Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43.753
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(25): e2219137121, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38861593

RESUMO

Cortical arealization arises during neurodevelopment from the confluence of molecular gradients representing patterned expression of morphogens and transcription factors. However, whether similar gradients are maintained in the adult brain remains unknown. Here, we uncover three axes of topographic variation in gene expression in the adult human brain that specifically capture previously identified rostral-caudal, dorsal-ventral, and medial-lateral axes of early developmental patterning. The interaction of these spatiomolecular gradients i) accurately reconstructs the position of brain tissue samples, ii) delineates known functional territories, and iii) can model the topographical variation of diverse cortical features. The spatiomolecular gradients are distinct from canonical cortical axes differentiating the primary sensory cortex from the association cortex, but radiate in parallel with the axes traversed by local field potentials along the cortex. We replicate all three molecular gradients in three independent human datasets as well as two nonhuman primate datasets and find that each gradient shows a distinct developmental trajectory across the lifespan. The gradients are composed of several well-known transcription factors (e.g., PAX6 and SIX3), and a small set of genes shared across gradients are strongly enriched for multiple diseases. Together, these results provide insight into the developmental sculpting of functionally distinct brain regions, governed by three robust transcriptomic axes embedded within brain parenchyma.


Assuntos
Encéfalo , Humanos , Encéfalo/metabolismo , Animais , Adulto , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Fator de Transcrição PAX6/metabolismo , Fator de Transcrição PAX6/genética , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Padronização Corporal/genética , Feminino , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética
2.
PLoS One ; 19(6): e0298965, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38829854

RESUMO

Familial Dysautonomia (FD) is a rare disease caused by ELP1 exon 20 skipping. Here we clarify the role of RNA Polymerase II (RNAPII) and chromatin on this splicing event. A slow RNAPII mutant and chromatin-modifying chemicals that reduce the rate of RNAPII elongation induce exon skipping whereas chemicals that create a more relaxed chromatin exon inclusion. In the brain of a mouse transgenic for the human FD-ELP1 we observed on this gene an age-dependent decrease in the RNAPII density profile that was most pronounced on the alternative exon, a robust increase in the repressive marks H3K27me3 and H3K9me3 and a decrease of H3K27Ac, together with a progressive reduction in ELP1 exon 20 inclusion level. In HEK 293T cells, selective drug-induced demethylation of H3K27 increased RNAPII elongation on ELP1 and SMN2, promoted the inclusion of the corresponding alternative exons, and, by RNA-sequencing analysis, induced changes in several alternative splicing events. These data suggest a co-transcriptional model of splicing regulation in which age-dependent changes in H3K27me3/Ac modify the rate of RNAPII elongation and affect processing of ELP1 alternative exon 20.


Assuntos
Processamento Alternativo , Cromatina , Disautonomia Familiar , Éxons , RNA Polimerase II , RNA Polimerase II/metabolismo , RNA Polimerase II/genética , Disautonomia Familiar/genética , Disautonomia Familiar/metabolismo , Humanos , Éxons/genética , Animais , Cromatina/metabolismo , Cromatina/genética , Camundongos , Células HEK293 , Histonas/metabolismo , Camundongos Transgênicos , Fatores de Elongação da Transcrição/genética , Fatores de Elongação da Transcrição/metabolismo , Cinética , Splicing de RNA , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo
3.
Philos Trans R Soc Lond B Biol Sci ; 379(1906): 20230236, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-38853562

RESUMO

Alternative splicing of Grin1 exon 5 regulates induction of long-term potentiation (LTP) at Schaffer collateral-CA1 synapses: LTP in mice lacking the GluN1 exon 5-encoded N1 cassette (GluN1a mice) is significantly increased compared with that in mice compulsorily expressing this exon (GluN1b mice). The mechanism underlying this difference is unknown. Here, we report that blocking the non-receptor tyrosine kinase Src prevents induction of LTP in GluN1a mice but not in GluN1b. We find that activating Src enhances pharmacologically isolated synaptic N-methyl-d-aspartate receptor (NMDAR) currents in GluN1a mice but not in GluN1b. Moreover, we observe that Src activation increases the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor component of Schaffer collateral-evoked excitatory post-synaptic potentials in GluN1a mice, but this increase is prevented by blocking NMDARs. We conclude that at these synapses, NMDARs in GluN1a mice are subject to upregulation by Src that mediates induction of LTP, whereas NMDARs in GluN1b mice are not regulated by Src, leading to Src-resistance of LTP. Thus, we have uncovered that a key regulatory mechanism for synaptic potentiation is gated by differential splicing of exon 5 of Grin1. This article is part of a discussion meeting issue 'Long-term potentiation: 50 years on'.


Assuntos
Processamento Alternativo , Éxons , Potenciação de Longa Duração , Proteínas do Tecido Nervoso , Receptores de N-Metil-D-Aspartato , Quinases da Família src , Animais , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Camundongos , Quinases da Família src/metabolismo , Quinases da Família src/genética , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Masculino , Sinapses/fisiologia , Sinapses/metabolismo , Camundongos Endogâmicos C57BL
4.
Development ; 151(11)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38828908

RESUMO

During limb bud formation, axis polarities are established as evidenced by the spatially restricted expression of key regulator genes. In particular, the mutually antagonistic interaction between the GLI3 repressor and HAND2 results in distinct and non-overlapping anterior-distal Gli3 and posterior Hand2 expression domains. This is a hallmark of the establishment of antero-posterior limb axis polarity, together with spatially restricted expression of homeodomain and other transcriptional regulators. Here, we show that TBX3 is required for establishment of the posterior expression boundary of anterior genes in mouse limb buds. ChIP-seq and differential gene expression analysis of wild-type and mutant limb buds identifies TBX3-specific and shared TBX3-HAND2 target genes. High sensitivity fluorescent whole-mount in situ hybridisation shows that the posterior expression boundaries of anterior genes are positioned by TBX3-mediated repression, which excludes anterior genes such as Gli3, Alx4, Hand1 and Irx3/5 from the posterior limb bud mesenchyme. This exclusion delineates the posterior mesenchymal territory competent to establish the Shh-expressing limb bud organiser. In turn, HAND2 is required for Shh activation and cooperates with TBX3 to upregulate shared posterior identity target genes in early limb buds.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Regulação da Expressão Gênica no Desenvolvimento , Botões de Extremidades , Proteínas com Domínio T , Animais , Proteínas com Domínio T/metabolismo , Proteínas com Domínio T/genética , Botões de Extremidades/metabolismo , Botões de Extremidades/embriologia , Camundongos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Proteína Gli3 com Dedos de Zinco/metabolismo , Proteína Gli3 com Dedos de Zinco/genética , Regulação para Cima/genética , Padronização Corporal/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas de Homeodomínio/metabolismo , Proteínas de Homeodomínio/genética , Mesoderma/metabolismo , Mesoderma/embriologia
5.
Nat Commun ; 15(1): 4531, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38866749

RESUMO

Individuals with autism spectrum disorder (ASD) have a higher prevalence of social memory impairment. A series of our previous studies revealed that hippocampal ventral CA1 (vCA1) neurons possess social memory engram and that the neurophysiological representation of social memory in the vCA1 neurons is disrupted in ASD-associated Shank3 knockout mice. However, whether the dysfunction of Shank3 in vCA1 causes the social memory impairment observed in ASD remains unclear. In this study, we found that vCA1-specific Shank3 conditional knockout (cKO) by the adeno-associated virus (AAV)- or specialized extracellular vesicle (EV)- mediated in vivo gene editing was sufficient to recapitulate the social memory impairment in male mice. Furthermore, the utilization of EV-mediated Shank3-cKO allowed us to quantitatively examine the role of Shank3 in social memory. Our results suggested that there is a certain threshold for the proportion of Shank3-cKO neurons required for social memory disruption. Thus, our study provides insight into the population coding of social memory in vCA1, as well as the pathological mechanisms underlying social memory impairment in ASD.


Assuntos
Transtorno do Espectro Autista , Região CA1 Hipocampal , Edição de Genes , Memória , Camundongos Knockout , Proteínas do Tecido Nervoso , Comportamento Social , Animais , Masculino , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Região CA1 Hipocampal/metabolismo , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/metabolismo , Camundongos , Memória/fisiologia , Neurônios/metabolismo , Dependovirus/genética , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Transtornos da Memória/genética , Transtornos da Memória/metabolismo , Transtornos da Memória/fisiopatologia , Camundongos Endogâmicos C57BL
6.
Sci Rep ; 14(1): 13540, 2024 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-38866832

RESUMO

Mast cells are immune cells minimally present in normal tendon tissue. The increased abundance of mast cells in tendinopathy biopsies and at the sites of tendon injury suggests an unexplored role of this cell population in overuse tendon injuries. Mast cells are particularly present in tendon biopsies from patients with more chronic symptom duration and a history of intensive mechanical loading. This study, therefore, examined the cross talk between mast cells and human tendon cells in either static or mechanically active conditions in order to explore the potential mechanistic roles of mast cells in overuse tendon injuries. A coculture of isolated human tenocytes and mast cells (HMC-1) combined with Flexcell Tension System for cyclic stretching of tenocytes was used. Additionally, human tenocytes were exposed to agonists and antagonists of substance P (SP) receptors. Mast cell degranulation was assessed by measuring ß-hexosaminidase activity. Transwell and cell adhesion assays were used to evaluate mast cell migration and binding to tendon extracellular matrix components (collagen and fibronectin), respectively. Gene expressions were analyzed using real time qRT-PCR. Our results indicate that mechanical stimulation of human tenocytes leads to release of SP which, in turn, activates mast cells through the Mas-related G-protein-coupled receptor X2 (MRGPRX2). The degranulation and migration of mast cells in response to MRGPRX2 activation subsequently cause human tenocytes to increase their expression of inflammatory factors, matrix proteins and matrix metalloproteinase enzymes. These observations may be important in understanding the mechanisms by which tendons become tendinopathic in response to repetitive mechanical stimulation.


Assuntos
Mastócitos , Receptores Acoplados a Proteínas G , Receptores de Neuropeptídeos , Substância P , Tendões , Tenócitos , Humanos , Substância P/metabolismo , Substância P/farmacologia , Mastócitos/metabolismo , Tenócitos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Neuropeptídeos/metabolismo , Receptores de Neuropeptídeos/genética , Tendões/metabolismo , Tendões/patologia , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Degranulação Celular , Tendinopatia/metabolismo , Tendinopatia/patologia , Inflamação/metabolismo , Inflamação/patologia , Masculino , Técnicas de Cocultura , Células Cultivadas , Adulto , Movimento Celular
7.
Philos Trans R Soc Lond B Biol Sci ; 379(1906): 20230230, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-38853567

RESUMO

The family of SHANK proteins have been shown to be critical in regulating glutamatergic synaptic structure, function and plasticity. SHANK variants are also prevalent in autism spectrum disorders (ASDs), where glutamatergic synaptopathology has been shown to occur in multiple ASD mouse models. Our previous work has shown that dietary zinc in Shank3-/- and Tbr1+/- ASD mouse models can reverse or prevent ASD behavioural and synaptic deficits. Here, we have examined whether dietary zinc can influence behavioural and synaptic function in Shank2-/- mice. Our data show that dietary zinc supplementation can reverse hyperactivity and social preference behaviour in Shank2-/- mice, but it does not alter deficits in working memory. Consistent with this, at the synaptic level, deficits in NMDA/AMPA receptor-mediated transmission are also not rescued by dietary zinc. In contrast to other ASD models examined, we observed that SHANK3 protein was highly expressed at the synapses of Shank2-/- mice and that dietary zinc returned these to wild-type levels. Overall, our data show that dietary zinc has differential effectiveness in altering ASD behaviours and synaptic function across ASD mouse models even within the Shank family. This article is part of a discussion meeting issue 'Long-term potentiation: 50 years on'.


Assuntos
Transtorno do Espectro Autista , Suplementos Nutricionais , Camundongos Knockout , Proteínas do Tecido Nervoso , Zinco , Animais , Zinco/administração & dosagem , Zinco/deficiência , Zinco/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Camundongos , Suplementos Nutricionais/análise , Transtorno do Espectro Autista/dietoterapia , Modelos Animais de Doenças , Masculino , Comportamento Animal , Transtorno Autístico/dietoterapia , Transtorno Autístico/genética , Proteínas dos Microfilamentos/metabolismo , Proteínas dos Microfilamentos/genética , Camundongos Endogâmicos C57BL
8.
Learn Mem ; 31(5)2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38862173

RESUMO

The intricate molecular and structural sequences guiding the formation and consolidation of memories within neuronal circuits remain largely elusive. In this study, we investigate the roles of two pivotal presynaptic regulators, the small GTPase Rab3, enriched at synaptic vesicles, and the cell adhesion protein Neurexin-1, in the formation of distinct memory phases within the Drosophila mushroom body Kenyon cells. Our findings suggest that both proteins play crucial roles in memory-supporting processes within the presynaptic terminal, operating within distinct plasticity modules. These modules likely encompass remodeling and maturation of existing active zones (AZs), as well as the formation of new AZs.


Assuntos
Proteínas de Drosophila , Memória , Corpos Pedunculados , Terminações Pré-Sinápticas , Proteínas rab3 de Ligação ao GTP , Animais , Corpos Pedunculados/fisiologia , Corpos Pedunculados/metabolismo , Terminações Pré-Sinápticas/fisiologia , Terminações Pré-Sinápticas/metabolismo , Proteínas de Drosophila/metabolismo , Memória/fisiologia , Proteínas rab3 de Ligação ao GTP/metabolismo , Proteínas rab3 de Ligação ao GTP/genética , Proteínas do Tecido Nervoso/metabolismo , Drosophila , Vesículas Sinápticas/metabolismo , Vesículas Sinápticas/fisiologia
9.
Biol Res ; 57(1): 39, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38867288

RESUMO

BACKGROUND: Spreading depression (SD) is an intriguing phenomenon characterized by massive slow brain depolarizations that affect neurons and glial cells. This phenomenon is repetitive and produces a metabolic overload that increases secondary damage. However, the mechanisms associated with the initiation and propagation of SD are unknown. Multiple lines of evidence indicate that persistent and uncontrolled opening of hemichannels could participate in the pathogenesis and progression of several neurological disorders including acute brain injuries. Here, we explored the contribution of astroglial hemichannels composed of connexin-43 (Cx43) or pannexin-1 (Panx1) to SD evoked by high-K+ stimulation in brain slices. RESULTS: Focal high-K+ stimulation rapidly evoked a wave of SD linked to increased activity of the Cx43 and Panx1 hemichannels in the brain cortex, as measured by light transmittance and dye uptake analysis, respectively. The activation of these channels occurs mainly in astrocytes but also in neurons. More importantly, the inhibition of both the Cx43 and Panx1 hemichannels completely prevented high K+-induced SD in the brain cortex. Electrophysiological recordings also revealed that Cx43 and Panx1 hemichannels critically contribute to the SD-induced decrease in synaptic transmission in the brain cortex and hippocampus. CONCLUSIONS: Targeting Cx43 and Panx1 hemichannels could serve as a new therapeutic strategy to prevent the initiation and propagation of SD in several acute brain injuries.


Assuntos
Astrócitos , Conexina 43 , Conexinas , Depressão Alastrante da Atividade Elétrica Cortical , Transmissão Sináptica , Animais , Astrócitos/fisiologia , Conexinas/metabolismo , Depressão Alastrante da Atividade Elétrica Cortical/fisiologia , Depressão Alastrante da Atividade Elétrica Cortical/efeitos dos fármacos , Transmissão Sináptica/fisiologia , Transmissão Sináptica/efeitos dos fármacos , Conexina 43/metabolismo , Masculino , Proteínas do Tecido Nervoso/metabolismo , Córtex Cerebral , Neurônios/fisiologia , Hipocampo , Ratos Sprague-Dawley , Ratos , Potássio/metabolismo
10.
Proc Natl Acad Sci U S A ; 121(25): e2405468121, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38861601

RESUMO

Pannexin1 hemichannels (Panx1 HCs) are found in the membrane of most mammalian cells and communicate the intracellular and extracellular spaces, enabling the passive transfer of ions and small molecules. They are involved in physiological and pathophysiological conditions. During apoptosis, the C-terminal tail of Panx1 is proteolytically cleaved, but the permeability features of hemichannels and their role in cell death remain elusive. To address these topics, HeLa cells transfected with full-length human Panx1 (fl-hPanx1) or C-terminal truncated hPanx1 (Δ371hPanx1) were exposed to alkaline extracellular saline solution, increasing the activity of Panx1 HCs. The Δ371hPanx1 HC was permeable to DAPI and Etd+, but not to propidium iodide, whereas fl-hPanx1 HC was only permeable to DAPI. Furthermore, the cytoplasmic Ca2+ signal increased only in Δ371hPanx1 cells, which was supported by bioinformatics approaches. The influx of Ca2+ through Δ371hPanx1 HCs was necessary to promote cell death up to about 95% of cells, whereas the exposure to alkaline saline solution without Ca2+ failed to induce cell death, and the Ca2+ ionophore A23187 promoted more than 80% cell death even in fl-hPanx1 transfectants. Moreover, cell death was prevented with carbenoxolone or 10Panx1 in Δ371hPanx1 cells, whereas it was undetectable in HeLa Panx1-/- cells. Pretreatment with Ferrostatin-1 and necrostatin-1 did not prevent cell death, suggesting that ferroptosis or necroptosis was not involved. In comparison, zVAD-FMK, a pancaspase inhibitor, reduced death by ~60%, suggesting the involvement of apoptosis. Therefore, alkaline pH increases the activity of Δ371hPanx1HCs, leading to a critical intracellular free-Ca2+ overload that promotes cell death.


Assuntos
Cálcio , Conexinas , Proteínas do Tecido Nervoso , Humanos , Conexinas/metabolismo , Conexinas/genética , Células HeLa , Cálcio/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Apoptose , Morte Celular , Sinalização do Cálcio
11.
Sci Rep ; 14(1): 13608, 2024 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-38871849

RESUMO

Transplantation of stem cell-derived ß-cells is a promising therapeutic advancement in the treatment of type 1 diabetes mellitus. A current limitation of this approach is the long differentiation timeline that generates a heterogeneous population of pancreatic endocrine cells. To address this limitation, an inducible lentiviral overexpression system of mature ß-cell markers was introduced into human induced-pluripotent stem cells (hiPSCs). Following the selection of the successfully transduced hiPSCs, the cells were treated with doxycycline in the pancreatic progenitor induction medium to support their transition toward the pancreatic lineage. Cells cultured with doxycycline presented the markers of interest, NGN3, PDX1, and MAFA, after five days of culture, and glucose-stimulated insulin secretion assays demonstrated that the cells were glucose-responsive in a monolayer culture. When cultured as a spheroid, the markers of interest and insulin secretion in a static glucose-stimulated insulin secretion assay were maintained; however, insulin secretion upon consecutive glucose challenges was limited. Comparison to human fetal and adult donor tissues identified that although the hiPSC-derived spheroids present similar markers to adult insulin-producing cells, they are functionally representative of fetal development. Together, these results suggest that with optimization of the temporal expression of these markers, forward programming of hiPSCs towards insulin-producing cells could be a possible alternative for islet transplantation.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Diferenciação Celular , Proteínas de Homeodomínio , Células-Tronco Pluripotentes Induzidas , Células Secretoras de Insulina , Fatores de Transcrição Maf Maior , Proteínas do Tecido Nervoso , Transativadores , Humanos , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/citologia , Proteínas de Homeodomínio/metabolismo , Proteínas de Homeodomínio/genética , Transativadores/metabolismo , Transativadores/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Fatores de Transcrição Maf Maior/metabolismo , Fatores de Transcrição Maf Maior/genética , Insulina/metabolismo , Glucose/metabolismo , Glucose/farmacologia , Secreção de Insulina/efeitos dos fármacos , Células Cultivadas , Doxiciclina/farmacologia
12.
Neurobiol Dis ; 198: 106551, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38839023

RESUMO

Multiple system atrophy (MSA) is characterized by glial cytoplasmic inclusions (GCIs) containing aggregated α-synuclein (α-syn) in oligodendrocytes. The origin of α-syn accumulation in GCIs is unclear, in particular whether abnormal α-syn aggregates result from the abnormal elevation of endogenous α-syn expression in MSA or ingested from the neuronal source. Tubulin polymerization promoting protein (TPPP) has been reported to play a crucial role in developing GCI pathology. Here, the total cell body, nucleus, and cytoplasmic area density of SNCA and TPPP transcripts in neurons and oligodendrocytes with and without various α-syn pathologies in the pontine base in autopsy cases of MSA (n = 4) and controls (n = 2) were evaluated using RNAscope with immunofluorescence. Single-nucleus RNA-sequencing data for TPPP was evaluated using control frontal cortex (n = 3). SNCA and TPPP transcripts were present in the nucleus and cytoplasm of oligodendrocytes in both controls and diseased, with higher area density in GCIs and glial nuclear inclusions in MSA. Area densities of SNCA and TPPP transcripts were lower in neurons showing cytoplasmic inclusions in MSA. Indeed, TPPP transcripts were unexpectedly found in neurons, while the anti-TPPP antibody failed to detect immunoreactivity. Single-nucleus RNA-sequencing revealed significant TPPP transcript expression predominantly in oligodendrocytes, but also in excitatory and inhibitory neurons. This study addressed the unclear origin of accumulated α-syn in GCIs, proposing that the elevation of SNCA transcripts may supply templates for misfolded α-syn. In addition, the parallel behavior of TPPP and SNCA transcripts in GCI development highlights their potential synergistic contribution to inclusion formation. In conclusion, this study advances our understanding of MSA pathogenesis, offers insights into the dynamics of SNCA and TPPP transcripts in inclusion formation, and proposes regulating their transcripts for future molecular therapy to MSA.


Assuntos
Corpos de Inclusão , Atrofia de Múltiplos Sistemas , Proteínas do Tecido Nervoso , Oligodendroglia , alfa-Sinucleína , alfa-Sinucleína/metabolismo , alfa-Sinucleína/genética , Atrofia de Múltiplos Sistemas/genética , Atrofia de Múltiplos Sistemas/patologia , Atrofia de Múltiplos Sistemas/metabolismo , Humanos , Oligodendroglia/metabolismo , Oligodendroglia/patologia , Corpos de Inclusão/metabolismo , Corpos de Inclusão/patologia , Corpos de Inclusão/genética , Idoso , Feminino , Masculino , Pessoa de Meia-Idade , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Idoso de 80 Anos ou mais
13.
Transl Psychiatry ; 14(1): 249, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38858349

RESUMO

Phelan-McDermid syndrome (PMDS) arises from mutations in the terminal region of chromosome 22q13, impacting the SHANK3 gene. The resulting deficiency of the postsynaptic density scaffolding protein SHANK3 is associated with autism spectrum disorder (ASD). We examined 12 different PMDS patient and CRISPR-engineered stem cell-derived neuronal models and controls and found that reduced expression of SHANK3 leads to neuronal hyperdifferentiation, increased synapse formation, and decreased neuronal activity. We performed automated imaging-based screening of 7,120 target-annotated small molecules and identified three compounds that rescued SHANK3-dependent neuronal hyperdifferentiation. One compound, Benproperine, rescued the decreased colocalization of Actin Related Protein 2/3 Complex Subunit 2 (ARPC2) with ß-actin and rescued increased synapse formation in SHANK3 deficient neurons when administered early during differentiation. Neuronal activity was only mildly affected, highlighting Benproperine's effects as a neurodevelopmental modulator. This study demonstrates that small molecular compounds that reverse developmental phenotypes can be identified in human neuronal PMDS models.


Assuntos
Deleção Cromossômica , Transtornos Cromossômicos , Proteínas do Tecido Nervoso , Neurônios , Fenótipo , Sinapses , Humanos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Transtornos Cromossômicos/genética , Sinapses/efeitos dos fármacos , Cromossomos Humanos Par 22/genética , Masculino , Feminino , Diferenciação Celular/efeitos dos fármacos , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/metabolismo , Criança
14.
Mol Brain ; 17(1): 35, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38858726

RESUMO

The brain responds to experience through modulation of synaptic transmission, that is synaptic plasticity. An increase in the strength of synaptic transmission is manifested as long-term potentiation (LTP), while a decrease in the strength of synaptic transmission is expressed as long-term depression (LTD). Most of the studies of synaptic plasticity have been carried out by induction via electrophysiological stimulation. It is largely unknown in which behavioural tasks such synaptic plasticity occurs. Moreover, some stimuli can induce both LTP and LTD, thus making it difficult to separately study the different forms of synaptic plasticity. Two studies have shown that an aversive memory task - inhibitory avoidance learning and contextual fear conditioning - physiologically and selectively induce LTP and an LTP-like molecular change, respectively, in the hippocampus in vivo. Here, we show that a non-aversive behavioural task - exploration of new space - physiologically and selectively elicits a biochemical change in the hippocampus that is a hallmark of LTP. Specifically, we found that exploration of new space induces an increase in the phosphorylation of GluA1(Ser831), without affecting the phosphorylation of GluA1(Ser845), which are biomarkers of early-LTP and not NMDAR-mediated LTD. We also show that exploration of new space engenders the phosphorylation of the translational regulator S6K and the expression of Arc, which are features of electrophysiologically-induced late-LTP in the hippocampus. Therefore, our results show that exploration of new space is a novel non-aversive behavioural paradigm that elicits molecular changes in vivo that are analogous to those occurring during early- and late-LTP, but not during NMDAR-mediated LTD.


Assuntos
Proteínas do Citoesqueleto , Hipocampo , Potenciação de Longa Duração , Proteínas do Tecido Nervoso , Receptores de AMPA , Animais , Potenciação de Longa Duração/fisiologia , Fosforilação , Hipocampo/metabolismo , Hipocampo/fisiologia , Receptores de AMPA/metabolismo , Masculino , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Citoesqueleto/metabolismo , Comportamento Exploratório/fisiologia , Serina/metabolismo
15.
Cereb Cortex ; 34(13): 161-171, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38696595

RESUMO

Autism spectrum disorder (ASD) is a developmental disorder with a rising prevalence and unknown etiology presenting with deficits in cognition and abnormal behavior. We hypothesized that the investigation of the synaptic component of prefrontal cortex may provide proteomic signatures that may identify the biological underpinnings of cognitive deficits in childhood ASD. Subcellular fractions of synaptosomes from prefrontal cortices of age-, brain area-, and postmortem-interval-matched samples from children and adults with idiopathic ASD vs. controls were subjected to HPLC-tandem mass spectrometry. Analysis of data revealed the enrichment of ASD risk genes that participate in slow maturation of the postsynaptic density (PSD) structure and function during early brain development. Proteomic analysis revealed down regulation of PSD-related proteins including AMPA and NMDA receptors, GRM3, DLG4, olfactomedins, Shank1-3, Homer1, CaMK2α, NRXN1, NLGN2, Drebrin1, ARHGAP32, and Dock9 in children with autism (FDR-adjusted P < 0.05). In contrast, PSD-related alterations were less severe or unchanged in adult individuals with ASD. Network analyses revealed glutamate receptor abnormalities. Overall, the proteomic data support the concept that idiopathic autism is a synaptopathy involving PSD-related ASD risk genes. Interruption in evolutionarily conserved slow maturation of the PSD complex in prefrontal cortex may lead to the development of ASD in a susceptible individual.


Assuntos
Córtex Pré-Frontal Dorsolateral , Proteômica , Humanos , Criança , Masculino , Feminino , Adulto , Córtex Pré-Frontal Dorsolateral/metabolismo , Pré-Escolar , Transtorno do Espectro Autista/metabolismo , Transtorno do Espectro Autista/genética , Sinapses/metabolismo , Adolescente , Adulto Jovem , Transtorno Autístico/metabolismo , Transtorno Autístico/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Sinaptossomos/metabolismo , Córtex Pré-Frontal/metabolismo , Densidade Pós-Sináptica/metabolismo
16.
PLoS Biol ; 22(5): e3002599, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38713721

RESUMO

Synaptic adhesion molecules (SAMs) are evolutionarily conserved proteins that play an important role in the form and function of neuronal synapses. Teneurins (Tenms) and latrophilins (Lphns) are well-known cell adhesion molecules that form a transsynaptic complex. Recent studies suggest that Tenm3 and Lphn2 (gene symbol Adgrl2) are involved in hippocampal circuit assembly via their topographical expression. However, it is not known whether other teneurins and latrophilins display similar topographically restricted expression patterns during embryonic and postnatal development. Here, we reveal the cartography of all teneurin (Tenm1-4) and latrophilin (Lphn1-3 [Adgrl1-3]) paralog expression in the mouse hippocampus across prenatal and postnatal development as monitored by large-scale single-molecule RNA in situ hybridization mapping. Our results identify a striking heterogeneity in teneurin and latrophilin expression along the spatiotemporal axis of the hippocampus. Tenm2 and Tenm4 expression levels peak at the neonatal stage when compared to Tenm1 and Tenm3, while Tenm1 expression is restricted to the postnatal pyramidal cell layer. Tenm4 expression in the dentate gyrus (DG) exhibits an opposing topographical expression pattern in the embryonic and neonatal hippocampus. Our findings were validated by analyses of multiple RNA-seq datasets at bulk, single-cell, and spatial levels. Thus, our study presents a comprehensive spatiotemporal map of Tenm and Lphn expression in the hippocampus, showcasing their diverse expression patterns across developmental stages in distinct spatial axes.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Hipocampo , Proteínas do Tecido Nervoso , Receptores de Peptídeos , Animais , Hipocampo/metabolismo , Hipocampo/embriologia , Camundongos , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Receptores de Peptídeos/metabolismo , Receptores de Peptídeos/genética , Feminino , Camundongos Endogâmicos C57BL , Masculino , Tenascina , Receptores Acoplados a Proteínas G
17.
Nat Commun ; 15(1): 4132, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755165

RESUMO

The regulated release of chemical messengers is crucial for cell-to-cell communication; abnormalities in which impact coordinated human body function. During vesicular secretion, multiple SNARE complexes assemble at the release site, leading to fusion pore opening. How membrane fusion regulators act on heterogeneous SNARE populations to assemble fusion pores in a timely and synchronized manner, is unknown. Here, we demonstrate the role of SNARE chaperones Munc13-1 and Munc18-1 in rescuing individual nascent fusion pores from their diacylglycerol lipid-mediated inhibitory states. At the onset of membrane fusion, Munc13-1 clusters multiple SNARE complexes at the release site and synchronizes release events, while Munc18-1 stoichiometrically interacts with trans-SNARE complexes to enhance N- to C-terminal zippering. When both Munc proteins are present simultaneously, they differentially access dynamic trans-SNARE complexes to regulate pore properties. Overall, Munc proteins' direct action on fusion pore assembly indicates their role in controlling quantal size during vesicular secretion.


Assuntos
Fusão de Membrana , Proteínas Munc18 , Proteínas do Tecido Nervoso , Proteínas SNARE , Proteínas Munc18/metabolismo , Proteínas Munc18/genética , Proteínas SNARE/metabolismo , Proteínas SNARE/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Animais , Humanos , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/genética , Ratos
18.
Sci Adv ; 10(20): eadi7024, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38758791

RESUMO

At the synapse, presynaptic neurotransmitter release is tightly controlled by release machinery, involving the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins and Munc13. The Ca2+ sensor Doc2 cooperates with Munc13 to regulate neurotransmitter release, but the underlying mechanisms remain unclear. In our study, we have characterized the binding mode between Doc2 and Munc13 and found that Doc2 originally occludes Munc13 to inhibit SNARE complex assembly. Moreover, our investigation unveiled that EphB2, a presynaptic adhesion molecule (SAM) with inherent tyrosine kinase functionality, exhibits the capacity to phosphorylate Doc2. This phosphorylation attenuates Doc2 block on Munc13 to promote SNARE complex assembly, which functionally induces spontaneous release and synaptic augmentation. Consistently, application of a Doc2 peptide that interrupts Doc2-Munc13 interplay impairs excitatory synaptic transmission and leads to dysfunction in spatial learning and memory. These data provide evidence that SAMs modulate neurotransmitter release by controlling SNARE complex assembly.


Assuntos
Proteínas de Ligação ao Cálcio , Proteínas do Tecido Nervoso , Neurotransmissores , Receptor EphB2 , Proteínas SNARE , Transmissão Sináptica , Proteínas SNARE/metabolismo , Animais , Neurotransmissores/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Fosforilação , Receptor EphB2/metabolismo , Receptor EphB2/genética , Proteínas de Ligação ao Cálcio/metabolismo , Ligação Proteica , Humanos , Camundongos , Ratos
19.
Elife ; 122024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38695862

RESUMO

Here, we investigated the mechanisms by which aging-related reductions of the levels of Numb in skeletal muscle fibers contribute to loss of muscle strength and power, two critical features of sarcopenia. Numb is an adaptor protein best known for its critical roles in development, including asymmetric cell division, cell-type specification, and termination of intracellular signaling. Numb expression is reduced in old humans and mice. We previously showed that, in mouse skeletal muscle fibers, Numb is localized to sarcomeres where it is concentrated near triads; conditional inactivation of Numb and a closely related protein Numb-like (Numbl) in mouse myofibers caused weakness, disorganization of sarcomeres, and smaller mitochondria with impaired function. Here, we found that a single knockout of Numb in myofibers causes reduction in tetanic force comparable to a double Numb, Numbl knockout. We found by proteomics analysis of protein complexes isolated from C2C12 myotubes by immunoprecipitation using antibodies against Numb that Septin 7 is a potential Numb-binding partner. Septin 7 is a member of the family of GTP-binding proteins that organize into filaments, sheets, and rings, and is considered part of the cytoskeleton. Immunofluorescence evaluation revealed a partial overlap of staining for Numb and Septin 7 in myofibers. Conditional, inducible knockouts of Numb led to disorganization of Septin 7 staining in myofibers. These findings indicate that Septin 7 is a Numb-binding partner and suggest that interactions between Numb and Septin 7 are critical for structural organization of the sarcomere and muscle contractile function.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular , Proteínas de Membrana , Camundongos Knockout , Contração Muscular , Proteínas do Tecido Nervoso , Sarcômeros , Septinas , Animais , Septinas/metabolismo , Septinas/genética , Sarcômeros/metabolismo , Camundongos , Contração Muscular/fisiologia , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Ligação Proteica , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/fisiologia
20.
Biochem Biophys Res Commun ; 717: 150044, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38718567

RESUMO

Pulpitis constitutes a significant challenge in clinical management due to its impact on peripheral nerve tissue and the persistence of chronic pain. Despite its clinical importance, the correlation between neuronal activity and the expression of voltage-gated sodium channel 1.7 (Nav1.7) in the trigeminal ganglion (TG) during pulpitis is less investigated. The aim of this study was to examine the relationship between experimentally induced pulpitis and Nav1.7 expression in the TG and to investigate the potential of selective Nav1.7 modulation to attenuate TG abnormal activity associated with pulpitis. Acute pulpitis was induced at the maxillary molar (M1) using allyl isothiocyanate (AITC). The mice were divided into three groups: control, pulpitis model, and pulpitis model treated with ProTx-II, a selective Nav1.7 channel inhibitor. After three days following the surgery, we conducted a recording and comparative analysis of the neural activity of the TG utilizing in vivo optical imaging. Then immunohistochemistry and Western blot were performed to assess changes in the expression levels of extracellular signal-regulated kinase (ERK), c-Fos, collapsin response mediator protein-2 (CRMP2), and Nav1.7 channels. The optical imaging result showed significant neurological excitation in pulpitis TGs. Nav1.7 expressions exhibited upregulation, accompanied by signaling molecular changes suggestive of inflammation and neuroplasticity. In addition, inhibition of Nav1.7 led to reduced neural activity and subsequent decreases in ERK, c-Fos, and CRMP2 levels. These findings suggest the potential for targeting overexpressed Nav1.7 channels to alleviate pain associated with pulpitis, providing practical pain management strategies.


Assuntos
Canal de Sódio Disparado por Voltagem NAV1.7 , Pulpite , Animais , Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.7/genética , Camundongos , Masculino , Pulpite/metabolismo , Pulpite/patologia , Gânglio Trigeminal/metabolismo , Neurônios/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacologia , Modelos Animais de Doenças , Peptídeos e Proteínas de Sinalização Intercelular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...