Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.894
Filtrar
1.
J Immunol Methods ; 530: 113697, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38823576

RESUMO

Porcine reproductive and respiratory syndrome (PRRS) caused by the PRRS virus (PRRSV) is one of the most severe swine diseases causing great economic losses for the international swine industry. Non-structural protein 4 (NSP4) is critical to the life cycle of PRRSV and contains dominant B cell epitopes. This study prepared a monoclonal antibody against Nsp4, and 2D11, which contained the sequence 138KQGGGIVTRPSGQFCN153, was confirmed as the epitope. A 2D11-based double antibody sandwich enzyme-linked immunosorbent assay (dasELISA) was next developed with a cut value of 0.1987. A total of 1354 pig serum samples were detected by dasELISA and compared to a commercial ELISA kit (N-coated iELISA), resulting in a positive coincidence rate of 98.8% and negative coincidence rate of 96.9%. A total of 119 sera were positive by dasELISA while negative by iELISA. Higher positive rates by dasELISA were found in pig farms where PRRSV antibody levels varied widely. These results indicated that the dasELISA was a useful tool to detect PRRSV antibody in clinical samples.


Assuntos
Anticorpos Monoclonais , Anticorpos Antivirais , Ensaio de Imunoadsorção Enzimática , Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Proteínas não Estruturais Virais , Vírus da Síndrome Respiratória e Reprodutiva Suína/imunologia , Animais , Ensaio de Imunoadsorção Enzimática/métodos , Suínos , Anticorpos Monoclonais/imunologia , Síndrome Respiratória e Reprodutiva Suína/imunologia , Síndrome Respiratória e Reprodutiva Suína/diagnóstico , Síndrome Respiratória e Reprodutiva Suína/sangue , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Proteínas não Estruturais Virais/imunologia , Epitopos Imunodominantes/imunologia , Epitopos de Linfócito B/imunologia
3.
J Med Microbiol ; 73(5)2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38722305

RESUMO

Background. Dengue is an important arboviral infection of considerable public health significance. It occurs in a wide global belt within a variety of tropical regions. The timely laboratory diagnosis of Dengue infection is critical to inform both clinical management and an appropriate public health response. Vaccination against Dengue virus is being introduced in some areas.Discussion. Appropriate diagnostic strategies will vary between laboratories depending on the available resources and skills. Diagnostic methods available include viral culture, the serological detection of Dengue-specific antibodies in using enzyme immunoassays (EIAs), microsphere immunoassays, haemagglutination inhibition or in lateral flow point of care tests. The results of antibody tests may be influenced by prior vaccination and exposure to other flaviviruses. The detection of non-structural protein 1 in serum (NS1) has improved the early diagnosis of Dengue and is available in point-of-care assays in addition to EIAs. Direct detection of viral RNA from blood by PCR is more sensitive than NS1 antigen detection but requires molecular skills and resources. An increasing variety of isothermal nucleic acid detection methods are in development. Timing of specimen collection and choice of test is critical to optimize diagnostic accuracy. Metagenomics and the direct detection by sequencing of viral RNA from blood offers the ability to rapidly type isolates for epidemiologic purposes.Conclusion. The impact of vaccination on immune response must be recognized as it will impact test interpretation and diagnostic algorithms.


Assuntos
Vacinas contra Dengue , Vírus da Dengue , Dengue , Humanos , Dengue/diagnóstico , Dengue/prevenção & controle , Dengue/imunologia , Vírus da Dengue/imunologia , Vírus da Dengue/genética , Vacinas contra Dengue/imunologia , Vacinas contra Dengue/administração & dosagem , Técnicas de Laboratório Clínico/métodos , Anticorpos Antivirais/sangue , RNA Viral/genética , Proteínas não Estruturais Virais/imunologia , Proteínas não Estruturais Virais/genética
4.
PLoS One ; 19(5): e0303839, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38758765

RESUMO

The interaction between SARS-CoV-2 non-structural protein Nsp9 and the nanobody 2NSP90 was investigated by NMR spectroscopy using the paramagnetic perturbation methodology PENELOP (Paramagnetic Equilibrium vs Nonequilibrium magnetization Enhancement or LOss Perturbation). The Nsp9 monomer is an essential component of the replication and transcription complex (RTC) that reproduces the viral gRNA for subsequent propagation. Therefore preventing Nsp9 recruitment in RTC would represent an efficient antiviral strategy that could be applied to different coronaviruses, given the Nsp9 relative invariance. The NMR results were consistent with a previous characterization suggesting a 4:4 Nsp9-to-nanobody stoichiometry with the occurrence of two epitope pairs on each of the Nsp9 units that establish the inter-dimer contacts of Nsp9 tetramer. The oligomerization state of Nsp9 was also analyzed by molecular dynamics simulations and both dimers and tetramers resulted plausible. A different distribution of the mapped epitopes on the tetramer surface with respect to the former 4:4 complex could also be possible, as well as different stoichiometries of the Nsp9-nanobody assemblies such as the 2:2 stoichiometry suggested by the recent crystal structure of the Nsp9 complex with 2NSP23 (PDB ID: 8dqu), a nanobody exhibiting essentially the same affinity as 2NSP90. The experimental NMR evidence, however, ruled out the occurrence in liquid state of the relevant Nsp9 conformational change observed in the same crystal structure.


Assuntos
Epitopos , Simulação de Dinâmica Molecular , SARS-CoV-2 , Anticorpos de Domínio Único , Proteínas não Estruturais Virais , Proteínas não Estruturais Virais/imunologia , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/metabolismo , Anticorpos de Domínio Único/química , Anticorpos de Domínio Único/imunologia , Anticorpos de Domínio Único/metabolismo , SARS-CoV-2/imunologia , Epitopos/imunologia , Epitopos/química , Humanos , Espectroscopia de Ressonância Magnética , Ligação Proteica , Multimerização Proteica , COVID-19/imunologia , COVID-19/virologia , Proteínas de Ligação a RNA
5.
Virology ; 595: 110083, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38696887

RESUMO

Porcine reproductive and respiratory syndrome virus (PRRSV) infection inhibits swine leukocyte antigen class I (SLA-I) expression in pigs, resulting in inefficient antigen presentation and subsequent low levels of cellular PRRSV-specific immunity as well as persistent viremia. We previously observed that the non-structural protein 4 (nsp4) of PRRSV contributed to inhibition of the ß2-microglobulin (ß2M) and SLA-I expression in cells. Here, we constructed a series of nsp4 mutants with different combination of amino acid mutations to attenuate the inhibitory effect of nsp4 on ß2M and SLA-I expression. Almost all nsp4 mutants exogenously expressed in cells showed an attenuated effect on inhibition of ß2M and SLA-I expression, but the recombinant PRRSV harboring these nsp4 mutants failed to be rescued with exception of the rPRRSV-nsp4-mut10 harboring three amino acid mutations. However, infection of rPRRSV-nsp4-mut10 not only enhanced ß2M and SLA-I expression in both cells and pigs but also promoted the DCs to active the CD3+CD8+T lymphocytes more efficiently, as compared with its parental PRRSV (rPRRVS-nsp4-wt). These data suggested that the inhibition of nsp4-mediated ß2M downregulation improved ß2M/SLA-I expression in pigs.


Assuntos
Regulação para Baixo , Antígenos de Histocompatibilidade Classe I , Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Proteínas não Estruturais Virais , Microglobulina beta-2 , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Vírus da Síndrome Respiratória e Reprodutiva Suína/fisiologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/imunologia , Animais , Suínos , Síndrome Respiratória e Reprodutiva Suína/virologia , Síndrome Respiratória e Reprodutiva Suína/imunologia , Síndrome Respiratória e Reprodutiva Suína/genética , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Proteínas não Estruturais Virais/imunologia , Microglobulina beta-2/genética , Microglobulina beta-2/metabolismo , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/metabolismo , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe II/metabolismo , Antígenos de Histocompatibilidade Classe II/imunologia , Linhagem Celular , Linfócitos T CD8-Positivos/imunologia , Mutação
6.
Int J Biol Macromol ; 269(Pt 2): 132169, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38723801

RESUMO

In our study, we developed a point of care electrochemical biosensing platform based on the functionalized cysteine-positioned gold electrode to diagnose yellow fever disease from human plasma samples. The developed platform underwent characterization through diverse methods encompassing cyclic voltammetry, electrochemical impedance spectroscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy, and density-functional theory. The capacitive interaction between yellow fever virus non-structural antigen and antibody gave a cathodic signal at approximately -260 mV, and increased in proportion to the amount of non-structural antibody. The created electrochemical biosensor has an ability to detect 96 ag/mL of the yellow fever non-structural antibody with an extensive analytical range varied from 0.1 fg/mL to 1 µg/mL. The interference effects of various substances that could be found in human plasma, and the performance of the method were examined from the point of recovery and relative standard deviation for human plasma samples; hereby, the results confirmed the unprecedented selectivity and accuracy of the proposed method.


Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , Proteínas não Estruturais Virais , Febre Amarela , Humanos , Técnicas Biossensoriais/métodos , Febre Amarela/diagnóstico , Febre Amarela/sangue , Febre Amarela/imunologia , Febre Amarela/virologia , Proteínas não Estruturais Virais/imunologia , Proteínas não Estruturais Virais/sangue , Técnicas Eletroquímicas/métodos , Sistemas Automatizados de Assistência Junto ao Leito , Vírus da Febre Amarela/imunologia , Teoria da Densidade Funcional , Eletrodos , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Ouro/química
7.
J Med Virol ; 96(6): e29689, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38818789

RESUMO

Individuals infected with dengue virus (DENV) often show no symptoms, which raises the risk of DENV transfusion transmission (TT-DENV) in areas where the virus is prevalent. This study aimed to determine the evidence of DENV infection in blood donors from different geographic regions of Thailand. A cross-sectional study was conducted on blood donor samples collected from the Thai Red Cross National Blood Center and four regional blood centers between March and September 2020. Screening for DENV nonstructural protein 1 (NS1), anti-DENV immunoglobulin G (IgG), and IgM antibodies was performed on residual blood from 1053 donors using enzyme-linked immunosorbent assay kits. Positive NS1 and IgM samples indicating acute infection were verified using four different techniques, including quantitative real-time (q) RT-PCR, nested PCR, virus isolation in C6/36 cells, and mosquito amplification. DENV IgG seropositivity was identified in 89% (938/1053) of blood donors. Additionally, 0.4% (4/1053) and 2.1% (22/1053) of Thai blood donors tested positive for NS1 and IgM, respectively. The presence of asymptomatic dengue virus infection in healthy blood donors suggests a potential risk of transmission through blood transfusion, posing a concern for blood safety.


Assuntos
Anticorpos Antivirais , Doadores de Sangue , Vírus da Dengue , Dengue , Imunoglobulina G , Imunoglobulina M , Humanos , Tailândia/epidemiologia , Dengue/transmissão , Dengue/epidemiologia , Doadores de Sangue/estatística & dados numéricos , Estudos Transversais , Vírus da Dengue/imunologia , Vírus da Dengue/isolamento & purificação , Vírus da Dengue/genética , Anticorpos Antivirais/sangue , Feminino , Masculino , Adulto , Imunoglobulina M/sangue , Imunoglobulina G/sangue , Adulto Jovem , Pessoa de Meia-Idade , Adolescente , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/imunologia , Doação de Sangue
8.
Sheng Wu Gong Cheng Xue Bao ; 40(5): 1536-1547, 2024 May 25.
Artigo em Chinês | MEDLINE | ID: mdl-38783814

RESUMO

The aim of this study was to prepare a mouse monoclonal antibody against the nonstructural protein 1 (NS1) of respiratory syncytial virus (RSV) to analyze its expression and distribution during transfection and infection. Additionally, we aimed to evaluate the antibody's application in immunoprecipitation assay. Firstly, the NS1 gene fragment was cloned into a prokaryotic plasmid and expressed in Escherichia coli. The resulting NS1 protein was then purified by affinity chromatography, and used to immunize the BALB/c mice. Subsequently, hybridoma cells capable of stably secreting the NS1 monoclonal antibody were selected using indirect enzyme linked immunosorbent assay (ELISA). This monoclonal antibody was employed in both indirect immunofluorescence assay (IFA) and Western blotting to analyze the expression and distribution of RSV NS1 in overexpressed and infected cells. Finally, the reliability of this monoclonal antibody was evaluated through the immunoprecipitation assay. The results showed that the RSV NS1 protein was successfully expressed and purified. Following immunization of mice with this protein, we obtained a highly specific RSV NS1 monoclonal antibody, which belonged to the IgG1 subtype with an antibody titer of 1:15 360 000. Using this monoclonal antibody, the RSV NS1 protein was identified in both transfected and infected cells. The IFA results revealed predominant distribution of NS1 in the cytoplasm and nucleus. Moreover, we confirmed that this monoclonal antibody could effectively bind specifically to NS1 protein in cell lysates, making it suitable as a capture antibody in immunoprecipitation assay. In conclusion, our study successfully achieved production of the RSV NS1 protein through a prokaryotic expression system and prepared a specific monoclonal antibody against NS1. This antibody demonstrates the ability to specifically identify the NS1 protein and can be used in the immunoprecipitation assay, thereby laying a foundation for the functional studies of the NS1 protein.


Assuntos
Anticorpos Monoclonais , Proteínas não Estruturais Virais , Animais , Feminino , Camundongos , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/biossíntese , Anticorpos Monoclonais/genética , Anticorpos Antivirais/imunologia , Escherichia coli/genética , Escherichia coli/metabolismo , Hibridomas/imunologia , Camundongos Endogâmicos BALB C , Vírus Sinciciais Respiratórios/imunologia , Vírus Sinciciais Respiratórios/genética , Proteínas não Estruturais Virais/imunologia , Proteínas não Estruturais Virais/genética
9.
J Immunol Methods ; 530: 113695, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38797275

RESUMO

Japanese Encephalitis (JE) is a mosquito borne re-emerging viral zoonotic disease. Sero-conversion in swine occurs 2-3 weeks before human infection, thus swine act as a suitable sentinel for predicting JE outbreaks in humans. The present study was undertaken with the objective of developing immunochromatographic strip (ICS) assay to detect recent infection of Japanese Encephalitis virus (JEV) in swine population. The two formats of ICS assay were standardized. In the first format, gold nanoparticles (GNP) were conjugated with goat anti-pig IgM (50 µg/ml) followed by spotting of recombinant NS1 protein (1 mg/ml) of JEV on NCM as test line and protein G (1 mg/ml) as control line. In the format-II, GNP were conjugated with rNS1 protein (50 µg/ml) followed by spotting of Goat anti-pig IgM (1 mg/ml) as test line and IgG against rNS1 (1 mg/ml) as control line. To decrease the non- specific binding, blocking of serum and nitrocellulose membrane (NCM) was done using 5% SMP in PBS-T and 1% BSA, respectively. Best reaction conditions for the assay were observed when 10 µl of GNP conjugate and 50 µl of 1:10 SMP blocked sera was reacted on BSA blocked NCM followed by reaction time of 15 mins. Samples showing both test and control line were considered positive whereas samples showing only control line were considered negative. A total of 318 field swine sera samples were screened using indirect IgM ELISA and developed ICS assay. Relative diagnostic sensitivity and specificity of format-I was 81.25% and 93.0% whereas of format-II was 87.50% and 62.93%, respectively. Out of 318 samples tested, 32 were positive through IgM ELISA with sero-positivity of 10.06% while sero-positivity with format-I of ICS was 8.1%. Owing to optimal sensitivity and higher specificity of format-I, it was validated in three different labs and the kappa agreement ranged from 0.80 to 1, which signifies excellent repeatability of the developed assay to test field swine sera samples for detecting recent JEV infection.


Assuntos
Anticorpos Antivirais , Vírus da Encefalite Japonesa (Espécie) , Encefalite Japonesa , Imunoglobulina M , Nanopartículas Metálicas , Doenças dos Suínos , Animais , Encefalite Japonesa/veterinária , Encefalite Japonesa/diagnóstico , Encefalite Japonesa/imunologia , Encefalite Japonesa/virologia , Vírus da Encefalite Japonesa (Espécie)/imunologia , Suínos , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Imunoglobulina M/sangue , Imunoglobulina M/imunologia , Nanopartículas Metálicas/química , Doenças dos Suínos/diagnóstico , Doenças dos Suínos/virologia , Doenças dos Suínos/imunologia , Doenças dos Suínos/sangue , Proteínas não Estruturais Virais/imunologia , Sensibilidade e Especificidade , Cromatografia de Afinidade/métodos , Ouro/química , Fitas Reagentes , Reprodutibilidade dos Testes , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Humanos
10.
Prev Vet Med ; 227: 106197, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38613943

RESUMO

The use of virus-neutralizing (VN) and nonstructural protein (NSP) antibody tests in a serosurveillance program for foot-and-mouth disease (FMD) can identify pig herds that are adequately vaccinated, with a high percentage of pigs with VN positive antibody titers; these tests can also help identify pigs with NSP-positivity that have previously been or are currently infected even in vaccinated herds. To identify infected herds and manage infection, the combination of VN and NSP antibody tests was used in Taiwan's serosurveillance program implemented simultaneously with the compulsory FMD vaccination program. The result was the eradication of FMD: Taiwan was recognized by the World Organization for Animal Health as an FMD-free country without vaccination in 2020. Evaluation of the compulsory vaccination program incorporated in the FMD control program in Taiwan revealed that the vaccine quality was satisfactory and the vaccination program was effective during the period of compulsory vaccination (2010-2017). Sound immunological coverage was achieved, with 89.1% of pigs having VN antibody titers exceeding 1:16 in 2016. This level of immunological coverage would be expected to substantially reduce or prevent FMD transmission, which was borne out by the results of the NSP tests. We identified farms having positive NSP reactors (very low annual prevalence) before the cessation of FMD vaccination in July 2018; however, detailed serological and clinical investigations of pigs of all ages in suspect herds demonstrated that no farms were harboring infected animals after the second half of 2013. Thus, the results revealed no evidence of FMD circulation in the field, and Taiwan regained FMD-free status.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Vírus da Febre Aftosa , Febre Aftosa , Doenças dos Suínos , Proteínas não Estruturais Virais , Animais , Febre Aftosa/epidemiologia , Febre Aftosa/prevenção & controle , Taiwan/epidemiologia , Suínos , Doenças dos Suínos/epidemiologia , Doenças dos Suínos/prevenção & controle , Doenças dos Suínos/virologia , Proteínas não Estruturais Virais/imunologia , Estudos Soroepidemiológicos , Anticorpos Antivirais/sangue , Anticorpos Neutralizantes/sangue , Vírus da Febre Aftosa/imunologia , Vacinas Virais/imunologia , Vacinas Virais/administração & dosagem , Vacinação/veterinária
11.
Vaccine ; 42(15): 3514-3521, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38670845

RESUMO

Group A rotavirus (RVA) is the primary etiological agent of acute gastroenteritis (AGE) in children under 5 years of age. Despite the global implementation of vaccines, rotavirus infections continue to cause over 120,000 deaths annually, with a majority occurring in developing nations. Among infants, the P[8] rotavirus strain is the most prevalent and can be categorized into four distinct lineages. In this investigation, we expressed five VP4(aa26-476) proteins from different P[8] lineages of human rotavirus in E. coli and assessed their immunogenicity in rabbits. Among the different P[8] strains, the Wa-VP4 protein, derived from the MT025868.1 strain of the P[8]-1 lineage, exhibited successful purification in a highly homogeneous form and significantly elicited higher levels of neutralizing antibodies (nAbs) against both homologous and heterologous rotaviruses compared to other VP4 proteins derived from different P[8] lineages in rabbits. Furthermore, we assessed the immunogenicity of the Wa-VP4 protein in mice, pigs, and cynomolgus monkeys, observing that it induced robust production of nAbs in all animals. Interestingly, there was no significant difference between in nAb titers against homologous and heterologous rotaviruses in pigs and mankeys. Collectively, these findings suggest that the Wa-VP4* protein may serve as a potential candidate for a rotavirus vaccine.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Proteínas do Capsídeo , Macaca fascicularis , Infecções por Rotavirus , Vacinas contra Rotavirus , Rotavirus , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/sangue , Vacinas contra Rotavirus/imunologia , Vacinas contra Rotavirus/administração & dosagem , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/sangue , Suínos , Coelhos , Camundongos , Rotavirus/imunologia , Rotavirus/genética , Proteínas do Capsídeo/imunologia , Proteínas do Capsídeo/genética , Infecções por Rotavirus/prevenção & controle , Infecções por Rotavirus/imunologia , Feminino , Camundongos Endogâmicos BALB C , Humanos , Imunogenicidade da Vacina , Proteínas não Estruturais Virais/imunologia , Proteínas não Estruturais Virais/genética
12.
J Virol ; 98(5): e0009324, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38591899

RESUMO

Feline parvovirus (FPV) infection is highly fatal in felines. NS1, which is a key nonstructural protein of FPV, can inhibit host innate immunity and promote viral replication, which is the main reason for the severe pathogenicity of FPV. However, the mechanism by which the NS1 protein disrupts host immunity and regulates viral replication is still unclear. Here, we identified an FPV M1 strain that is regulated by the NS1 protein and has more pronounced suppression of innate immunity, resulting in robust replication. We found that the neutralization titer of the FPV M1 strain was significantly lower than that of the other strains. Moreover, FPV M1 had powerful replication ability, and the FPV M1-NS1 protein had heightened efficacy in repressing interferon-stimulated genes (ISGs) expression. Subsequently, we constructed an FPV reverse genetic system, which confirmed that the N588 residue of FPV M1-NS1 protein is a key amino acid that bolsters viral proliferation. Recombinant virus containing N588 also had stronger ability to inhibit ISGs, and lower ISGs levels promoted viral replication and reduced the neutralization titer of the positive control serum. Finally, we confirmed that the difference in viral replication was abolished in type I IFN receptor knockout cell lines. In conclusion, our results demonstrate that the N588 residue of the NS1 protein is a critical amino acid that promotes viral proliferation by increasing the inhibition of ISGs expression. These insights provide a reference for studying the relationship between parvovirus-mediated inhibition of host innate immunity and viral replication while facilitating improved FPV vaccine production.IMPORTANCEFPV infection is a viral infectious disease with the highest mortality rate in felines. A universal feature of parvovirus is its ability to inhibit host innate immunity, and its ability to suppress innate immunity is mainly accomplished by the NS1 protein. In the present study, FPV was used as a viral model to explore the mechanism by which the NS1 protein inhibits innate immunity and regulates viral replication. Studies have shown that the FPV-NS1 protein containing the N588 residue strongly inhibits the expression of host ISGs, thereby increasing the viral proliferation titer. In addition, the presence of the N588 residue can increase the proliferation titer of the strain 5- to 10-fold without affecting its virulence and immunogenicity. In conclusion, our findings provide new insights and guidance for studying the mechanisms by which parvoviruses suppress innate immunity and for developing high-yielding FPV vaccines.


Assuntos
Vírus da Panleucopenia Felina , Proteínas não Estruturais Virais , Replicação Viral , Animais , Gatos , Linhagem Celular , Vírus da Panleucopenia Felina/genética , Vírus da Panleucopenia Felina/imunologia , Imunidade Inata , Mutação , Infecções por Parvoviridae/virologia , Infecções por Parvoviridae/imunologia , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Proteínas não Estruturais Virais/imunologia
13.
Front Immunol ; 15: 1294898, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38660301

RESUMO

Human adenovirus type 7 (HAdV-7) is a significant viral pathogen that causes respiratory infections in children. Currently, there are no specific antiviral drugs or vaccines for children targeting HAdV-7, and the mechanisms of its pathogenesis remain unclear. The NLRP3 inflammasome-driven inflammatory cascade plays a crucial role in the host's antiviral immunity. Our previous study demonstrated that HAdV-7 infection activates the NLRP3 inflammasome. Building upon this finding, our current study has identified the L4 100 kDa protein encoded by HAdV-7 as the primary viral component responsible for NLRP3 inflammasome activation. By utilizing techniques such as co-immunoprecipitation, we have confirmed that the 100 kDa protein interacts with the NLRP3 protein and facilitates the assembly of the NLRP3 inflammasome by binding specifically to the NACHT and LRR domains of NLRP3. These insights offer a deeper understanding of HAdV-7 pathogenesis and contribute to the development of novel antiviral therapies.


Assuntos
Infecções por Adenovirus Humanos , Adenovírus Humanos , Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Proteínas não Estruturais Virais , Humanos , Infecções por Adenovirus Humanos/imunologia , Infecções por Adenovirus Humanos/metabolismo , Infecções por Adenovirus Humanos/virologia , Adenovírus Humanos/imunologia , Adenovírus Humanos/fisiologia , Células HEK293 , Inflamassomos/metabolismo , Inflamassomos/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Ligação Proteica , Proteínas Virais/metabolismo , Proteínas Virais/imunologia , Proteínas não Estruturais Virais/imunologia , Proteínas não Estruturais Virais/metabolismo
14.
PLoS Pathog ; 20(4): e1012167, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38662771

RESUMO

Dengue virus (DENV) is a medically important flavivirus causing an estimated 50-100 million dengue cases annually, some of whom progress to severe disease. DENV non-structural protein 1 (NS1) is secreted from infected cells and has been implicated as a major driver of dengue pathogenesis by inducing endothelial barrier dysfunction. However, less is known about how DENV NS1 interacts with immune cells and what role these interactions play. Here we report that DENV NS1 can trigger activation of inflammasomes, a family of cytosolic innate immune sensors that respond to infectious and noxious stimuli, in mouse and human macrophages. DENV NS1 induces the release of IL-1ß in a caspase-1 dependent manner. Additionally, we find that DENV NS1-induced inflammasome activation is independent of the NLRP3, Pyrin, and AIM2 inflammasome pathways, but requires CD14. Intriguingly, DENV NS1-induced inflammasome activation does not induce pyroptosis and rapid cell death; instead, macrophages maintain cellular viability while releasing IL-1ß. Lastly, we show that caspase-1/11-deficient, but not NLRP3-deficient, mice are more susceptible to lethal DENV infection. Together, these results indicate that the inflammasome pathway acts as a sensor of DENV NS1 and plays a protective role during infection.


Assuntos
Vírus da Dengue , Dengue , Inflamassomos , Macrófagos , Proteínas não Estruturais Virais , Proteínas não Estruturais Virais/metabolismo , Proteínas não Estruturais Virais/imunologia , Animais , Inflamassomos/metabolismo , Inflamassomos/imunologia , Dengue/imunologia , Dengue/virologia , Dengue/metabolismo , Camundongos , Vírus da Dengue/imunologia , Humanos , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/virologia , Interleucina-1beta/metabolismo , Interleucina-1beta/imunologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Caspase 1/metabolismo
15.
Diagn Microbiol Infect Dis ; 109(2): 116227, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38503028

RESUMO

The objective of this systematic review is to analyze the diagnostic accuracy of rapid dengue diagnostic tests. The search was conducted in the following databases: LILACS, Medline (Pubmed), CRD, The Cochrane Library, Trip Medical Database and Google Scholar. ELISA and PCR assays were adopted as reference methods. Thirty-four articles were included in this systematic review. Receiver operating characteristic (ROC) and Forest Plot were performed to evaluate sensitivity and specificity for each parameter analyzed (NS1, IgM and IgG). The results revealed that the combined analysis of the IgM antibody with the NS1 antigen resulted in greater sensitivity than the isolated analysis of IgM. The three analytes together showed the best performance, with a combined sensitivity of 90 % (95 % CI: 89-92 %) using ELISA as a comparator. Thus, the present review provides relevant knowledge for decision-making between the available rapid diagnostic tests.


Assuntos
Anticorpos Antivirais , Dengue , Imunoglobulina M , Sensibilidade e Especificidade , Humanos , Anticorpos Antivirais/sangue , Cromatografia de Afinidade/métodos , Dengue/diagnóstico , Vírus da Dengue/imunologia , Testes Diagnósticos de Rotina/métodos , Testes Diagnósticos de Rotina/normas , Ensaio de Imunoadsorção Enzimática/métodos , Imunoglobulina G/sangue , Imunoglobulina M/sangue , Curva ROC , Proteínas não Estruturais Virais/imunologia , Proteínas não Estruturais Virais/sangue
16.
Virol Sin ; 39(2): 264-276, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38272236

RESUMO

Porcine reproductive and respiratory syndrome virus (PRRSV) is a major economically devastating pathogen that has evolved various strategies to evade innate immunity. Downregulation of antiviral interferon largely promotes PRRSV immunoevasion by utilizing cytoplasmic melanoma differentiation-associated gene 5 (MDA5), a receptor that senses viral RNA. In this study, the downregulated transcription and expression levels of porcine MDA5 in PRRSV infection were observed, and the detailed mechanisms were explored. We found that the interaction between P62 and MDA5 is enhanced due to two factors: the phosphorylation modification of the autophagic receptor P62 by the upregulated kinase CK2α and the K63 ubiquitination of porcine MDA5 catalyzed by the E3 ubiquitinase TRIM21 in PRRSV-infected cells. As a result of these modifications, the classic P62-mediated autophagy is triggered. Additionally, porcine MDA5 interacts with the chaperonin containing TCP1 subunit 2 (CCT2), which is enhanced by PRRSV nsp3. This interaction promotes the aggregate formation and autophagic clearance of MDA5-CCT2-nsp3 independently of ubiquitination. In summary, enhanced MDA5 degradation occurs in PRRSV infection via two autophagic pathways: the binding of MDA5 with the autophagy receptor P62 and the aggrephagy receptor CCT2, leading to intense innate immune suppression. The research reveals a novel mechanism of immune evasion in PRRSV infection and provides fundamental insights for the development of new vaccines or therapeutic strategies.


Assuntos
Autofagia , Imunidade Inata , Helicase IFIH1 Induzida por Interferon , Vírus da Síndrome Respiratória e Reprodutiva Suína , Animais , Linhagem Celular , Interações Hospedeiro-Patógeno/imunologia , Evasão da Resposta Imune , Helicase IFIH1 Induzida por Interferon/metabolismo , Helicase IFIH1 Induzida por Interferon/genética , Fosforilação , Síndrome Respiratória e Reprodutiva Suína/imunologia , Síndrome Respiratória e Reprodutiva Suína/virologia , Síndrome Respiratória e Reprodutiva Suína/metabolismo , Vírus da Síndrome Respiratória e Reprodutiva Suína/imunologia , Suínos , Ubiquitinação , Proteínas não Estruturais Virais/metabolismo , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/imunologia , Humanos
17.
Viruses ; 14(11)2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36366430

RESUMO

Zika virus (ZIKV)-specific T cells are activated by different peptides derived from virus structural and nonstructural proteins, and contributed to the viral clearance or protective immunity. Herein, we have depicted the profile of CD8+ and CD4+ T cell immunogenicity of ZIKV proteins in C57BL/6 (H-2b) and BALB/c (H-2d) mice, and found that featured cellular immunity antigens were variant among different murine alleles. In H-2b mice, the proteins E, NS2, NS3 and NS5 are recognized as immunodominant antigens by CD8+ T cells, while NS4 is dominantly recognized by CD4+ T cells. In contrast, in H-2d mice, NS1 and NS4 are the dominant CD8+ T cell antigen and NS4 as the dominant CD4+ T cell antigen, respectively. Among the synthesized 364 overlapping polypeptides spanning the whole proteome of ZIKV, we mapped 91 and 39 polypeptides which can induce ZIKV-specific T cell responses in H-2b and H-2d mice, respectively. Through the identification of CD8+ T cell epitopes, we found that immunodominant regions E294-302 and NS42351-2360 are hotspots epitopes with a distinct immunodominance hierarchy present in H-2b and H-2d mice, respectively. Our data characterized an overall landscape of the immunogenic spectrum of the ZIKV polyprotein, and provide useful insight into the vaccine development.


Assuntos
Vacinas , Infecção por Zika virus , Zika virus , Animais , Camundongos , Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , Epitopos de Linfócito T , Epitopos Imunodominantes , Camundongos Endogâmicos C57BL , Infecção por Zika virus/prevenção & controle , Proteínas não Estruturais Virais/imunologia , Proteínas do Envelope Viral/imunologia
18.
J Virol ; 96(18): e0081822, 2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-36098513

RESUMO

Tick-borne encephalitis virus (TBEV) is an important human arthropod-borne virus that causes tick-borne encephalitis (TBE) in humans. TBEV acutely infects the central nervous system (CNS), leading to neurological symptoms of various severity. No therapeutics are currently available for TBEV-associated disease. Virus strains of various pathogenicity have been described, although the basis of their diverse clinical outcome remains undefined. Work with infectious TBEV requires high-level biocontainment, meaning model systems that can recapitulate the virus life cycle are highly sought. Here, we report the generation of a self-replicating, noninfectious TBEV replicon used to study properties of high (Hypr) and low (Vs) pathogenic TBEV isolates. Using a Spinach2 RNA aptamer and luciferase reporter system, we perform the first direct comparison of Hypr and Vs in cell culture. Infectious wild-type (WT) viruses and chimeras of the nonstructural proteins 3 (NS3) and 5 (NS5) were investigated in parallel to validate the replicon data. We show that Hypr replicates to higher levels than Vs in mammalian cells, but not in arthropod cells, and that the basis of these differences map to the NS5 region, encoding the methyltransferase and RNA polymerase. For both Hypr and Vs strains, NS5 and the viral genome localized to intracellular structures typical of positive-strand RNA viruses. Hypr was associated with significant activation of IRF-3, caspase-3, and caspase-8, while Vs activated Akt, affording protection against caspase-mediated apoptosis. Higher activation of stress-granule proteins TIAR and G3BPI were an additional early feature of Vs but not for Hypr. These findings highlight novel host cell responses driven by NS5 that may dictate the differential clinical characteristics of TBEV strains. This highlights the utility of the TBEV replicons for further virological characterization and antiviral drug screening. IMPORTANCE Tick-borne encephalitis virus (TBEV) is an emerging virus of the flavivirus family that is spread by ticks and causes neurological disease of various severity. No specific therapeutic treatments are available for TBE, and control in areas of endemicity is limited to vaccination. The pathology of TBEV ranges from mild to fatal, depending on the virus genotype. Characterization of TBEV isolates is challenging due to the requirement for high-containment facilities. Here, we described the construction of novel TBEV replicons that permit a molecular comparison of TBEV isolates of high and low pathogenicity.


Assuntos
Vírus da Encefalite Transmitidos por Carrapatos , Encefalite Transmitida por Carrapatos , Interações entre Hospedeiro e Microrganismos , Animais , Caspase 3/metabolismo , Caspase 8/metabolismo , Vírus da Encefalite Transmitidos por Carrapatos/imunologia , Encefalite Transmitida por Carrapatos/imunologia , Ativação Enzimática , Fator Regulador 3 de Interferon/genética , Metiltransferases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas não Estruturais Virais/imunologia
19.
Vopr Virusol ; 67(3): 237-245, 2022 07 14.
Artigo em Russo | MEDLINE | ID: mdl-35831966

RESUMO

INTRODUCTION: Chronic viral hepatitis C (CHC) is a ubiquitous infectious disease, a significant limitation of which WHO attributes to the use of a new highly effective antiviral therapy. Previously, two B-cell epitopes were identified in NS4a antigen of the hepatitis C virus (HCV). It was shown that certain titers of antibodies (ABs) to the extended C-terminal epitope (1687-1718 a.a.) can predict a high probability of achieving a sustained virological response (SVR) to standard therapy with pegylated interferon-α and ribavirin.The aim of the work was to determine immunoreactivity of two B-cell epitopes (middle and C-terminal) of NS4a antigen, and to estimate a possible association of ABs to them with the achievement of SVR after standard interferon therapy and treatment with direct antiviral drugs (DAAs) daclatasvir and sofosbuvir (velpanat). MATERIALS AND METHODS: Blood serum samples of patients with CHC (n = 113), of which 55 participants received standard interferon therapy, 50 received velpanate treatment, the remaining 8 received no therapy were examined. The middle B-cell epitope (positions 24-34 a.a.) of NS4a was synthesized by the solid-phase method, while the C-terminal epitope (34-54 a.a.) was obtained using genetically engineered techniques. Enzyme immunoassay (ELISA) testing of the sera collected before treatment was performed for the two selected epitopes according to the conventional methods. RESULTS: The antibodies to the C-terminal epitope were detected significantly more frequently than those to the middle one (p = 0.01) when analyzing the blood sera of patients (n = 113). The presence of ABs to the C-terminal epitope in the serum samples of participants who completed standard interferon therapy was associated with the achievement of SVR (p = 0.0245). In the blood sera of participants who completed therapy with velpanate, an association of the presence of ABs to the C-terminal epitope with the achievement of SVR was also established (p < 0.0001). The presence of ABs to the middle B epitope was not associated with the achievement of SVR, regardless of the therapy used. DISCUSSION: The observed difference in the immunoreactivity of the two B-cell determinants may be associated with the localization of the nearest Th-epitopes, the sensitivity of NS4a antigen to proteolytic enzymes, and the peculiarities of epitope presentation by antigen-presenting cells. However, it should be noted that the immunoreactivity of the middle B-epitope is poorly studied. Although the association of ABs to the C-terminal epitope with the achievement of SVR has been shown by several scientific teams, the detailed molecular mechanism of their influence on the effectiveness of therapy is unclear. CONCLUSION: In CHC, ABs to the C-terminal epitope of NS4a are produced more frequently than those to the median epitope. The presence of ABs to the C-terminal epitope is a predictive marker of a high probability of achieving SVR, regardless of the type of therapy and antibody titer.


Assuntos
Flaviviridae , Hepatite C Crônica , Hepatite C , Proteínas não Estruturais Virais/imunologia , Antivirais/farmacologia , Antivirais/uso terapêutico , Quimioterapia Combinada , Epitopos de Linfócito B , Hepacivirus/fisiologia , Hepatite C Crônica/tratamento farmacológico , Humanos , Interferon-alfa , Polietilenoglicóis/farmacologia , Polietilenoglicóis/uso terapêutico , Proteínas Recombinantes , Ribavirina/farmacologia , Ribavirina/uso terapêutico , Resultado do Tratamento
20.
Cell Rep ; 38(10): 110503, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35235832

RESUMO

Natural killer (NK) cells are innate immune cells that contribute to host defense against virus infections. NK cells respond to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in vitro and are activated in patients with acute coronavirus disease 2019 (COVID-19). However, by which mechanisms NK cells detect SARS-CoV-2-infected cells remains largely unknown. Here, we show that the Non-structural protein 13 of SARS-CoV-2 encodes for a peptide that is presented by human leukocyte antigen E (HLA-E). In contrast with self-peptides, the viral peptide prevents binding of HLA-E to the inhibitory receptor NKG2A, thereby rendering target cells susceptible to NK cell attack. In line with these observations, NKG2A-expressing NK cells are particularly activated in patients with COVID-19 and proficiently limit SARS-CoV-2 replication in infected lung epithelial cells in vitro. Thus, these data suggest that a viral peptide presented by HLA-E abrogates inhibition of NKG2A+ NK cells, resulting in missing self-recognition.


Assuntos
COVID-19 , Antígenos de Histocompatibilidade Classe I , Células Matadoras Naturais , Metiltransferases , Subfamília C de Receptores Semelhantes a Lectina de Células NK , RNA Helicases , SARS-CoV-2 , Proteínas não Estruturais Virais , COVID-19/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Células Matadoras Naturais/imunologia , Metiltransferases/imunologia , Subfamília C de Receptores Semelhantes a Lectina de Células NK/imunologia , Subfamília C de Receptores Semelhantes a Lectina de Células NK/metabolismo , Peptídeos/metabolismo , RNA Helicases/imunologia , Proteínas não Estruturais Virais/imunologia , Antígenos HLA-E
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...