatite B/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/virologia , Ensaios de Triagem em Larga Escala , Humanos , Luciferases/genética , Luciferases/metabolismo , Ligação Proteica/efeitos dos fármacos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas do Core Viral/genética , Proteínas do Core Viral/metabolismo
13.
Protein Expr Purif ; 150: 61-66, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29778543

RESUMO

It has been shown that the single-domain intrabody 2H9-L against the hepatitis C virus (HCV) capsid (core) protein inhibits the viral propagation and NF-κB promoter activity induced by the HCV core. In this study, 2H9-L fused with the FLAG tag sequence was expressed in both Escherichia coli and silkworm pupae and then purified. In addition, the full-length and its C terminal deletions of the HCV core protein, i.e., 1-123 amino acid residues (C123), 1-152 amino acid residues (C152), 1-177 amino acid residues (C177) and 1-191 amino acid residues (C191), were expressed as fusion proteins with a 6 × His tag at their N-terminus in E. coli and then purified. Approximately 175 and 132 µg of the intrabody were purified from 100 ml of E. coli culture and 10 silkworm pupae, respectively, by affinity chromatography. The C123, C152, C177 and C191 HCV core protein variants were purified to approximately 152, 127, 103 and 155 µg, respectively, from 100 ml of E. coli culture. An ELISA in which the intrabodies were immobilized revealed that the intrabodies purified from both hosts were bound to all HCV core protein variants. However, their binding to the C191 appeared to be weak compared to their bindings to the other HCV core protein variants. When C152 was immobilized in the ELISA, the binding of each intrabody to the core protein was also observed. These purified intrabodies can be used in biochemical analyses of the inhibitory mechanism of HCV propagation and as protein interference reagents, thus providing a potential pathway to developing a new type of antiviral drug.


Assuntos
Anticorpos Anti-Hepatite C , Anticorpos de Cadeia Única , Proteínas do Core Viral/antagonistas & inibidores , Animais , Bombyx/genética , Bombyx/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Anticorpos Anti-Hepatite C/biossíntese , Anticorpos Anti-Hepatite C/genética , Anticorpos Anti-Hepatite C/isolamento & purificação , Humanos , Pupa , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Anticorpos de Cadeia Única/genética , Anticorpos de Cadeia Única/isolamento & purificação
14.
ACS Infect Dis ; 4(2): 146-157, 2018 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-29268608

RESUMO

S119 was a top hit from an ultrahigh throughput screen performed to identify novel inhibitors of influenza virus replication. It showed a potent antiviral effect (50% inhibitory concentration, IC50 = 20 nM) and no detectable cytotoxicity (50% cytotoxic concentration, CC50 > 500 µM) to yield a selectivity index greater than 25 000. Upon investigation, we found that S119 selected for resistant viruses carrying mutations in the viral nucleoprotein (NP). These resistance mutations highlight a likely S119 binding site overlapping with but not identical to that found for the compound nucleozin. Mechanism of action studies revealed that S119 affects both the oligomerization state and cellular localization of the NP protein which has an impact on viral transcription, replication, and protein expression. Through a hit-to-lead structure-activity relationship (SAR) study, we found an analog of S119, named S119-8, which had increased breadth of inhibition against influenza A and B viruses accompanied by only a small loss in potency. Finally, in vitro viral inhibition assays showed a synergistic relationship between S119-8 and oseltamivir when they were combined, indicating the potential for future drug cocktails.


Assuntos
Antivirais/farmacologia , Betainfluenzavirus/efeitos dos fármacos , Vírus da Influenza A/efeitos dos fármacos , Proteínas do Core Viral/antagonistas & inibidores , Animais , Linhagem Celular , Sinergismo Farmacológico , Regulação Viral da Expressão Gênica/efeitos dos fármacos , Humanos , Vírus da Influenza A/fisiologia , Betainfluenzavirus/fisiologia , Testes de Sensibilidade Microbiana , Estrutura Molecular , Oseltamivir/farmacologia , Agregados Proteicos/efeitos dos fármacos , Ligação Proteica , Internalização do Vírus/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
15.
J Cell Mol Med ; 22(3): 1826-1839, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29193684

RESUMO

Although antiviral drugs are available for the treatment of influenza infection, it is an urgent requirement to develop new antiviral drugs regarding the emergence of drug-resistant viruses. The nucleoprotein (NP) is conserved among all influenza A viruses (IAVs) and has no cellular equivalent. Therefore, NP is an ideal target for the development of new IAV inhibitors. In this study, we identified a novel anti-influenza compound, ZBMD-1, from a library of 20,000 compounds using cell-based influenza A infection assays. We found that ZBMD-1 inhibited the replication of H1N1 and H3N2 influenza A virus strains in vitro, with an IC50 ranging from 0.41-1.14 µM. Furthermore, ZBMD-1 inhibited the polymerase activity and specifically impaired the nuclear export of NP. Further investigation indicated that ZBMD-1 binds to the nuclear export signal 3 (NES3) domain and the dimer interface of the NP pocket. ZBMD-1 also protected mice that were challenged with lethal doses of A/PR/8/1934 (H1N1) virus, effectively relieving lung histopathology changes, as well as strongly inhibiting the expression of pro-inflammatory cytokines/chemokines, without inducing toxicity effects in mice. These results suggest that ZBMD-1 is a promising anti-influenza compound which can be further investigated as a useful strategy against IAVs in the future.


Assuntos
Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Antivirais/farmacologia , Vírus da Influenza A/efeitos dos fármacos , Proteínas de Ligação a RNA/antagonistas & inibidores , Proteínas do Core Viral/antagonistas & inibidores , Replicação Viral/efeitos dos fármacos , Animais , Humanos , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Vírus da Influenza A Subtipo H1N1/metabolismo , Vírus da Influenza A Subtipo H3N2/efeitos dos fármacos , Vírus da Influenza A Subtipo H3N2/metabolismo , Vírus da Influenza A/metabolismo , Concentração Inibidora 50 , Masculino , Camundongos Endogâmicos BALB C , Proteínas do Nucleocapsídeo , Infecções por Orthomyxoviridae/prevenção & controle , Infecções por Orthomyxoviridae/virologia , Proteínas de Ligação a RNA/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Proteínas do Core Viral/metabolismo
16.
Antiviral Res ; 149: 211-220, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29183719

RESUMO

Virally encoded proteins have evolved to perform multiple functions, and the core protein (HBc) of the hepatitis B virus (HBV) is a perfect example. While HBc is the structural component of the viral nucleocapsid, additional novel functions for the nucleus-localized HBc have recently been described. These results extend for HBc, beyond its structural role, a regulatory function in the viral life cycle and potentially a role in pathogenesis. In this article, we review the diverse roles of HBc in HBV replication and pathogenesis, emphasizing how the unique structure of this protein is key to its various functions. We focus in particular on recent advances in understanding the significance of HBc phosphorylations, its interaction with host proteins and the role of HBc in regulating the transcription of host genes. We also briefly allude to the emerging niche for new direct-acting antivirals targeting HBc, known as Core (protein) Allosteric Modulators (CAMs).


Assuntos
Antígenos do Núcleo do Vírus da Hepatite B/metabolismo , Vírus da Hepatite B/fisiologia , Hepatite B/virologia , Proteínas do Core Viral/metabolismo , Animais , Antivirais/farmacologia , Antivirais/uso terapêutico , Descoberta de Drogas , Regulação Viral da Expressão Gênica , Hepatite B/tratamento farmacológico , Antígenos do Núcleo do Vírus da Hepatite B/química , Antígenos do Núcleo do Vírus da Hepatite B/genética , Vírus da Hepatite B/efeitos dos fármacos , Interações Hospedeiro-Patógeno , Humanos , Fosforilação , Ligação Proteica , Transporte Proteico , Proteínas do Core Viral/antagonistas & inibidores , Proteínas do Core Viral/química , Proteínas do Core Viral/genética
17.
Proc Natl Acad Sci U S A ; 114(50): E10782-E10791, 2017 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-29187532

RESUMO

Signal peptide peptidase (SPP) is an intramembrane aspartic protease involved in the maturation of the core protein of hepatitis C virus (HCV). The processing of HCV core protein by SPP has been reported to be critical for the propagation and pathogenesis of HCV. Here we examined the inhibitory activity of inhibitors for γ-secretase, another intramembrane cleaving protease, against SPP, and our findings revealed that the dibenzoazepine-type structure in the γ-secretase inhibitors is critical for the inhibition of SPP. The spatial distribution showed that the γ-secretase inhibitor compound YO-01027 with the dibenzoazepine structure exhibits potent inhibiting activity against SPP in vitro and in vivo through the interaction of Val223 in SPP. Treatment with this SPP inhibitor suppressed the maturation of core proteins of all HCV genotypes without the emergence of drug-resistant viruses, in contrast to the treatment with direct-acting antivirals. YO-01027 also efficiently inhibited the propagation of protozoa such as Plasmodium falciparum and Toxoplasma gondii These data suggest that SPP is an ideal target for the development of therapeutics not only against chronic hepatitis C but also against protozoiasis.


Assuntos
Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Antiprotozoários/farmacologia , Antivirais/farmacologia , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Dibenzazepinas/farmacologia , Hepacivirus/efeitos dos fármacos , Inibidores de Proteases/farmacologia , Animais , Antiprotozoários/química , Antivirais/química , Linhagem Celular , Dibenzazepinas/química , Células HEK293 , Hepacivirus/genética , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Modelos Moleculares , Plasmodium falciparum/efeitos dos fármacos , Inibidores de Proteases/química , Relação Estrutura-Atividade , Toxoplasma/efeitos dos fármacos , Proteínas do Core Viral/antagonistas & inibidores , Replicação Viral/efeitos dos fármacos
18.
Br J Pharmacol ; 174(14): 2261-2272, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28383135

RESUMO

BACKGROUND AND PURPOSE: The therapeutic management of hepatitis B virus (HBV) infections remains challenging, and novel antiviral strategies are urgently required. The HBV transbody, a monoclonal antibody (MAb) against human HBcAg coupled with the trans-activator of transcription protein transduction domain (TAT PTD), was previously shown to possess cell-penetrating ability and potent antiviral activity in vitro. The purpose of the present study was to evaluate the antiviral activity of the HBcMAb-TAT PTD conjugate in vivo in a duck model of HBV. EXPERIMENTAL APPROACH: Female Peking ducks were injected i.p. with 0.03-0.3 mg·kg-1 ·day-1 of the DHBV transbody (DHBcMAb-TAT PTD conjugate) for 30 days. Serum DHBV DNA levels and liver DHBV DNA and covalently closed circular DNA (cccDNA) loads were determined at scheduled time points. Immunohistological examination of DHBcAg in the duck liver was also performed. KEY RESULTS: The DHBV transbody significantly reduced the serum and liver DHBV DNA levels at doses of 0.1 and 0.3 mg·kg-1 ·day-1 and liver cccDNA levels at a dose of 0.3 mg·kg-1 ·day-1 after 30 days of treatment. The suppressive effects of the DHBV transbody at 0.3 mg·kg-1 ·day-1 on the serum and liver DHBV DNA and liver cccDNA levels remained significant, even at 15 days after treatment cessation. Similarly, immunohistochemistry of liver sections revealed decreased DHBcAg levels within hepatocytes 15 days after treatment termination. CONCLUSIONS AND IMPLICATIONS: The DHBV transbody inhibits DHBV replication and possesses potent anti-DHBV activities in vivo. The cell-permeable antibody against the virus core antigen may be developed as a novel treatment for patients with hepadnavirus infections.


Assuntos
Anticorpos Monoclonais/farmacologia , Antivirais/farmacologia , Modelos Animais de Doenças , Patos/virologia , Vírus da Hepatite B/efeitos dos fármacos , Proteínas do Core Viral/antagonistas & inibidores , Replicação Viral/efeitos dos fármacos , Animais , Anticorpos Monoclonais/administração & dosagem , Antivirais/administração & dosagem , DNA Viral/biossíntese , Relação Dose-Resposta a Droga , Feminino , Vírus da Hepatite B/genética , Testes de Sensibilidade Microbiana , Relação Estrutura-Atividade
19.
PLoS One ; 12(3): e0173582, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28273150

RESUMO

Influenza viruses have acquired resistance to approved neuraminidase-targeting drugs, increasing the need for new drug targets for the development of novel anti-influenza drugs. Nucleoprotein (NP) is an attractive target since it has an indispensable role in virus replication and its amino acid sequence is well conserved. In this study, we aimed to identify new inhibitors of the NP using a structure-based drug discovery algorithm, named Nagasaki University Docking Engine (NUDE), which has been established especially for the Destination for GPU Intensive Machine (DEGIMA) supercomputer. The hit compounds that showed high binding scores during in silico screening were subsequently evaluated for anti-influenza virus effects using a cell-based assay. A 4-hydroxyquinolinone compound, designated as NUD-1, was found to inhibit the replication of influenza virus in cultured cells. Analysis of binding between NUD-1 and NP using surface plasmon resonance assay and fragment molecular orbital calculations confirmed that NUD-1 binds to NP and could interfere with NP-NP interactions essential for virus replication. Time-of-addition experiments showed that the compound inhibited the mid-stage of infection, corresponding to assembly of the NP and other viral proteins. Moreover, NUD-1 was also effective against various types of influenza A viruses including a clinical isolate of A(H1N1)pdm09 influenza with a 50% inhibitory concentration range of 1.8-2.1 µM. Our data demonstrate that the combined use of NUDE system followed by the cell-based assay is useful to obtain lead compounds for the development of novel anti-influenza drugs.


Assuntos
Antivirais/química , Antivirais/farmacologia , Simulação por Computador , Descoberta de Drogas , Vírus da Influenza A/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas , Sequência de Aminoácidos , Animais , Linhagem Celular , Computadores Moleculares , Descoberta de Drogas/métodos , Humanos , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Modelos Moleculares , Ligação Proteica , Proteínas do Core Viral/antagonistas & inibidores , Proteínas do Core Viral/química , Replicação Viral
20.
Curr Top Med Chem ; 17(20): 2271-2285, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28240183

RESUMO

Prevention and treatment of influenza virus infection is an ongoing unmet medical need. Each year, thousands of deaths and millions of hospitalizations are attributed to influenza virus infection, which poses a tremendous health and economic burden to the society. Aside from the annual influenza season, influenza viruses also lead to occasional influenza pandemics as a result of emerging or re-emerging influenza strains. Influenza viruses are RNA viruses that exist in quasispecies, meaning that they have a very diverse genetic background. Such a feature creates a grand challenge in devising therapeutic intervention strategies to inhibit influenza virus replication, as a single agent might not be able to inhibit all influenza virus strains. Both classes of currently approved anti-influenza drugs have limitations: the M2 channel blockers amantadine and rimantadine are no longer recommended for use in the U.S. due to predominant drug resistance, and resistance to the neuraminidase inhibitor oseltamivir is continuously on the rise. In pursuing the next generation of antiviral drugs with broad-spectrum activity and higher genetic barrier of drug resistance, the influenza virus nucleoprotein (NP) stands out as a high-profile drug target. This review summarizes recent developments in designing inhibitors targeting influenza NP and their mechanisms of action.


Assuntos
Antivirais/farmacologia , Vírus da Influenza A/efeitos dos fármacos , Infecções por Orthomyxoviridae/tratamento farmacológico , Proteínas de Ligação a RNA/antagonistas & inibidores , Proteínas do Core Viral/antagonistas & inibidores , Animais , Antivirais/química , Humanos , Testes de Sensibilidade Microbiana , Proteínas do Nucleocapsídeo , Proteínas de Ligação a RNA/metabolismo , Proteínas do Core Viral/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...