Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 335
Filtrar
1.
J Comp Neurol ; 532(7): e25645, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38943486

RESUMO

Dendritic spines are sites of synaptic plasticity and their head size correlates with the strength of the corresponding synapse. We recently showed that the distribution of spine head sizes follows a lognormal-like distribution even after blockage of activity or plasticity induction. As the cytokine tumor necrosis factor (TNF) influences synaptic transmission and constitutive TNF and receptor (TNF-R)-deficiencies cause changes in spine head size distributions, we tested whether these genetic alterations disrupt the lognormality of spine head sizes. Furthermore, we distinguished between spines containing the actin-modulating protein synaptopodin (SP-positive), which is present in large, strong and stable spines and those lacking it (SP-negative). Our analysis revealed that neither TNF-deficiency nor the absence of TNF-R1, TNF-R2 or TNF-R 1 and 2 (TNF-R1/R2) degrades the general lognormal-like, skewed distribution of spine head sizes (all spines, SP-positive spines, SP-negative spines). However, TNF, TNF-R1 and TNF-R2-deficiency affected the width of the lognormal distribution, and TNF-R1/2-deficiency shifted the distribution to the left. Our findings demonstrate the robustness of the lognormal-like, skewed distribution, which is maintained even in the face of genetic manipulations that alter the distribution of spine head sizes. Our observations are in line with homeostatic adaptation mechanisms of neurons regulating the distribution of spines and their head sizes.


Assuntos
Espinhas Dendríticas , Giro Denteado , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores Tipo II do Fator de Necrose Tumoral , Receptores Tipo I de Fatores de Necrose Tumoral , Fator de Necrose Tumoral alfa , Animais , Espinhas Dendríticas/metabolismo , Camundongos , Receptores Tipo I de Fatores de Necrose Tumoral/deficiência , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Giro Denteado/metabolismo , Giro Denteado/citologia , Fator de Necrose Tumoral alfa/metabolismo , Receptores Tipo II do Fator de Necrose Tumoral/deficiência , Receptores Tipo II do Fator de Necrose Tumoral/metabolismo , Receptores Tipo II do Fator de Necrose Tumoral/genética , Neurônios/metabolismo , Masculino , Proteínas dos Microfilamentos/metabolismo , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/deficiência
2.
Biochem Biophys Res Commun ; 712-713: 149943, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38640733

RESUMO

Moesin is a member of the ezrin-radixin-moesin (ERM) family of proteins that link plasma membrane proteins to the cortical cytoskeleton and thus regulate diverse cellular processes. Mutations in the human moesin gene cause a primary immunodeficiency called X-linked moesin-associated immunodeficiency (X-MAID), which may be complicated by an autoimmune phenotype with kidney involvement. We previously reported that moesin-deficient mice exhibit lymphopenia similar to that of X-MAID and develop a lupus-like autoimmune phenotype with age. However, the mechanism through which moesin defects cause kidney pathology remains obscure. Here, we characterized immune cell infiltration and chemokine expression in the kidney of moesin-deficient mice. We found accumulation of CD4+ T and CD11b+ myeloid cells and high expression of CXCL13, whose upregulation was detected before the onset of overt nephritis. CD4+ T cell population contained IFN-γ-producing effectors and expressed the CXCL13 receptor CXCR5. Among myeloid cells, Ly6Clo patrolling monocytes and MHCIIlo macrophages markedly accumulated in moesin-deficient kidneys and expressed high CXCL13 levels, implicating the CXCL13-CXCR5 axis in nephritis development. Functionally, Ly6Clo monocytes from moesin-deficient mice showed reduced migration toward sphingosine 1-phosphate. These findings suggest that moesin plays a role in regulating patrolling monocyte homeostasis, and that its defects lead to nephritis associated with accumulation of CXCL13-producing monocytes and macrophages.


Assuntos
Quimiocina CXCL13 , Proteínas dos Microfilamentos , Monócitos , Animais , Monócitos/metabolismo , Monócitos/imunologia , Monócitos/patologia , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/deficiência , Proteínas dos Microfilamentos/metabolismo , Quimiocina CXCL13/metabolismo , Quimiocina CXCL13/genética , Camundongos , Camundongos Endogâmicos C57BL , Nefrite Lúpica/patologia , Nefrite Lúpica/metabolismo , Nefrite Lúpica/imunologia , Nefrite Lúpica/genética , Camundongos Knockout , Rim/patologia , Rim/metabolismo , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo
5.
Thyroid ; 31(11): 1650-1661, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34470464

RESUMO

Background: Congenital hypothyroidism is often caused by genetic mutations that impair thyroid hormone (TH) production, resulting in growth and development defects. XB130 (actin filament associated protein 1 like 2) is an adaptor/scaffold protein that plays important roles in cell proliferation, migration, intracellular signal transduction, and tumorigenesis. It is highly expressed in thyrocytes, however, its function in the thyroid remains largely unexplored. Methods:Xb130-/- mice and their littermates were studied. Postnatal growth and growth hormone levels were measured, and responses to low or high-iodine diet, and levothyroxine treatment were examined. TH and thyrotropin in the serum and TH in the thyroid glands were quantified. Structure and function of thyrocytes in embryos and postnatal life were studied with histology, immunohistochemistry, immunofluorescence staining, Western blotting, and quantitative reverse transcription polymerase chain reaction. Results:Xb130-/- mice exhibited transient growth retardation postnatally, due to congenital hypothyroidism with reduced TH synthesis and secretion, which could be rescued by exogenous thyroxine supplementation. The thyroid glands of Xb130-/- mice displayed diminished thyroglobulin iodination and release at both embryonic and early postnatal stages. XB130 was found mainly on the apical membrane of thyroid follicles. Thyroid glands of embryonic and postnatal Xb130-/- mice exhibited disorganized apical membrane structure, delayed folliculogenesis, and abnormal formation of thyroid follicle lumina. Conclusion: XB130 critically regulates folliculogenesis by maintaining apical membrane structure and function of thyrocytes, and its deficiency leads to congenital hypothyroidism.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/deficiência , Hipotireoidismo Congênito/genética , Proteínas dos Microfilamentos/deficiência , Células Epiteliais da Tireoide/metabolismo , Animais , Iodo/administração & dosagem , Camundongos , Hormônios Tireóideos/sangue , Tiroxina/administração & dosagem , Tiroxina/farmacologia
6.
J Med Chem ; 64(18): 13766-13779, 2021 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-34519505

RESUMO

5-HT7R belongs to a family of G protein-coupled receptors and is associated with a variety of physiological processes in the central nervous system via the activation of the neurotransmitter serotonin (5-HT). To develop selective and biased 5-HT7R ligands, we designed and synthesized a series of pyrazolyl-diazepanes 2 and pyrazolyl-piperazines 3, which were evaluated for binding affinities to 5-HTR subtypes and functional selectivity for G protein and ß-arrestin signaling pathways of 5-HT7R. Among them, 1-(3-(3-chlorophenyl)-1H-pyrazol-4-yl)-1,4-diazepane 2c showed the best binding affinity for 5-HT7R and selectivity over other 5-HTR subtypes. It was also revealed as a G protein-biased antagonist. The self-grooming behavior test was performed with 2c in vivo with Shank3-/- transgenic (TG) mice, wherein 2c significantly reduced self-grooming duration time to the level of wild-type mice. The results suggest that 5-HT7R could be a potential therapeutic target for treating autism spectrum disorder stereotypy.


Assuntos
Transtorno Autístico/tratamento farmacológico , Pirazóis/uso terapêutico , Receptores de Serotonina/metabolismo , Antagonistas da Serotonina/uso terapêutico , Animais , Desenho de Fármacos , Asseio Animal/efeitos dos fármacos , Masculino , Camundongos Transgênicos , Proteínas dos Microfilamentos/deficiência , Proteínas dos Microfilamentos/genética , Simulação de Acoplamento Molecular , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/genética , Pirazóis/síntese química , Pirazóis/metabolismo , Receptores de Serotonina/química , Antagonistas da Serotonina/síntese química , Antagonistas da Serotonina/metabolismo
7.
Int J Biochem Cell Biol ; 138: 106053, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34371171

RESUMO

Increased browning of white adipocytes (beiging) is considered a promising therapeutic strategy to fight obesity and its associated metabolic complications. However, the molecular mechanism modulating brown and beige fat-mediated thermogenesis is not fully elucidated. Here, we identified the lymphocyte cytosolic protein 1 (LCP1) as a factor that obstructs fat browning in white adipocytes. LCP1 plays a vital role in non-hematopoietic malignancies, and is also a well-known tumor biomarker; however, evidence regarding its function in adipocytes remains to be elucidated. The current study explores the physiological role of LCP1 in cultured 3T3-L1 white adipocytes, by applying the loss-of-function study using siRNA. Induction of fat browning by LCP1 depletion was evidenced by evaluating the gene and protein expression levels of brown fat-associated markers through real-time qRT-PCR and immunoblot analysis, respectively. We observed that deficiency of LCP1 promotes mitochondrial biogenesis, and significantly enhances expressions of the core brown fat-specific genes (Cd137, Cidea, Cited1, Tbx1, and Tmem26) and proteins (PGC-1α, PRDM16, and UCP1). In addition, deficiency of LCP1 promotes lipid catabolism as well as suppresses adipogenesis and lipogenesis. Loss of LCP1 also ameliorates cellular stress by downregulating JNK and c-JUN in adipocytes, and stimulates apoptosis. A mechanistic study revealed that deficiency of LCP1 induces browning in white adipocytes, independently via ß3-AR and the ERK signaling pathway. The current data reveals a previously unknown mechanism of LCP1 in browning of white adipocytes, and highlights the potential of LCP1 as a pharmacotherapeutic target for treating obesity and other metabolic disorders.


Assuntos
Adipócitos Brancos/citologia , Tecido Adiposo Marrom/citologia , Proteínas dos Microfilamentos/deficiência , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Receptores Adrenérgicos beta 3/metabolismo , Estresse Fisiológico , Células 3T3-L1 , Adipócitos Brancos/metabolismo , Tecido Adiposo Marrom/metabolismo , Animais , Lipogênese , Lipólise , Camundongos , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/genética , Receptores Adrenérgicos beta 3/genética , Transdução de Sinais , Termogênese
8.
J Cell Biol ; 220(9)2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34259806

RESUMO

ER-plasma membrane (PM) contacts are proposed to be held together by distinct families of tethering proteins, which in yeast include the VAP homologues Scs2/22, the extended-synaptotagmin homologues Tcb1/2/3, and the TMEM16 homologue Ist2. It is unclear whether these tethers act redundantly or whether individual tethers have specific functions at contacts. Here, we show that Ist2 directly recruits the phosphatidylserine (PS) transport proteins and ORP family members Osh6 and Osh7 to ER-PM contacts through a binding site located in Ist2's disordered C-terminal tethering region. This interaction is required for phosphatidylethanolamine (PE) production by the PS decarboxylase Psd2, whereby PS transported from the ER to the PM by Osh6/7 is endocytosed to the site of Psd2 in endosomes/Golgi/vacuoles. This role for Ist2 and Osh6/7 in nonvesicular PS transport is specific, as other tethers/transport proteins do not compensate. Thus, we identify a molecular link between the ORP and TMEM16 families and a role for endocytosis of PS in PE synthesis.


Assuntos
Proteínas de Ligação a Ácido Graxo/metabolismo , Metabolismo dos Lipídeos/genética , Fosfolipídeos/metabolismo , Receptores de Esteroides/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Sítios de Ligação , Transporte Biológico , Carboxiliases/deficiência , Carboxiliases/genética , Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Endossomos/metabolismo , Proteínas de Ligação a Ácido Graxo/genética , Regulação Fúngica da Expressão Gênica , Engenharia Genética , Complexo de Golgi/metabolismo , Proteínas dos Microfilamentos/deficiência , Proteínas dos Microfilamentos/genética , Proteínas Mitocondriais/deficiência , Proteínas Mitocondriais/genética , Modelos Moleculares , Fosfatidiletanolaminas/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Fosfatidilserinas/metabolismo , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo , Ligação Proteica , Conformação Proteica , Mapeamento de Interação de Proteínas , Receptores de Esteroides/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Transdução de Sinais
9.
Am J Physiol Renal Physiol ; 321(1): F12-F25, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34029143

RESUMO

Synaptopodin (Synpo) is an actin-associated protein in podocyte foot processes. By generating mice that completely lack Synpo, we previously showed that Synpo is dispensable for normal kidney function. However, lack of Synpo worsened adriamycin-induced nephropathy, indicating a protective role for Synpo in injured podocytes. Here, we investigated whether lack of Synpo directly impacts a genetic disease, Alport syndrome (AS), because Synpo is reduced in podocytes of affected humans and mice; whether this is merely an association or pathogenic is unknown. We used collagen type IV-α5 (Col4a5) mutant mice, which model X-linked AS, showing glomerular basement membrane (GBM) abnormalities, eventual foot process effacement, and progression to end-stage kidney disease. We intercrossed mice carrying mutations in Synpo and Col4a5 to produce double-mutant mice. Urine and tissue were taken at select time points to evaluate albuminuria, histopathology, and glomerular capillary wall composition and ultrastructure. Lack of Synpo in Col4a5-/Y, Col4a5-/-, or Col4a5+/- Alport mice led to the acceleration of disease progression, including more severe proteinuria and glomerulosclerosis. Absence of Synpo attenuated the shift of myosin IIA from the podocyte cell body and major processes to actin cables near the GBM in the areas of effacement. We speculate that this is mechanistically associated with enhanced loss of podocytes due to easier detachment from the GBM. We conclude that Synpo deletion exacerbates the disease phenotype in Alport mice, revealing the podocyte actin cytoskeleton as a target for therapy in patients with AS.NEW & NOTEWORTHY Alport syndrome (AS) is a hereditary disease of the glomerular basement with hematuria and proteinuria. Podocytes eventually exhibit foot process effacement, indicating actin cytoskeletal changes. To investigate how cytoskeletal changes impact podocytes, we generated Alport mice lacking synaptopodin, an actin-binding protein in foot processes. Analysis showed a more rapid disease progression, demonstrating that synaptopodin is protective. This suggests that the actin cytoskeleton is a target for therapy in AS and perhaps other glomerular diseases.


Assuntos
Nefropatias/genética , Proteínas dos Microfilamentos/deficiência , Nefrite Hereditária/genética , Nefrite Hereditária/metabolismo , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/metabolismo , Animais , Modelos Animais de Doenças , Membrana Basal Glomerular/metabolismo , Camundongos , Proteínas dos Microfilamentos/metabolismo , Podócitos/metabolismo , Proteinúria/metabolismo
10.
Oxid Med Cell Longev ; 2021: 5564884, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33859778

RESUMO

Vascular smooth muscle cell (VSMC) apoptosis is a major defining feature of abdominal aortic aneurysm (AAA) and mainly caused by inflammatory cell infiltration. Smooth muscle (SM) 22α prevents AAA formation through suppressing NF-κB activation. However, the role of SM22α in VSMC apoptosis is controversial. Here, we identified that SM22α loss contributed to apoptosis of VSMCs via activation of macrophages. Firstly, deficiency of SM22α enhanced the interaction of VSMCs with macrophages. Macrophages were retained and activated by Sm22α -/- VSMCs via upregulating VCAM-1 expression. The ratio of apoptosis was increased by 1.62-fold in VSMCs treated with the conditional media (CM) from activated RAW264.7 cells, compared to that of the control CM (P < 0.01), and apoptosis of Sm22α -/- VSMCs was higher than that of WT VSMCs (P < 0.001). Next, circRasGEF1B from activated macrophages was delivered into VSMCs promoting ZFP36 expression via stabilization of ZFP36 mRNA. Importantly, circRasGEF1B, as a scaffold, guided ZFP36 to preferentially bind to and decay Bcl-2 mRNA in a sequence-specific manner and triggered apoptosis of VSMCs, especially in Sm22α -/- VSMCs. These findings reveal a novel mechanism by which the circRasGEF1B-ZFP36 axis mediates macrophage-induced VSMC apoptosis via decay of Bcl-2 mRNA, whereas Sm22α -/- VSMCs have a higher sensitivity to apoptosis.


Assuntos
Macrófagos/citologia , Macrófagos/metabolismo , Proteínas dos Microfilamentos/deficiência , Proteínas Musculares/deficiência , Músculo Liso Vascular/citologia , Músculo Liso Vascular/metabolismo , RNA Circular/metabolismo , Animais , Apoptose/fisiologia , Comunicação Celular/fisiologia , Técnicas de Reprogramação Celular , Humanos , Masculino , Camundongos , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Células RAW 264.7 , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais , Tristetraprolina/biossíntese , Tristetraprolina/genética , Tristetraprolina/metabolismo
11.
J Clin Invest ; 131(8)2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33630758

RESUMO

Efferocytosis, the process through which apoptotic cells (ACs) are cleared through actin-mediated engulfment by macrophages, prevents secondary necrosis, suppresses inflammation, and promotes resolution. Impaired efferocytosis drives the formation of clinically dangerous necrotic atherosclerotic plaques, the underlying etiology of coronary artery disease (CAD). An intron of the gene encoding PHACTR1 contains rs9349379 (A>G), a common variant associated with CAD. As PHACTR1 is an actin-binding protein, we reasoned that if the rs9349379 risk allele G causes lower PHACTR1 expression in macrophages, it might link the risk allele to CAD via impaired efferocytosis. We show here that rs9349379-G/G was associated with lower levels of PHACTR1 and impaired efferocytosis in human monocyte-derived macrophages and human atherosclerotic lesional macrophages compared with rs9349379-A/A. Silencing PHACTR1 in human and mouse macrophages compromised AC engulfment, and Western diet-fed Ldlr-/- mice in which hematopoietic Phactr1 was genetically targeted showed impaired lesional efferocytosis, increased plaque necrosis, and thinner fibrous caps - all signs of vulnerable plaques in humans. Mechanistically, PHACTR1 prevented dephosphorylation of myosin light chain (MLC), which was necessary for AC engulfment. In summary, rs9349379-G lowered PHACTR1, which, by lowering phospho-MLC, compromised efferocytosis. Thus, rs9349379-G may contribute to CAD risk, at least in part, by impairing atherosclerotic lesional macrophage efferocytosis.


Assuntos
Apoptose , Doença da Artéria Coronariana , Macrófagos , Proteínas dos Microfilamentos/deficiência , Placa Aterosclerótica , Polimorfismo Genético , Animais , Doença da Artéria Coronariana/genética , Doença da Artéria Coronariana/metabolismo , Doença da Artéria Coronariana/patologia , Humanos , Células Jurkat , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Camundongos Knockout , Proteínas dos Microfilamentos/metabolismo , Cadeias Leves de Miosina/genética , Cadeias Leves de Miosina/metabolismo , Fosforilação/genética , Placa Aterosclerótica/genética , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patologia
12.
Front Immunol ; 12: 726406, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35069520

RESUMO

X-linked moesin associated immunodeficiency (X-MAID) is a primary immunodeficiency disease in which patients suffer from profound lymphopenia leading to recurrent infections. The disease is caused by a single point mutation leading to a R171W amino acid change in the protein moesin (moesinR171W). Moesin is a member of the ERM family of proteins, which reversibly link the cortical actin cytoskeleton to the plasma membrane. Here, we describe a novel mouse model with global expression of moesinR171W that recapitulates multiple facets of patient disease, including severe lymphopenia. Further analysis reveals that these mice have diminished numbers of thymocytes and bone marrow precursors. X-MAID mice also exhibit systemic inflammation that is ameliorated by elimination of mature lymphocytes through breeding to a Rag1-deficient background. The few T cells in the periphery of X-MAID mice are highly activated and have mostly lost moesinR171W expression. In contrast, single-positive (SP) thymocytes do not appear activated and retain high expression levels of moesinR171W. Analysis of ex vivo CD4 SP thymocytes reveals defects in chemotactic responses and reduced migration on integrin ligands. While chemokine signaling appears intact, CD4 SP thymocytes from X-MAID mice are unable to polarize and rearrange cytoskeletal elements. This mouse model will be a valuable tool for teasing apart the complexity of the immunodeficiency caused by moesinR171W, and will provide new insights into how the actin cortex regulates lymphocyte function.


Assuntos
Movimento Celular/imunologia , Proteínas dos Microfilamentos/deficiência , Linfócitos T/imunologia , Doenças por Imunodeficiência Combinada Ligada ao Cromossomo X/imunologia , Animais , Movimento Celular/genética , Modelos Animais de Doenças , Camundongos , Camundongos Knockout , Proteínas dos Microfilamentos/imunologia , Doenças por Imunodeficiência Combinada Ligada ao Cromossomo X/genética
13.
Exp Neurol ; 336: 113530, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33221396

RESUMO

Microglia are one of the first responders to ischemic injury. Aged microglia acquire a senescent phenotype and produce more inflammatory cytokines after stroke. Depletion of microglia in young mice worsens post-ischemic damage by increasing inflammation. However, young mice do not have dysfunctional microglia. Hence, we hypothesized that depletion of microglia in older mice will contribute to improved early recovery after ischemic stroke injury. Aged (18-19 month) mice were fed with either control chow diet (CD) or PLX5622 chow diet (PLXD) for 21 days. On day 22, a 60-min middle cerebral artery occlusion (MCAo) surgery or sham surgery was performed. Twenty-four and 72 h after stroke immunohistochemistry and flow cytometry were performed. AFS98, a monoclonal antibody against CSF1R was used to specifically deplete brain macrophages by injection into the right hemisphere. Two days after AFS98 injections, mice underwent one-hour MCAo. Twenty-four hours later mice were euthanized and flow cytometry was performed. An increase in infarct volume (p < 0.05) was seen in the PLXD versus CD after stroke in aged mice at 24 and 72 h. An increase (p < 0.05) in infiltrating monocytes was observed after microglial depletion in aged stroke mice suggesting a differential monocyte response. An increase in astrocyte numbers was evident in the PLXD sham mice compared to CD sham, reflecting the off-target effects of PLX5622 treatment. In conclusion, PLX5622 and AFS98 treatment depleted microglia in aged animals but resulted in increased neuroinflammation after ischemic stroke.


Assuntos
Encéfalo/patologia , AVC Isquêmico/patologia , Microglia/patologia , Acidente Vascular Cerebral/patologia , Envelhecimento , Animais , Astrócitos/patologia , Proteínas de Ligação ao Cálcio/deficiência , Proteínas de Ligação ao Cálcio/genética , Infarto da Artéria Cerebral Média/patologia , Inflamação/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas dos Microfilamentos/deficiência , Proteínas dos Microfilamentos/genética , Monócitos/patologia , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/antagonistas & inibidores , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/genética
14.
Mol Cells ; 43(8): 749-762, 2020 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-32868491

RESUMO

The migration, dedifferentiation, and proliferation of vascular smooth muscle cells (VSMCs) are responsible for intimal hyperplasia, but the mechanism of this process has not been elucidated. WD repeat domain 1 (WDR1) promotes actin-depolymerizing factor (ADF)/cofilin-mediated depolymerization of actin filaments (F-actin). The role of WDR1 in neointima formation and progression is still unknown. A model of intimal thickening was constructed by ligating the left common carotid artery in Wdr1 deletion mice, and H&E staining showed that Wdr1 deficiency significantly inhibits neointima formation. We also report that STAT3 promotes the proliferation and migration of VSMCs by directly promoting WDR1 transcription. Mechanistically, we clarified that WDR1 promotes the proliferation and migration of VSMCs and neointima formation is regulated by the activation of the JAK2/STAT3/WDR1 axis.


Assuntos
Proteínas dos Microfilamentos/deficiência , Animais , Artérias Carótidas/citologia , Artérias Carótidas/metabolismo , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Janus Quinase 2/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas dos Microfilamentos/metabolismo , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/metabolismo , Neointima/metabolismo , Neointima/patologia , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Repetições WD40
15.
J Pediatr Gastroenterol Nutr ; 71(4): e113-e117, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32960541

RESUMO

Infantile and very early onset inflammatory bowel disease (VEOIBD) are a rare phenomenon wherein patients develop intestinal inflammation with typical IBD symptoms before ages 2 and 6, respectively. In recent years, there has been an increasing number of monogenetic immunological disorders identified that lead a child to develop VEOIBD. We present a case of an infant boy who presented with hematochezia and thrombocytopenia in the first week of life and developed IBD by the age of 1 month. Additional clues to his diagnosis included lymphopenia and nuclear herniation observed in his neutrophils. Compound heterozygous damaging variants were identified in WD Repeat Domain 1 (WDR1) by whole-exome sequencing (WES) and represents a novel cause of VEOIBD. Our patient's IBD and immunologic phenotype was successfully treated by hematopoietic stem cell transplant (HSCT).


Assuntos
Colite , Doenças Inflamatórias Intestinais , Proteínas dos Microfilamentos/deficiência , Humanos , Lactente , Doenças Inflamatórias Intestinais/complicações , Doenças Inflamatórias Intestinais/diagnóstico , Doenças Inflamatórias Intestinais/genética , Masculino , Fenótipo , Repetições WD40 , Sequenciamento do Exoma
16.
Biochem Biophys Res Commun ; 529(4): 1086-1093, 2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32819569

RESUMO

Non-small cell lung cancer (NSCLC) is the leading cause of tumor mortality worldwide. However, the mechanisms underlying NSCLC tumorigenesis are incompletely understood. TAGLN, also named SM22, as a member of the calponin family, is highly expressed in many types of tumors. Nevertheless, its effects on NSCLC progression remain unclear. In this study, we found that TAGLN was over-expressed in tumor tissues of NSCLC patients and cell lines. Additionally, NSCLC patients with high expression showed worse overall survival rate. Then, gene silencing results indicated that TAGLN knockdown markedly inhibited proliferation and induced apoptosis in NSCLC cells, while rescue study exhibited opposite results. Moreover, suppressing TAGLN significantly reduced migration and invasion of NSCLC cells, and its over-expression promoted the migratory and invasive activities of NSCLC cells. The in vivo studies confirmed the oncogenic roles of TAGLN in NSCLC, along with clearly elevated metastasis. Notably, these effects were abrogated in mice with TAGLN deletion. Finally, we found that TAGLN knockdown could improve the sensitivity of NSCLC cells to sorafenib (SFB) and 5-FU treatment, further suppressing the proliferation, migration and invasion of NSCLC cells. Consistently, TAGLN deletion attenuated tumor xenografts growth and metastasis of NSCLC in mouse models by enhancing the anti-cancer effects of SFB and 5-FU. Altogether, these findings demonstrated that TAGLN functioned as an oncogene as well as a chemotherapeutic regulator during NSCLC development, which suggested a potential therapeutic strategy for NSCLC treatment mainly through repressing TAGLN expression.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Proteínas dos Microfilamentos/deficiência , Proteínas Musculares/deficiência , Animais , Carcinoma Pulmonar de Células não Pequenas/genética , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Proliferação de Células , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Transição Epitelial-Mesenquimal/genética , Fluoruracila/farmacologia , Fluoruracila/uso terapêutico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Humanos , Neoplasias Pulmonares/genética , Masculino , Camundongos Endogâmicos BALB C , Proteínas dos Microfilamentos/metabolismo , Proteínas Musculares/metabolismo , Invasividade Neoplásica , Metástase Neoplásica , Sorafenibe/farmacologia , Sorafenibe/uso terapêutico , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
17.
Biochem Biophys Res Commun ; 529(4): 884-889, 2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32819594

RESUMO

Smooth muscle 22α (SM22α, namely Transgelin), as an actin-binding protein, regulates the contractility of vascular smooth muscle cells (VSMCs) by modulation of the stress fiber formation. However, little is known about the roles of SM22α in the regulation of uterine contraction during parturition. Here, we showed that contraction in response to oxytocin (OT) was significantly decreased in the uterine muscle strips from SM22α knockout (Sm22α-KO) mice, especially at full-term pregnancy, which may be resulted from impaired formation of stress fibers. Furthermore, serious mitochondrial damage such as the mitochondrial swelling, cristae disruption and even disappearance were observed in the myometrium of Sm22α-KO mice at full-term pregnancy, eventually resulting in the collapse of mitochondrial membrane potential and impairment in ATP synthesis. Our data indicate that SM22α is necessary to maintain uterine contractility at delivery in mice, and acts as a novel target for preventive or therapeutic manipulation of uterine atony during parturition.


Assuntos
Proteínas dos Microfilamentos/genética , Proteínas Musculares/genética , Músculo Liso Vascular/efeitos dos fármacos , Miométrio/efeitos dos fármacos , Ocitocina/farmacologia , Contração Uterina/efeitos dos fármacos , Inércia Uterina/genética , Trifosfato de Adenosina/deficiência , Animais , Feminino , Regulação da Expressão Gênica , Camundongos , Camundongos Knockout , Proteínas dos Microfilamentos/deficiência , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Dilatação Mitocondrial/genética , Proteínas Musculares/deficiência , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Miométrio/metabolismo , Miométrio/patologia , Parto , Gravidez , Cultura Primária de Células , Fibras de Estresse/efeitos dos fármacos , Fibras de Estresse/metabolismo , Fibras de Estresse/patologia , Técnicas de Cultura de Tecidos , Inércia Uterina/metabolismo , Inércia Uterina/patologia
18.
Clin Sci (Lond) ; 134(17): 2353-2368, 2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32857129

RESUMO

Genetic variants in phosphatase and actin regulator-1 (Phactr1) are reported to be associated with arteriosclerotic cardiovascular disease (ASCVD). However, the function of Phactr1 in atherosclerosis remains unclear. Patients with acute coronary syndrome (ACS) who underwent coronary angiography and optical coherence tomography (OCT) were enrolled and divided into non-ST segment elevation (NST-ACS) group and ST-ACS group. The expression of Phactr1 on monocytes was higher in NST-ACS and ST-ACS groups as compared with control group. Furthermore, NST-ACS patients who have more vulnerable features including thin-cap fibroatheroma (TCFA) and large lipid area showed higher levels of Phactr1 on monocytes than those with stable plaques. Through mouse models of atherosclerosis, Phactr1-/-Apoe-/- mice (double knockout mice, DKO) developed more severe atherosclerotic plaques, recruiting more macrophages into subendothelium and having elevated levels of proinflammatory cytokines in plaques. Similarly, Apoe knockout mice (Apoe-/-) receiving DKO bone marrow (BM) exhibited elevated plaque burden compared with Apoe-/- mice receiving Apoe-/- BM, indicating the protective effect of Phactr1 in hematopoietic cells. We found that depletion of Phactr1 in BM-derived macrophages (BMDMs) tended to differentiate into M1 phenotype, produced more proatherogenic cytokines and eventually converted into foam cells driven by oxidized low-density lipoprotein (ox-LDL). Mechanistically, Phactr1 activated CREB signaling via directly binding to CREB, up-regulating CREB phosphorylation and inducing KLF4 expression. Finally, overexpression of KLF4 partly rescued the excessive inflammation response and foam cell formation induced by deficiency of Phactr1. In conclusion, our study demonstrates that elevated Phactr1 in monocytes is a promising biomarker for vulnerable plaques, while increased Phactr1 attenuates atherosclerotic development via activation of CREB and M2 macrophage differentiation.


Assuntos
Aterosclerose/genética , Aterosclerose/patologia , Polaridade Celular , Células Espumosas/metabolismo , Células Espumosas/patologia , Proteínas dos Microfilamentos/deficiência , Proteínas dos Microfilamentos/genética , Animais , Aterosclerose/diagnóstico por imagem , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Feminino , Células HEK293 , Hematopoese , Humanos , Inflamação/patologia , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/genética , Masculino , Camundongos , Pessoa de Meia-Idade , Monócitos/patologia , Fosforilação , Placa Aterosclerótica/diagnóstico por imagem , Placa Aterosclerótica/genética , Placa Aterosclerótica/patologia , Índice de Gravidade de Doença , Tomografia de Coerência Óptica , Transcrição Gênica
19.
Mol Brain ; 13(1): 110, 2020 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-32758248

RESUMO

Autism Spectrum Disorders (ASD) are characterised by deficits in social interactions and repetitive behaviours. Multiple ASD-associated mutations have been identified in the Shank family of proteins that play a critical role in the structure and plasticity of glutamatergic synapses, leading to impaired synapse function and the presentation of ASD-associated behavioural deficits in mice. Shank proteins are highly regulated by zinc, where zinc binds the Shank SAM domain to drive synaptic protein recruitment and synaptic maturation. Here we have examined the influence of maternal dietary zinc supplementation during pregnancy and lactation on the development of ASD-associated behavioural and synaptic changes in the offspring Shank3 knockout (Shank3-/-) mice. Behavioural and electrophysiological experiments were performed in juvenile and adult Shank3-/- and wildtype littermate control mice born from mothers fed control (30 ppm, ppm) or supplemented (150 ppm) dietary zinc. We observed that the supplemented maternal zinc diet prevented ASD-associated deficits in social interaction and normalised anxiety behaviours in Shank3-/- offspring mice. These effects were maintained into adulthood. Repetitive grooming was also prevented in adult Shank3-/- offspring mice. At the synaptic level, maternal zinc supplementation altered postsynaptic NMDA receptor-mediated currents and presynaptic function at glutamatergic synapses onto medium spiny neurons in the cortico-striatal pathway of the Shank3-/- offspring mice. These data show that increased maternal dietary zinc during pregnancy and lactation can alter the development of ASD-associated changes at the synaptic and the behavioural levels, and that zinc supplementation from the beginning of brain development can prevent ASD-associated deficits in Shank3-/- mice long term.


Assuntos
Transtorno Autístico/patologia , Comportamento Animal , Suplementos Nutricionais , Proteínas dos Microfilamentos/deficiência , Proteínas do Tecido Nervoso/deficiência , Sinapses/patologia , Zinco/farmacologia , Animais , Ansiedade/patologia , Encéfalo/metabolismo , Feminino , Glutamatos/metabolismo , Asseio Animal , Camundongos Knockout , Proteínas dos Microfilamentos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Gravidez , Receptores de AMPA/metabolismo , Comportamento Social , Espectrofotometria Atômica , Sinapses/efeitos dos fármacos
20.
Proc Natl Acad Sci U S A ; 117(32): 19388-19398, 2020 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-32727906

RESUMO

CD8+ T cells play pivotal roles in eradicating pathogens and tumor cells. T cell receptor (TCR) signaling is vital for the optimal activation of CD8+ T cells. Upon TCR engagement, the transmembrane adapter protein LAT (linker for activation of T cells) recruits other key signaling molecules and forms the "LAT signalosome" for downstream signal transduction. However, little is known about which functional partners could restrain the formation of the LAT signalosome and inhibit CD8+ cytotoxic T lymphocyte (CTL)-mediated cytotoxicity. Here we have demonstrated that LRCH1 (leucine-rich repeats and calponin homology domain containing 1) directly binds LAT, reduces LAT phosphorylation and interaction with GRB2, and also promotes the endocytosis of LAT. Lrch1-/- mice display better protection against influenza virus and Listeria infection, with enhanced CD8+ T cell proliferation and cytotoxicity. Adoptive transfer of Lrch1-/- CD8+ CTLs leads to increased B16-MO5 tumor clearance in vivo. Furthermore, knockout of LRCH1 in human chimeric antigen receptor (CAR) T cells that recognize the liver tumor-associated antigen glypican-3 could improve CAR T cell migration and proliferation in vitro. These findings suggest LRCH1 as a potential translational target to improve T cell immunotherapy against infection and tumors.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Linfócitos T CD8-Positivos/imunologia , Proteínas de Membrana/metabolismo , Proteínas dos Microfilamentos/deficiência , Transdução de Sinais , Animais , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/transplante , Movimento Celular , Células Cultivadas , Citotoxicidade Imunológica , Endocitose , Proteína Adaptadora GRB2/metabolismo , Humanos , Imunoterapia Adotiva , Infecções/imunologia , Infecções/microbiologia , Infecções/virologia , Interferon gama/metabolismo , Neoplasias Pulmonares/terapia , Ativação Linfocitária , Camundongos , Camundongos Knockout , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Fosforilação , Ligação Proteica , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos Quiméricos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...