Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 922
Filtrar
1.
FASEB J ; 38(11): e23716, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38847490

RESUMO

Tumor hypoxia has been associated with cancer progression, angiogenesis, and metastasis via modifications in the release and cargo composition of extracellular vesicles secreted by tumor cells. Indeed, hypoxic extracellular vesicles are known to trigger a variety of angiogenic responses via different mechanisms. We recently showed that hypoxia promotes endosomal signaling in tumor cells via HIF-1α-dependent induction of the guanine exchange factor ALS2, which activates Rab5, leading to downstream events involved in cell migration and invasion. Since Rab5-dependent signaling is required for endothelial cell migration and angiogenesis, we explored the possibility that hypoxia promotes the release of small extracellular vesicles containing ALS2, which in turn activate Rab5 in recipient endothelial cells leading to pro-angiogenic properties. In doing so, we found that hypoxia promoted ALS2 expression and incorporation as cargo within small extracellular vesicles, leading to subsequent transfer to recipient endothelial cells and promoting cell migration, tube formation, and downstream Rab5 activation. Consequently, ALS2-containing small extracellular vesicles increased early endosome size and number in recipient endothelial cells, which was followed by subsequent sequestration of components of the ß-catenin destruction complex within endosomal compartments, leading to stabilization and nuclear localization of ß-catenin. These events converged in the expression of ß-catenin target genes involved in angiogenesis. Knockdown of ALS2 in donor tumor cells precluded its incorporation into small extracellular vesicles, preventing Rab5-downstream events and endothelial cell responses, which depended on Rab5 activity and guanine exchange factor activity of ALS2. These findings indicate that vesicular ALS2, secreted in hypoxia, promotes endothelial cell events leading to angiogenesis. Finally, these events might explain how tumor angiogenesis proceeds in hypoxic conditions.


Assuntos
Movimento Celular , Vesículas Extracelulares , Fatores de Troca do Nucleotídeo Guanina , Transdução de Sinais , beta Catenina , Proteínas rab5 de Ligação ao GTP , Humanos , Proteínas rab5 de Ligação ao GTP/metabolismo , Proteínas rab5 de Ligação ao GTP/genética , beta Catenina/metabolismo , Vesículas Extracelulares/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Linhagem Celular Tumoral
2.
CNS Neurosci Ther ; 30(5): e14743, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38780008

RESUMO

AIMS: Nerve growth factor (NGF) loss is a potential factor for the degeneration of basal forebrain cholinergic neurons (BFCNs) in Alzheimer's disease (AD), and Rab5a is a key regulatory molecule of NGF signaling transduction. Here, we investigated the changes of Rab5a in 5 × FAD mice and further explored the mechanism of Electroacupuncture (EA) treatment in improving cognition in the early stage of AD. METHODS: The total Rab5a and Rab5a-GTP in 5-month-old 5 × FAD mice and wild-type mice were detected using WB and IP technologies. 5 × FAD mice were treated with EA at the Bai hui (DU20) and Shen ting (DU24) acupoints for 4 weeks and CRE/LOXP technology was used to confirm the role of Rab5a in AD mediated by EA stimulation. The Novel Object Recognition and Morris water maze tests were used to evaluate the cognitive function of 5 × FAD mice. The Nissl, immunohistochemistry, and Thioflavin S staining were used to observe pathological morphological changes in the basal forebrain circuit. The Golgi staining was used to investigate the synaptic plasticity of the basal forebrain circuit and WB technology was used to detect the expression levels of cholinergic-related and NGF signal-related proteins. RESULTS: The total Rab5a was unaltered, but Rab5a-GTP increased and the rab5a-positive early endosomes appeared enlarged in the hippocampus of 5 × FAD mice. Notably, EA reduced Rab5a-GTP in the hippocampus in the early stage of 5 × FAD mice. EA could improve object recognition memory and spatial learning memory by reducing Rab5a activity in the early stage of 5 × FAD mice. Moreover, EA could reduce Rab5a activity to increase NGF transduction and increase the levels of phosphorylated TrkA, AKT, and ERK in the basal forebrain and hippocampus, and increase the expression of cholinergic-related proteins, such as ChAT, vAchT, ChT1, m1AchR, and m2AchR in the basal forebrain and ChAT, m1AchR, and m2AchR in the hippocampus, improving synaptic plasticity in the basal forebrain hippocampal circuit in the early stage of 5 × FAD mice. CONCLUSIONS: Rab5a hyperactivation is an early pathological manifestation of 5 × FAD mice. EA could suppress Rab5a-GTP to promote the transduction of NGF signaling, and enhance the synaptic plasticity of the basal forebrain hippocampal circuit improving cognitive impairment in the early stage of 5 × FAD mice.


Assuntos
Doença de Alzheimer , Eletroacupuntura , Camundongos Transgênicos , Fator de Crescimento Neural , Proteínas rab5 de Ligação ao GTP , Animais , Proteínas rab5 de Ligação ao GTP/metabolismo , Fator de Crescimento Neural/metabolismo , Camundongos , Eletroacupuntura/métodos , Doença de Alzheimer/terapia , Doença de Alzheimer/metabolismo , Transdução de Sinais/fisiologia , Masculino , Memória/fisiologia , Aprendizagem/fisiologia , Aprendizagem em Labirinto/fisiologia , Camundongos Endogâmicos C57BL , Plasticidade Neuronal/fisiologia
3.
PLoS Biol ; 22(5): e3002639, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38820535

RESUMO

Vesicular trafficking, including secretion and endocytosis, plays fundamental roles in the unique biology of Plasmodium falciparum blood-stage parasites. Endocytosis of host cell cytosol (HCC) provides nutrients and room for parasite growth and is critical for the action of antimalarial drugs and parasite drug resistance. Previous work showed that PfVPS45 functions in endosomal transport of HCC to the parasite's food vacuole, raising the possibility that malaria parasites possess a canonical endolysosomal system. However, the seeming absence of VPS45-typical functional interactors such as rabenosyn 5 (Rbsn5) and the repurposing of Rab5 isoforms and other endolysosomal proteins for secretion in apicomplexans question this idea. Here, we identified a parasite Rbsn5-like protein and show that it functions with VPS45 in the endosomal transport of HCC. We also show that PfRab5b but not PfRab5a is involved in the same process. Inactivation of PfRbsn5L resulted in PI3P and PfRab5b decorated HCC-filled vesicles, typical for endosomal compartments. Overall, this indicates that despite the low sequence conservation of PfRbsn5L and the unusual N-terminal modification of PfRab5b, principles of endosomal transport in malaria parasite are similar to that of model organisms. Using a conditional double protein inactivation system, we further provide evidence that the PfKelch13 compartment, an unusual apicomplexa-specific endocytosis structure at the parasite plasma membrane, is connected upstream of the Rbsn5L/VPS45/Rab5b-dependent endosomal route. Altogether, this work indicates that HCC uptake consists of a highly parasite-specific part that feeds endocytosed material into an endosomal system containing more canonical elements, leading to the delivery of HCC to the food vacuole.


Assuntos
Citosol , Endossomos , Plasmodium falciparum , Proteínas de Protozoários , Proteínas rab5 de Ligação ao GTP , Proteínas rab5 de Ligação ao GTP/metabolismo , Endossomos/metabolismo , Citosol/metabolismo , Plasmodium falciparum/metabolismo , Plasmodium falciparum/genética , Humanos , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/genética , Endocitose , Malária Falciparum/parasitologia , Malária Falciparum/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Transporte Vesicular/genética , Animais , Interações Hospedeiro-Parasita , Vacúolos/metabolismo , Eritrócitos/parasitologia , Eritrócitos/metabolismo , Transporte Proteico
4.
Hepatol Commun ; 8(6)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38780316

RESUMO

BACKGROUND: Previous reports suggest that lipid droplets (LDs) in the hepatocyte can be catabolized by a direct engulfment from nearby endolysosomes (microlipophagy). Further, it is likely that this process is compromised by chronic ethanol (EtOH) exposure leading to hepatic steatosis. This study investigates the hepatocellular machinery supporting microlipophagy and EtOH-induced alterations in this process with a focus on the small, endosome-associated, GTPase Rab5. METHODS AND RESULTS: Here we report that this small Ras-related GTPase is a resident component of LDs, and its activity is important for hepatocellular LD-lysosome proximity and physical interactions. We find that Rab5 siRNA knockdown causes an accumulation of LDs in hepatocytes by inhibiting lysosome dependent LD catabolism. Importantly, Rab5 appears to support this process by mediating the recruitment of early endosomal and or multivesicular body compartments to the LD surface before lysosome fusion. Interestingly, while wild-type or a constituently active GTPase form (Q79L) of Rab5 supports LD-lysosome transport, this process is markedly reduced in cells expressing a GTPase dead (S34N) Rab5 protein or in hepatocytes exposed to chronic EtOH. CONCLUSIONS: These findings support the novel premise of an early endosomal/multivesicular body intermediate compartment on the LD surface that provides a "docking" site for lysosomal trafficking, not unlike the process that occurs during the hepatocellular degradation of endocytosed ligands that is also known to be compromised by EtOH exposure.


Assuntos
Etanol , Hepatócitos , Lisossomos , Proteínas rab5 de Ligação ao GTP , Proteínas rab5 de Ligação ao GTP/metabolismo , Proteínas rab5 de Ligação ao GTP/genética , Lisossomos/metabolismo , Lisossomos/efeitos dos fármacos , Etanol/farmacologia , Hepatócitos/metabolismo , Hepatócitos/efeitos dos fármacos , Humanos , Gotículas Lipídicas/metabolismo , Autofagia/efeitos dos fármacos , Animais , Endossomos/metabolismo
5.
J Biol Chem ; 300(3): 105750, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38360271

RESUMO

Extracellular vesicles-mediated exchange of miRNA cargos between diverse types of mammalian cells is a major mechanism of controlling cellular miRNA levels and activity, thus regulating the expression of miRNA-target genes in both donor and recipient cells. Despite tremendous excitement related to extracellular vesicles-associated miRNAs as biomarkers or having therapeutic potential, the mechanism of selective packaging of miRNAs into endosomes and multivesicular bodies for subsequent extracellular export is poorly studied due to the lack of an in vitro assay system. Here, we have developed an in vitro assay with endosomes isolated from mammalian macrophage cells to follow miRNA packaging into endocytic organelles. The synthetic miRNAs, used in the assay, get imported inside the isolated endosomes during the in vitro reaction and become protected from RNase in a time- and concentration-dependent manner. The selective miRNA accumulation inside endosomes requires both ATP and GTP hydrolysis and the miRNA-binding protein HuR. The HuR-miRNA complex binds and stimulates the endosomal RalA GTPase to facilitate the import of miRNAs into endosomes and their subsequent export as part of the extracellular vesicles. The endosomal targeting of miRNAs is also very much dependent on the endosome maturation process that is controlled by Rab5 protein and ATP. In summary, we provide an in vitro method to aid in the investigation of the mechanism of miRNA packaging process for its export from mammalian macrophage cells.


Assuntos
Proteína Semelhante a ELAV 1 , Endossomos , Macrófagos , MicroRNAs , Proteínas ral de Ligação ao GTP , Trifosfato de Adenosina/metabolismo , Endossomos/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas rab5 de Ligação ao GTP/genética , Proteínas rab5 de Ligação ao GTP/metabolismo , Humanos , Proteínas ral de Ligação ao GTP/metabolismo , Proteína Semelhante a ELAV 1/metabolismo , Macrófagos/metabolismo , Células HEK293
6.
J Biol Chem ; 299(11): 105311, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37797694

RESUMO

While the role of endocytosis in focal adhesion turnover-coupled cell migration has been established in addition to its conventional role in cellular functions, the molecular regulators and precise molecular mechanisms that underlie this process remain largely unknown. In this study, we report that proto-oncoprotein hematopoietic PBX-interacting protein (HPIP) localizes to focal adhesions as well as endosomal compartments along with RUN FYVE domain-containing protein 3 (RUFY3) and Rab5, an early endosomal protein. HPIP contains two coiled-coil domains (CC1 and CC2) that are necessary for its association with Rab5 and RUFY3 as CC domain double mutant, that is, mtHPIPΔCC1-2 failed to support it. Furthermore, we show that HPIP and RUFY3 activate Rab5 by serving as noncanonical guanine nucleotide exchange factors of Rab5. In support of this, either deletion of coiled-coil domains or silencing of HPIP or RUFY3 impairs Rab5 activation and Rab5-dependent cell migration. Mechanistic studies further revealed that loss of HPIP or RUFY3 expression severely impairs Rab5-mediated focal adhesion disassembly, FAK activation, fibronectin-associated-ß1 integrin trafficking, and thus cell migration. Together, this study underscores the importance of HPIP and RUFY3 as noncanonical guanine nucleotide exchange factors of Rab5 and in integrin trafficking and focal adhesion turnover, which implicates in cell migration.


Assuntos
Adesões Focais , Fatores de Troca do Nucleotídeo Guanina , Movimento Celular , Endocitose , Adesões Focais/genética , Adesões Focais/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteínas rab5 de Ligação ao GTP/genética , Proteínas rab5 de Ligação ao GTP/metabolismo , Humanos , Linhagem Celular , Linhagem Celular Tumoral
7.
J Virol ; 97(10): e0071423, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37735152

RESUMO

IMPORTANCE: Although Micropterus salmoides rhabdovirus (MSRV) causes serious fish epidemics worldwide, the detailed mechanism of MSRV entry into host cells remains unknown. Here, we comprehensively investigated the mechanism of MSRV entry into epithelioma papulosum cyprinid (EPC) cells. This study demonstrated that MSRV enters EPC cells via a low pH, dynamin-dependent, microtubule-dependent, and clathrin-mediated endocytosis. Subsequently, MSRV transports from early endosomes to late endosomes and further into lysosomes in a microtubule-dependent manner. The characterization of MSRV entry will further advance the understanding of rhabdovirus cellular entry pathways and provide novel targets for antiviral drug against MSRV infection.


Assuntos
Bass , Rhabdoviridae , Animais , Rhabdoviridae/metabolismo , Bass/metabolismo , Proteínas rab5 de Ligação ao GTP/metabolismo , Endocitose , Dinaminas/metabolismo , Microtúbulos/metabolismo , Clatrina/metabolismo , Concentração de Íons de Hidrogênio , Internalização do Vírus
8.
Hum Mol Genet ; 32(21): 3063-3077, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37552066

RESUMO

Rab GTPases are important regulators of intracellular vesicular trafficking. RAB5C is a member of the Rab GTPase family that plays an important role in the endocytic pathway, membrane protein recycling and signaling. Here we report on 12 individuals with nine different heterozygous de novo variants in RAB5C. All but one patient with missense variants (n = 9) exhibited macrocephaly, combined with mild-to-moderate developmental delay. Patients with loss of function variants (n = 2) had an apparently more severe clinical phenotype with refractory epilepsy and intellectual disability but a normal head circumference. Four missense variants were investigated experimentally. In vitro biochemical studies revealed that all four variants were damaging, resulting in increased nucleotide exchange rate, attenuated responsivity to guanine exchange factors and heterogeneous effects on interactions with effector proteins. Studies in C. elegans confirmed that all four variants were damaging in vivo and showed defects in endocytic pathway function. The variant heterozygotes displayed phenotypes that were not observed in null heterozygotes, with two shown to be through a dominant negative mechanism. Expression of the human RAB5C variants in zebrafish embryos resulted in defective development, further underscoring the damaging effects of the RAB5C variants. Our combined bioinformatic, in vitro and in vivo experimental studies and clinical data support the association of RAB5C missense variants with a neurodevelopmental disorder characterized by macrocephaly and mild-to-moderate developmental delay through disruption of the endocytic pathway.


Assuntos
Deficiência Intelectual , Megalencefalia , Transtornos do Neurodesenvolvimento , Animais , Humanos , Criança , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Caenorhabditis elegans/metabolismo , Transtornos do Neurodesenvolvimento/genética , Deficiência Intelectual/genética , Fenótipo , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo , Megalencefalia/genética , Deficiências do Desenvolvimento/genética , Mutação de Sentido Incorreto/genética , Proteínas rab5 de Ligação ao GTP/genética , Proteínas rab5 de Ligação ao GTP/metabolismo
9.
Eur J Cell Biol ; 102(3): 151339, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37423034

RESUMO

Despite their significance in receptor-mediated internalization and continued signal transduction in cells, early/sorting endosomes (EE/SE) remain incompletely characterized, with many outstanding questions that surround the dynamics of their size and number. While several studies have reported increases in EE/SE size and number resulting from endocytic events, few studies have addressed such dynamics in a methodological and quantitative manner. Herein we apply quantitative fluorescence microscopy to measure the size and number of EE/SE upon internalization of two different ligands: transferrin and epidermal growth factor. Additionally, we used siRNA knock-down to determine the involvement of 5 different endosomal RAB proteins (RAB4, RAB5, RAB8A, RAB10 and RAB11A) in EE/SE dynamics. Our study provides new information on the dynamics of endosomes during endocytosis, an important reference for researchers studying receptor-mediated internalization and endocytic events.


Assuntos
Proteínas rab4 de Ligação ao GTP , Proteínas rab5 de Ligação ao GTP , Endocitose/fisiologia , Endossomos/metabolismo , Transporte Proteico/fisiologia , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rab4 de Ligação ao GTP/genética , Proteínas rab4 de Ligação ao GTP/metabolismo , Proteínas rab5 de Ligação ao GTP/genética , Proteínas rab5 de Ligação ao GTP/metabolismo , Humanos , Linhagem Celular Tumoral
10.
Proc Natl Acad Sci U S A ; 120(30): e2303750120, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37463208

RESUMO

Maturation from early to late endosomes depends on the exchange of their marker proteins Rab5 to Rab7. This requires Rab7 activation by its specific guanine nucleotide exchange factor (GEF) Mon1-Ccz1. Efficient GEF activity of this complex on membranes depends on Rab5, thus driving Rab-GTPase exchange on endosomes. However, molecular details on the role of Rab5 in Mon1-Ccz1 activation are unclear. Here, we identify key features in Mon1 involved in GEF regulation. We show that the intrinsically disordered N-terminal domain of Mon1 autoinhibits Rab5-dependent GEF activity on membranes. Consequently, Mon1 truncations result in higher GEF activity in vitro and alterations in early endosomal structures in Drosophila nephrocytes. A shift from Rab5 to more Rab7-positive structures in yeast suggests faster endosomal maturation. Using modeling, we further identify a conserved Rab5-binding site in Mon1. Mutations impairing Rab5 interaction result in poor GEF activity on membranes and growth defects in vivo. Our analysis provides a framework to understand the mechanism of Ras-related in brain (Rab) conversion and organelle maturation along the endomembrane system.


Assuntos
Proteínas de Drosophila , Proteínas de Saccharomyces cerevisiae , Animais , Proteínas de Transporte Vesicular/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Transporte Proteico , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Endossomos/metabolismo , Saccharomyces cerevisiae/metabolismo , Drosophila/metabolismo , Proteínas rab5 de Ligação ao GTP/genética , Proteínas rab5 de Ligação ao GTP/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo
11.
Mol Cell ; 83(11): 1839-1855.e13, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37267905

RESUMO

Localized translation is vital to polarized cells and requires precise and robust distribution of different mRNAs and ribosomes across the cell. However, the underlying molecular mechanisms are poorly understood and important players are lacking. Here, we discovered a Rab5 effector, the five-subunit endosomal Rab5 and RNA/ribosome intermediary (FERRY) complex, that recruits mRNAs and ribosomes to early endosomes through direct mRNA-interaction. FERRY displays preferential binding to certain groups of transcripts, including mRNAs encoding mitochondrial proteins. Deletion of FERRY subunits reduces the endosomal localization of transcripts in cells and has a significant impact on mRNA levels. Clinical studies show that genetic disruption of FERRY causes severe brain damage. We found that, in neurons, FERRY co-localizes with mRNA on early endosomes, and mRNA loaded FERRY-positive endosomes are in close proximity of mitochondria. FERRY thus transforms endosomes into mRNA carriers and plays a key role in regulating mRNA distribution and transport.


Assuntos
Endossomos , Proteínas rab5 de Ligação ao GTP , Proteínas rab5 de Ligação ao GTP/genética , Proteínas rab5 de Ligação ao GTP/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Endossomos/metabolismo , Transporte Biológico , Endocitose/fisiologia
12.
Mol Cell ; 83(11): 1856-1871.e9, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37267906

RESUMO

The pentameric FERRY Rab5 effector complex is a molecular link between mRNA and early endosomes in mRNA intracellular distribution. Here, we determine the cryo-EM structure of human FERRY. It reveals a unique clamp-like architecture that bears no resemblance to any known structure of Rab effectors. A combination of functional and mutational studies reveals that while the Fy-2 C-terminal coiled-coil acts as binding region for Fy-1/3 and Rab5, both coiled-coils and Fy-5 concur to bind mRNA. Mutations causing truncations of Fy-2 in patients with neurological disorders impair Rab5 binding or FERRY complex assembly. Thus, Fy-2 serves as a binding hub connecting all five complex subunits and mediating the binding to mRNA and early endosomes via Rab5. Our study provides mechanistic insights into long-distance mRNA transport and demonstrates that the particular architecture of FERRY is closely linked to a previously undescribed mode of RNA binding, involving coiled-coil domains.


Assuntos
Proteínas de Transporte Vesicular , Proteínas rab5 de Ligação ao GTP , Humanos , Proteínas de Transporte Vesicular/metabolismo , Proteínas rab5 de Ligação ao GTP/genética , Proteínas rab5 de Ligação ao GTP/análise , Proteínas rab5 de Ligação ao GTP/metabolismo , Endossomos/genética , Endossomos/metabolismo
13.
Cell Mol Biol (Noisy-le-grand) ; 69(1): 44-47, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-37213158

RESUMO

The objective of this research was to analyze the miR-145 function in thyroid papillary carcinoma cells and explore its possible mechanism. For this purpose, the TPC-1 cell line was selected, miR-145 overexpression and rab5c shRNA lentiviral vector were constructed, and transfected into PTC cells. Luciferase reporter gene was performed to determine the relationship between miR-145 and rab5c, Western blot and qPCR were performed to detach the expression of the related genes, CCK-8 cell proliferation assay and Transwell cell invasion assay were used to determine the proliferation and invasion ability of PTC-1 cells. Results showed that MiR-145 overexpression inhibited the wt-rab5c (wild-type rab5c)luciferase activity, decreased the expression of rab5c mRNA and protein levels in the TPC-1 cell line, inhibited the proliferation and invasion of PTC cell line TPC-1(P < 0.05). In TPC-1 cells, both miR-145 overexpression and RNA interference with rab5c could increase the expression of the p-ERK protein (P < 0.05). In conclusion, MiR-145 inhibits the proliferation and invasion of PTC cells by downregulating rab5c and activating MAPK/ERK pathway in vitro.


Assuntos
Carcinoma Papilar , MicroRNAs , Neoplasias da Glândula Tireoide , Humanos , Sistema de Sinalização das MAP Quinases/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/patologia , Carcinoma Papilar/genética , Proliferação de Células/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Câncer Papilífero da Tireoide/genética , Câncer Papilífero da Tireoide/patologia , Transdução de Sinais , Regulação Neoplásica da Expressão Gênica , Proteínas rab5 de Ligação ao GTP/genética , Proteínas rab5 de Ligação ao GTP/metabolismo
14.
J Innate Immun ; 15(1): 468-484, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36882040

RESUMO

Complement activation and Rab GTPase trafficking are commonly observed in inflammatory responses. Recruitment of innate immune cells to sites of infection or injury and secretion of inflammatory chemokines are promoted by complement component 5a (C5a) that activates the cell surface protein C5a receptor1 (C5aR1). Persistent activation can lead to a myriad of inflammatory and autoimmune diseases. Here, we demonstrate that the mechanism of C5a induced chemotaxis of human monocyte-derived macrophages (HMDMs) and their secretion of inflammatory chemokines are controlled by Rab5a. We find that C5a activation of the G protein coupled receptor C5aR1 expressed on the surface of HMDMs, recruits ß-arrestin2 via Rab5a trafficking, then activates downstream phosphatidylinositol 3-kinase (PI3K)/Akt signaling that culminates in chemotaxis and secretion of pro-inflammatory chemokines from HMDMs. High-resolution lattice light-sheet microscopy on live cells showed that C5a activates C5aR1-GFP internalization and colocalization with Rab5a-tdTomato but not with dominant negative mutant Rab5a-S34N-tdTomato in HEK293 cells. We found that Rab5a is significantly upregulated in differentiated HMDMs and internalization of C5aR1 is dependent on Rab5a. Interestingly, while knockdown of Rab5a inhibited C5aR1-mediated Akt phosphorylation, it did not affect C5aR1-mediated ERK1/2 phosphorylation or intracellular calcium mobilization in HMDMs. Functional analysis using transwell migration and µ-slide chemotaxis assays indicated that Rab5a regulates C5a-induced chemotaxis of HMDMs. Further, C5aR1 was found to mediate interaction of Rab5a with ß-arrestin2 but not with G proteins in HMDMs. Furthermore, C5a-induced secretion of pro-inflammatory chemokines (CCL2, CCL3) from HMDMs was attenuated by Rab5a or ß-arrestin2 knockdown or by pharmacological inhibition with a C5aR1 antagonist or a PI3K inhibitor. These findings reveal a C5a-C5aR1-ß-arrestin2-Rab5a-PI3K signaling pathway that regulates chemotaxis and pro-inflammatory chemokine secretion in HMDMs and suggests new ways of selectively modulating C5a-induced inflammatory outputs.


Assuntos
Quimiocinas , Quimiotaxia , Macrófagos , Receptor da Anafilatoxina C5a , Proteínas rab5 de Ligação ao GTP , Humanos , beta-Arrestinas/metabolismo , Quimiocinas/metabolismo , Complemento C5a/metabolismo , Células HEK293 , Macrófagos/metabolismo , Transporte Proteico , Proteínas rab5 de Ligação ao GTP/metabolismo , Receptor da Anafilatoxina C5a/metabolismo
15.
EMBO Rep ; 24(3): e54701, 2023 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-36683567

RESUMO

Transmembrane proteins are internalized by clathrin- and caveolin-dependent endocytosis. Both pathways converge on early endosomes and are thought to share the small GTPase Rab5 as common regulator. In contrast to this notion, we show here that the clathrin- and caveolin-mediated endocytic pathways are differentially regulated. Rab5 and Rab21 localize to distinct populations of early endosomes in cortical neurons and preferentially regulate clathrin- and caveolin-mediated pathways, respectively, suggesting heterogeneity in the early endosomes, rather than a converging point. Suppression of Rab21, but not Rab5, results in decreased plasma membrane localization and total protein levels of caveolin-1, which perturbs immature neurite pruning of cortical neurons, an in vivo-specific step of neuronal maturation. Taken together, our data indicate that clathrin- and caveolin-mediated endocytic pathways run in parallel in early endosomes, which show different molecular regulation and physiological function.


Assuntos
Caveolina 1 , Endossomos , Caveolina 1/metabolismo , Endossomos/metabolismo , Proteínas rab5 de Ligação ao GTP/metabolismo , Endocitose , Clatrina/metabolismo
16.
Mol Psychiatry ; 28(3): 1219-1231, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36604604

RESUMO

ATP9A, a lipid flippase of the class II P4-ATPases, is involved in cellular vesicle trafficking. Its homozygous variants are linked to neurodevelopmental disorders in humans. However, its physiological function, the underlying mechanism as well as its pathophysiological relevance in humans and animals are still largely unknown. Here, we report two independent families in which the nonsense mutations c.433C>T/c.658C>T/c.983G>A (p. Arg145*/p. Arg220*/p. Trp328*) in ATP9A (NM_006045.3) cause autosomal recessive hypotonia, intellectual disability (ID) and attention deficit hyperactivity disorder (ADHD). Atp9a null mice show decreased muscle strength, memory deficits and hyperkinetic movement disorder, recapitulating the symptoms observed in patients. Abnormal neurite morphology and impaired synaptic transmission are found in the primary motor cortex and hippocampus of the Atp9a null mice. ATP9A is also required for maintaining neuronal neurite morphology and the viability of neural cells in vitro. It mainly localizes to endosomes and plays a pivotal role in endosomal recycling pathway by modulating small GTPase RAB5 and RAB11 activation. However, ATP9A pathogenic mutants have aberrant subcellular localization and cause abnormal endosomal recycling. These findings provide strong evidence that ATP9A deficiency leads to neurodevelopmental disorders and synaptic dysfunctions in both humans and mice, and establishes novel regulatory roles for ATP9A in RAB5 and RAB11 activity-dependent endosomal recycling pathway and neurological diseases.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Animais , Humanos , Camundongos , Transtorno do Deficit de Atenção com Hiperatividade/metabolismo , Endossomos/metabolismo , Transporte Proteico , Proteínas rab5 de Ligação ao GTP/genética , Proteínas rab5 de Ligação ao GTP/metabolismo
17.
Chemotherapy ; 68(3): 119-130, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36657426

RESUMO

BACKGROUND: Oxaliplatin-based chemotherapy resistance is a major cause of recurrence in patients with colorectal cancer (CRC). Increasing evidence indicates that lncRNA BCAR4 is involved in the occurrence and development of various cancers. However, the effect of BCAR4 on CRC chemotherapy resistance remains unclear. METHODS: Real-time quantitative PCR and Western blotting were used to detect the expression levels of gene and protein, respectively. The role of BCAR4 in drug resistance was evaluated by cell viability and apoptosis experiments. Luciferase reporter assay and Western blot analysis confirmed the relationship between BCAR4, miR-483-3p, and RAB5C. RESULTS: Luciferase reporter assay and Western blotting analysis confirmed the relationship among BCAR4, miR-483-3p, and RAB5C. The results showed that the expression levels of BCAR4 and RAB5C were increased in CRC tumor tissue. The expression levels of BCAR4 were increased in patients with chemotherapy resistance. Functional analysis showed that knockdown of BCAR4 reduced the expression levels of proteins related to stemness, decreased the activity of cells, and promoted apoptosis of CRC cells, while overexpression of RAB5C reversed these effects. Moreover, the results showed that BCAR4 promoted oxaliplatin resistance by inhibiting cell apoptosis. Mechanistically, BCAR4 sponged miR-483-3p and promoted the expression of RAB5C. Knockdown of BCAR4 reduced tumor size and enhanced cell sensitivity to oxaliplatin in vivo. CONCLUSION: The results suggested that BCAR4/miR-483-3p/RAB5C axis has the potential to be explored as a novel therapeutic target for CRC treatment.


Assuntos
Neoplasias Colorretais , MicroRNAs , RNA Longo não Codificante , Humanos , Oxaliplatina/farmacologia , Oxaliplatina/uso terapêutico , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Longo não Codificante/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Proteínas rab5 de Ligação ao GTP/genética , Proteínas rab5 de Ligação ao GTP/metabolismo , Proteínas rab5 de Ligação ao GTP/farmacologia
18.
Cell Biol Int ; 47(2): 374-382, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36480789

RESUMO

The posttranscriptional control of gene expression mediated by RNA-binding proteins (RBPs) is essential to determine tumor cell fate. HuR is an RBP with increased expression in various cancer types. This study aimed to clarify the regulatory mechanism of HuR's contribution to breast cancer (BC) cell proliferation by inducing RAB5C expression. First, we analyzed the expression level of HuR and RAB5C in BC tissues and cell lines by immunohistochemistry, qRT-PCR, and western blot. Next, to further investigate the effect of HuR on RAB5C expression, we used short hairpin RNAs (shRNAs) to silence endogenous HuR expression in BC cell lines MCF7 and MDA-MB-231. The binding site of RAB5C mRNA and HuR was confirmed by RNA immunoprecipitation. Finally, the function of RAB5C was investigated using flow cytometry, colony formation, and MTT assays. We found that the expression of HuR and RAB5C was significantly upregulated in BC tissues and MCF-7 and MDA-MB231 cell lines. Importantly, RAB5C mRNA stability was increased through binding of HuR to its 3'UTR. Inhibition of HuR expression using shRNA decreased RAB5C mRNA, suggesting that HuR plays a role in regulating RAB5C expression level. In addition, suppression of RAB5C expression reduced BC cell growth. These results suggest RAB5C functions as an oncogene in BC cells, HuR promoted BC cell survival by facilitating RAB5C expression. Our findings suggest that HuR and RAB5C play important roles in BC cell survival.


Assuntos
Neoplasias da Mama , Proteína Semelhante a ELAV 1 , Feminino , Humanos , Regiões 3' não Traduzidas , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Proliferação de Células , Proteína Semelhante a ELAV 1/genética , Proteína Semelhante a ELAV 1/metabolismo , Regulação Neoplásica da Expressão Gênica , Proteínas rab5 de Ligação ao GTP/genética , Proteínas rab5 de Ligação ao GTP/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo
19.
J Virol ; 96(24): e0144622, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36472440

RESUMO

Seneca Valley virus (SVV), a new pathogen resulting in porcine vesicular disease, is prevalent in pig herds worldwide. Although an understanding of SVV biology pathogenesis is crucial for preventing and controlling this disease, the molecular mechanisms for the entry and post-internalization of SVV, which represent crucial steps in viral infection, are not well characterized. In this study, specific inhibitors, Western blotting, and immunofluorescence detection revealed that SVV entry into PK-15 cells depends on low-pH conditions and dynamin. Furthermore, results showed that caveolae-mediated endocytosis (CavME) contributes crucially to the internalization of SVV, as evidenced by cholesterol depletion, downregulation of caveolin-1 expression by small interfering RNA knockdown, and overexpression of a caveolin-1 dominant negative (caveolin-1-DN) in SVV-infected PK-15 cells. However, SVV entry into PK-15 cells did not depend on clathrin-mediated endocytosis (CME). Furthermore, treatment with specific inhibitors demonstrated that SVV entry into PK-15 cells via macropinocytosis depended on the Na+/H+ exchanger (NHE), p21-activated kinase 1 (Pak1), and actin rearrangement, but not phosphatidylinositol 3-kinase (PI3K). Electron microscopy showed that SVV particles or proteins were localized in CavME and macropinocytosis. Finally, knockdown of GTPase Rab5 and Rab7 by siRNA significantly inhibited SVV replication, as determined by measuring viral genome copy numbers, viral protein expression, and viral titers. In this study, our results demonstrated that SVV utilizes caveolae-mediated endocytosis and macropinocytosis to enter PK-15 cells, dependent on low pH, dynamin, Rab5, and Rab7. IMPORTANCE Entry of virus into cells represents the initiation of a successful infection. As an emerging pathogen of porcine vesicular disease, clarification of the process of SVV entry into cells enables us to better understand the viral life cycle and pathogenesis. In this study, patterns of SVV internalization and key factors required were explored. We demonstrated for the first time that SVV entry into PK-15 cells via caveolae-mediated endocytosis and macropinocytosis requires Rab5 and Rab7 and is independent of clathrin-mediated endocytosis, and that low-pH conditions and dynamin are involved in the process of SVV internalization. This information increases our understanding of the patterns in which all members of the family Picornaviridae enter host cells, and provides new insights for preventing and controlling SVV infection.


Assuntos
Caveolina 1 , Dinaminas , Picornaviridae , Internalização do Vírus , Proteínas rab5 de Ligação ao GTP , Animais , Cavéolas/metabolismo , Caveolina 1/metabolismo , Clatrina/metabolismo , Dinaminas/metabolismo , Endocitose , Picornaviridae/fisiologia , RNA Interferente Pequeno/genética , Suínos , Doença Vesicular Suína , Proteínas rab5 de Ligação ao GTP/metabolismo , Pinocitose , Linhagem Celular
20.
J Cell Sci ; 135(24)2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36444566

RESUMO

Polarized transport is essential for constructing multiple plasma membrane domains in the cell. Drosophila photoreceptors are an excellent model system to study the mechanisms of polarized transport. Rab11 is the key factor regulating the post-Golgi transport of rhodopsin 1 (Rh1; also known as NinaE), a photoreceptive protein, to the rhabdomere, a photoreceptive plasma membrane. Here, we found that neuronal Synaptobrevin (nSyb) colocalizes with Rab11 on the trans-side of Golgi stacks and post-Golgi vesicles at the rhabdomere base, and nSyb deficiency impairs rhabdomeric transport and induces accumulation of Rh1 and vesicles in the cytoplasm; this is similar to the effects of Rab11 loss. These results indicate that nSyb acts as a post-Golgi SNARE toward rhabdomeres. Surprisingly, in Rab11-, Rip11- and nSyb-deficient photoreceptors, illumination enhances cytoplasmic accumulation of Rh1, which colocalizes with Rab11, Rabenosyn5, nSyb and Arrestin 1 (Arr1). Arr1 loss, but not Rab5 dominant negative (Rab5DN) protein expression, inhibits the light-enhanced cytoplasmic Rh1 accumulation. Rab5DN inhibits the generation of Rh1-containing multivesicular bodies rather than Rh1 internalization. Overall, these results indicate that exocytic Rh1 mingles with endocytosed Rh1 and is then transported together to rhabdomeres.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Drosophila/metabolismo , Rodopsina/metabolismo , Células Fotorreceptoras de Invertebrados/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas R-SNARE/metabolismo , Proteínas rab5 de Ligação ao GTP/metabolismo , Drosophila melanogaster/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...