Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 292(29): 12220-12231, 2017 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-28546426

RESUMO

First messenger-dependent activation of MAP kinases in neuronal and endocrine cells is critical for cell differentiation and function and requires guanine nucleotide exchange factor (GEF)-mediated activation of downstream Ras family small GTPases, which ultimately lead to ERK, JNK, and p38 phosphorylation. Because there are numerous GEFs and also a host of Ras family small GTPases, it is important to know which specific GEF-small GTPase dyad functions in a given cellular process. Here we investigated the upstream activators and downstream effectors of signaling via the GEF Epac2 in the neuroendocrine NS-1 cell line. Three cAMP sensors, Epac2, PKA, and neuritogenic cAMP sensor-Rapgef2, mediate distinct cellular outputs: p38-dependent growth arrest, cAMP response element-binding protein-dependent cell survival, and ERK-dependent neuritogenesis, respectively, in these cells. Previously, we found that cAMP-induced growth arrest of PC12 and NS-1 cells requires Epac2-dependent activation of p38 MAP kinase, which posed the important question of how Epac2 engages p38 without simultaneously activating other MAP kinases in neuronal and endocrine cells. We now show that the small GTP-binding protein Rap2A is the obligate effector for, and GEF substrate of, Epac2 in mediating growth arrest through p38 activation in NS-1 cells. This new pathway is distinctly parcellated from the G protein-coupled receptor → Gs → adenylate cyclase → cAMP → PKA → cAMP response element-binding protein pathway mediating cell survival and the G protein-coupled receptor → Gs → adenylate cyclase → cAMP → neuritogenic cAMP sensor-Rapgef2 → B-Raf → MEK → ERK pathway mediating neuritogenesis in NS-1 cells.


Assuntos
AMP Cíclico/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Sistema de Sinalização das MAP Quinases , Células Neuroendócrinas/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas rap de Ligação ao GTP/agonistas , Animais , Linhagem Celular Tumoral , Ativação Enzimática , Proteínas de Ligação ao GTP/química , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Ligantes , Proteínas Monoméricas de Ligação ao GTP/antagonistas & inibidores , Proteínas Monoméricas de Ligação ao GTP/genética , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Proteínas do Tecido Nervoso/agonistas , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neuritos/metabolismo , Células Neuroendócrinas/citologia , Neurogênese , Fosforilação , Prenilação de Proteína , Interferência de RNA , Ratos , Proteínas Recombinantes/metabolismo , Proteínas rap de Ligação ao GTP/antagonistas & inibidores , Proteínas rap de Ligação ao GTP/genética , Proteínas rap de Ligação ao GTP/metabolismo , Proteínas ras/antagonistas & inibidores , Proteínas ras/genética , Proteínas ras/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...