Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 609(7926): 408-415, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35831509

RESUMO

Receptor tyrosine kinase (RTK)-RAS signalling through the downstream mitogen-activated protein kinase (MAPK) cascade regulates cell proliferation and survival. The SHOC2-MRAS-PP1C holophosphatase complex functions as a key regulator of RTK-RAS signalling by removing an inhibitory phosphorylation event on the RAF family of proteins to potentiate MAPK signalling1. SHOC2 forms a ternary complex with MRAS and PP1C, and human germline gain-of-function mutations in this complex result in congenital RASopathy syndromes2-5. However, the structure and assembly of this complex are poorly understood. Here we use cryo-electron microscopy to resolve the structure of the SHOC2-MRAS-PP1C complex. We define the biophysical principles of holoenzyme interactions, elucidate the assembly order of the complex, and systematically interrogate the functional consequence of nearly all of the possible missense variants of SHOC2 through deep mutational scanning. We show that SHOC2 binds PP1C and MRAS through the concave surface of the leucine-rich repeat region and further engages PP1C through the N-terminal disordered region that contains a cryptic RVXF motif. Complex formation is initially mediated by interactions between SHOC2 and PP1C and is stabilized by the binding of GTP-loaded MRAS. These observations explain how mutant versions of SHOC2 in RASopathies and cancer stabilize the interactions of complex members to enhance holophosphatase activity. Together, this integrative structure-function model comprehensively defines key binding interactions within the SHOC2-MRAS-PP1C holophosphatase complex and will inform therapeutic development .


Assuntos
Microscopia Crioeletrônica , Peptídeos e Proteínas de Sinalização Intracelular , Complexos Multiproteicos , Proteína Fosfatase 1 , Proteínas ras , Motivos de Aminoácidos , Sítios de Ligação , Guanosina Trifosfato/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Sistema de Sinalização das MAP Quinases , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Complexos Multiproteicos/ultraestrutura , Mutação de Sentido Incorreto , Fosforilação , Ligação Proteica , Proteína Fosfatase 1/química , Proteína Fosfatase 1/metabolismo , Proteína Fosfatase 1/ultraestrutura , Estabilidade Proteica , Quinases raf , Proteínas ras/química , Proteínas ras/metabolismo , Proteínas ras/ultraestrutura
2.
Nature ; 609(7926): 400-407, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35768504

RESUMO

The RAS-RAF pathway is one of the most commonly dysregulated in human cancers1-3. Despite decades of study, understanding of the molecular mechanisms underlying dimerization and activation4 of the kinase RAF remains limited. Recent structures of inactive RAF monomer5 and active RAF dimer5-8 bound to 14-3-39,10 have revealed the mechanisms by which 14-3-3 stabilizes both RAF conformations via specific phosphoserine residues. Prior to RAF dimerization, the protein phosphatase 1 catalytic subunit (PP1C) must dephosphorylate the N-terminal phosphoserine (NTpS) of RAF11 to relieve inhibition by 14-3-3, although PP1C in isolation lacks intrinsic substrate selectivity. SHOC2 is as an essential scaffolding protein that engages both PP1C and RAS to dephosphorylate RAF NTpS11-13, but the structure of SHOC2 and the architecture of the presumptive SHOC2-PP1C-RAS complex remain unknown. Here we present a cryo-electron microscopy structure of the SHOC2-PP1C-MRAS complex to an overall resolution of 3 Å, revealing a tripartite molecular architecture in which a crescent-shaped SHOC2 acts as a cradle and brings together PP1C and MRAS. Our work demonstrates the GTP dependence of multiple RAS isoforms for complex formation, delineates the RAS-isoform preference for complex assembly, and uncovers how the SHOC2 scaffold and RAS collectively drive specificity of PP1C for RAF NTpS. Our data indicate that disease-relevant mutations affect complex assembly, reveal the simultaneous requirement of two RAS molecules for RAF activation, and establish rational avenues for discovery of new classes of inhibitors to target this pathway.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular , Proteína Fosfatase 1 , Transdução de Sinais , Proteínas ras , Microscopia Crioeletrônica , Guanosina Trifosfato/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Complexos Multiproteicos/ultraestrutura , Mutação , Fosfosserina , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/ultraestrutura , Proteína Fosfatase 1/química , Proteína Fosfatase 1/genética , Proteína Fosfatase 1/metabolismo , Proteína Fosfatase 1/ultraestrutura , Especificidade por Substrato , Quinases raf/metabolismo , Proteínas ras/química , Proteínas ras/genética , Proteínas ras/metabolismo , Proteínas ras/ultraestrutura
3.
Proc Natl Acad Sci U S A ; 118(18)2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33926964

RESUMO

Aberrant Ras signaling is linked to a wide spectrum of hyperproliferative diseases, and components of the signaling pathway, including Ras, have been the subject of intense and ongoing drug discovery efforts. The cellular activity of Ras is modulated by its association with the guanine nucleotide exchange factor Son of sevenless (Sos), and the high-resolution crystal structure of the Ras-Sos complex provides a basis for the rational design of orthosteric Ras ligands. We constructed a synthetic Sos protein mimic that engages the wild-type and oncogenic forms of nucleotide-bound Ras and modulates downstream kinase signaling. The Sos mimic was designed to capture the conformation of the Sos helix-loop-helix motif that makes critical contacts with Ras in its switch region. Chemoproteomic studies illustrate that the proteomimetic engages Ras and other cellular GTPases. The synthetic proteomimetic resists proteolytic degradation and enters cells through macropinocytosis. As such, it is selectively toxic to cancer cells with up-regulated macropinocytosis, including those that feature oncogenic Ras mutations.


Assuntos
Complexos Multiproteicos/ultraestrutura , Conformação Proteica , Proteína Son Of Sevenless de Drosófila/ultraestrutura , Proteínas ras/ultraestrutura , Animais , Biomimética , Cristalografia por Raios X , Descoberta de Drogas , GTP Fosfo-Hidrolases/química , GTP Fosfo-Hidrolases/ultraestrutura , Células HCT116 , Sequências Hélice-Alça-Hélice/genética , Humanos , Modelos Moleculares , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Proteoma/genética , Transdução de Sinais/genética , Proteína Son Of Sevenless de Drosófila/química , Proteína Son Of Sevenless de Drosófila/genética , Proteínas ras/química , Proteínas ras/genética
4.
Biol Chem ; 401(1): 143-163, 2019 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-31600136

RESUMO

Since its discovery as an oncogene more than 40 years ago, Ras has been and still is in the focus of many academic and pharmaceutical labs around the world. A huge amount of work has accumulated on its biology. However, many questions about the role of the different Ras isoforms in health and disease still exist and a full understanding will require more intensive work in the future. Here we try to survey some of the structural findings in a historical perspective and how it has influenced our understanding of structure-function and mechanistic relationships of Ras and its interactions. The structures show that Ras is a stable molecular machine that uses the dynamics of its switch regions for the interaction with all regulators and effectors. This conformational flexibility has been used to create small molecule drug candidates against this important oncoprotein.


Assuntos
Conformação Proteica , Relação Estrutura-Atividade , Proteínas ras/genética , Proteínas ras/ultraestrutura , Sítios de Ligação/genética , Humanos , Mutação/genética , Ligação Proteica/genética , Isoformas de Proteínas/genética , Proteínas ras/química
5.
J Am Chem Soc ; 139(38): 13466-13475, 2017 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-28863262

RESUMO

Self-assembly of plasma membrane-associated Ras GTPases has major implications to the regulation of cell signaling. However, the structural basis of homo-oligomerization and the fractional distribution of oligomeric states remained undetermined. We have addressed these issues by deciphering the distribution of dimers and higher-order oligomers of K-Ras4B, the most frequently mutated Ras isoform in human cancers. We focused on the constitutively active G12V K-Ras and two of its variants, K101E and K101C/E107C, which respectively destabilize and stabilize oligomers. Using raster image correlation spectroscopy and number and brightness analysis combined with fluorescence recovery after photobleaching, fluorescence correlation spectroscopy and electron microscopy in live cells, we show that G12V K-Ras exists as a mixture of monomers, dimers and larger oligomers, while the K101E mutant is predominantly monomeric and K101C/E107C is dominated by oligomers. This observation demonstrates the ability of K-Ras to exist in multiple oligomeric states whose population can be altered by interfacial mutations. Using molecular modeling and simulations we further show that K-Ras uses two partially overlapping interfaces to form compositionally and topologically diverse oligomers. Our results thus provide the first detailed insight into the multiplicity, structure, and membrane organization of K-Ras homomers.


Assuntos
Membrana Celular/metabolismo , Multimerização Proteica , Proteínas ras/química , Proteínas ras/metabolismo , Animais , Hominidae , Humanos , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Proteínas Mutantes/ultraestrutura , Proteínas ras/genética , Proteínas ras/ultraestrutura
6.
PLoS Comput Biol ; 11(10): e1004469, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26506102

RESUMO

Probe-based or mixed solvent molecular dynamics simulation is a useful approach for the identification and characterization of druggable sites in drug targets. However, thus far the method has been applied only to soluble proteins. A major reason for this is the potential effect of the probe molecules on membrane structure. We have developed a technique to overcome this limitation that entails modification of force field parameters to reduce a few pairwise non-bonded interactions between selected atoms of the probe molecules and bilayer lipids. We used the resulting technique, termed pMD-membrane, to identify allosteric ligand binding sites on the G12D and G13D oncogenic mutants of the K-Ras protein bound to a negatively charged lipid bilayer. In addition, we show that differences in probe occupancy can be used to quantify changes in the accessibility of druggable sites due to conformational changes induced by membrane binding or mutation.


Assuntos
Membrana Celular/química , Membrana Celular/ultraestrutura , Bicamadas Lipídicas/química , Modelos Químicos , Proteínas ras/química , Proteínas ras/ultraestrutura , Algoritmos , Sítios de Ligação , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica , Mapeamento de Interação de Proteínas/métodos , Software
7.
J Cell Physiol ; 230(3): 610-9, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25158650

RESUMO

Despite a high degree of structural homology and shared exchange factors, effectors and GTPase activating proteins, a large body of evidence suggests functional heterogeneity among Ras isoforms. One aspect of Ras biology that may explain this heterogeneity is the differential subcellular localizations driven by the C-terminal hypervariable regions of Ras proteins. Spatial heterogeneity has been documented at the level of organelles: palmitoylated Ras isoforms (H-Ras and N-Ras) localize on the Golgi apparatus whereas K-Ras4B does not. We tested the hypothesis that spatial heterogeneity also exists at the sub-organelle level by studying the localization of differentially palmitoylated Ras isoforms within the Golgi apparatus. Using confocal, live-cell fluorescent imaging and immunogold electron microscopy we found that, whereas the doubly palmitoylated H-Ras is distributed throughout the Golgi stacks, the singly palmitoylated N-Ras is polarized with a relative paucity of expression on the trans Golgi. Using palmitoylation mutants, we show that the different sub-Golgi distributions of the Ras proteins are a consequence of their differential degree of palmitoylation. Thus, the acylation state of Ras proteins controls not only their distribution between the Golgi apparatus and the plasma membrane, but also their distribution within the Golgi stacks.


Assuntos
Compartimento Celular/genética , Genes ras , Complexo de Golgi/ultraestrutura , Proteínas ras/genética , Linhagem Celular , Complexo de Golgi/genética , Humanos , Lipoilação/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transporte Proteico/genética , Transdução de Sinais , Proteínas ras/ultraestrutura
8.
PLoS Comput Biol ; 5(3): e1000325, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19300489

RESUMO

Ras mediates signaling pathways controlling cell proliferation and development by cycling between GTP- and GDP-bound active and inactive conformational states. Understanding the complete reaction path of this conformational change and its intermediary structures is critical to understanding Ras signaling. We characterize nucleotide-dependent conformational transition using multiple-barrier-crossing accelerated molecular dynamics (aMD) simulations. These transitions, achieved for the first time for wild-type Ras, are impossible to observe with classical molecular dynamics (cMD) simulations due to the large energetic barrier between end states. Mapping the reaction path onto a conformer plot describing the distribution of the crystallographic structures enabled identification of highly populated intermediate structures. These structures have unique switch orientations (residues 25-40 and 57-75) intermediate between GTP and GDP states, or distinct loop3 (46-49), loop7 (105-110), and alpha5 C-terminus (159-166) conformations distal from the nucleotide-binding site. In addition, these barrier-crossing trajectories predict novel nucleotide-dependent correlated motions, including correlations of alpha2 (residues 66-74) with alpha3-loop7 (93-110), loop2 (26-37) with loop10 (145-151), and loop3 (46-49) with alpha5 (152-167). The interconversion between newly identified Ras conformations revealed by this study advances our mechanistic understanding of Ras function. In addition, the pattern of correlated motions provides new evidence for a dynamic linkage between the nucleotide-binding site and the membrane interacting C-terminus critical for the signaling function of Ras. Furthermore, normal mode analysis indicates that the dominant collective motion that occurs during nucleotide-dependent conformational exchange, and captured in aMD (but absent in cMD) simulations, is a low-frequency motion intrinsic to the structure.


Assuntos
Modelos Químicos , Modelos Moleculares , Nucleotídeos/química , Proteínas ras/química , Proteínas ras/ultraestrutura , Sítios de Ligação , Simulação por Computador , Ativação Enzimática , Ligação Proteica , Conformação Proteica
9.
Bioinformatics ; 23(17): 2226-30, 2007 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-17599936

RESUMO

MOTIVATION: One of the more challenging problems in biology is to determine the cellular protein interaction network. Progress has been made to predict protein-protein interactions based on structural information, assuming that structural similar proteins interact in a similar way. In a previous publication, we have determined a genome-wide Ras-effector interaction network based on homology models, with a high accuracy of predicting binding and non-binding domains. However, for a prediction on a genome-wide scale, homology modelling is a time-consuming process. Therefore, we here successfully developed a faster method using position energy matrices, where based on different Ras-effector X-ray template structures, all amino acids in the effector binding domain are sequentially mutated to all other amino acid residues and the effect on binding energy is calculated. Those pre-calculated matrices can then be used to score for binding any Ras or effector sequences. RESULTS: Based on position energy matrices, the sequences of putative Ras-binding domains can be scanned quickly to calculate an energy sum value. By calibrating energy sum values using quantitative experimental binding data, thresholds can be defined and thus non-binding domains can be excluded quickly. Sequences which have energy sum values above this threshold are considered to be potential binding domains, and could be further analysed using homology modelling. This prediction method could be applied to other protein families sharing conserved interaction types, in order to determine in a fast way large scale cellular protein interaction networks. Thus, it could have an important impact on future in silico structural genomics approaches, in particular with regard to increasing structural proteomics efforts, aiming to determine all possible domain folds and interaction types. AVAILABILITY: All matrices are deposited in the ADAN database (http://adan-embl.ibmc.umh.es/). SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Algoritmos , Modelos Químicos , Modelos Moleculares , Mapeamento de Interação de Proteínas/métodos , Alinhamento de Sequência/métodos , Análise de Sequência de Proteína/métodos , Proteínas ras/química , Sequência de Aminoácidos , Sítios de Ligação , Simulação por Computador , Transferência de Energia , Dados de Sequência Molecular , Ligação Proteica , Proteínas ras/ultraestrutura
10.
Biophys J ; 93(8): 2697-712, 2007 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-17557790

RESUMO

Human posttranslationally modified N-ras oncogenes are known to be implicated in numerous human cancers. Here, we applied a combination of experimental and computational techniques to determine structural and dynamical details of the lipid chain modifications of an N-ras heptapeptide in 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) membranes. Experimentally, 2H NMR spectroscopy was used to study oriented membranes that incorporated ras heptapeptides with two covalently attached perdeuterated hexadecyl chains. Atomistic molecular dynamics simulations of the same system were carried out over 100 ns including 60 DMPC and 4 ras molecules. Several structural and dynamical experimental parameters could be directly compared to the simulation. Experimental and simulated 2H NMR order parameters for the methylene groups of the ras lipid chains exhibited a systematic difference attributable to the absence of collective motions in the simulation and to geometrical effects. In contrast, experimental 2H NMR spin-lattice relaxation rates for Zeeman order were well reproduced in the simulation. The lack of slower collective motions in the simulation did not appreciably influence the relaxation rates at a Larmor frequency of 115.1 MHz. The experimental angular dependence of the 2H NMR relaxation rates with respect to the external magnetic field was also relatively well simulated. These relaxation rates showed a weak angular dependence, suggesting that the lipid modifications of ras are very flexible and highly mobile in agreement with the low order parameters. To quantify these results, the angular dependence of the 2H relaxation rates was calculated by an analytical model considering both molecular and collective motions. Peptide dynamics in the membrane could be modeled by an anisotropic diffusion tensor with principal values of Dparallel=2.1x10(9) s(-1) and Dperpendicular=4.5x10(5) s(-1). A viscoelastic fitting parameter describing the membrane elasticity, viscosity, and temperature was found to be relatively similar for the ras peptide and the DMPC host matrix. Large motional amplitudes and relatively short correlation times facilitate mixing and dispersal with the lipid bilayer matrix, with implications for the role of the full-length ras protein in signal transduction and oncogenesis.


Assuntos
Dimiristoilfosfatidilcolina/química , Bicamadas Lipídicas/química , Espectroscopia de Ressonância Magnética/métodos , Fluidez de Membrana , Modelos Químicos , Modelos Moleculares , Proteínas ras/química , Proteínas ras/ultraestrutura , Simulação por Computador , Hidrogênio , Movimento (Física) , Conformação Proteica
11.
Methods ; 37(2): 165-72, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16288888

RESUMO

Ras isoform-specific signaling from the plasma membrane appears to be regulated by interactions with distinct functional microdomains. We have developed protocols allowing the generation of 2-D spatial maps describing cell surface microdomain distributions. The combined electron microscopic (EM)-statistics approach provides nanometer scale resolution allowing both inner and outer leaflet domains to be visualized and cross-correlated with each other or with a protein of interest. In particular, the technique has allowed the interaction of Ras isoforms with signaling microdomains and proteins regulating these compartments to be screened. By allowing detailed monitoring of cell surface organization and compartmentalization, the approach has widespread potential for studies of plasma membrane-dependent cell biology, including regulated signaling and membrane trafficking.


Assuntos
Microscopia Eletrônica/métodos , Transdução de Sinais/fisiologia , Proteínas ras/química , Proteínas ras/ultraestrutura , Animais , Membrana Celular/química , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Humanos , Imuno-Histoquímica , Estrutura Terciária de Proteína , Proteínas ras/metabolismo
13.
J Cell Biol ; 160(2): 165-70, 2003 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-12527752

RESUMO

Localization of signaling complexes to specific microdomains coordinates signal transduction at the plasma membrane. Using immunogold electron microscopy of plasma membrane sheets coupled with spatial point pattern analysis, we have visualized morphologically featureless microdomains, including lipid rafts, in situ and at high resolution. We find that an inner-plasma membrane lipid raft marker displays cholesterol-dependent clustering in microdomains with a mean diameter of 44 nm that occupy 35% of the cell surface. Cross-linking an outer-leaflet raft protein results in the redistribution of inner leaflet rafts, but they retain their modular structure. Analysis of Ras microlocalization shows that inactive H-ras is distributed between lipid rafts and a cholesterol-independent microdomain. Conversely, activated H-ras and K-ras reside predominantly in nonoverlapping, cholesterol-independent microdomains. Galectin-1 stabilizes the association of activated H-ras with these nonraft microdomains, whereas K-ras clustering is supported by farnesylation, but not geranylgeranylation. These results illustrate that the inner plasma membrane comprises a complex mosaic of discrete microdomains. Differential spatial localization within this framework can likely account for the distinct signal outputs from the highly homologous Ras proteins.


Assuntos
Células Eucarióticas/ultraestrutura , Microdomínios da Membrana/ultraestrutura , Proteínas de Membrana/ultraestrutura , Transdução de Sinais/fisiologia , Proteínas ras/ultraestrutura , Animais , Células Cultivadas , Colesterol/metabolismo , Células Eucarióticas/metabolismo , Galectina 1/metabolismo , Genes ras/genética , Proteínas de Fluorescência Verde , Humanos , Imuno-Histoquímica , Proteínas Luminescentes/ultraestrutura , Microdomínios da Membrana/metabolismo , Proteínas de Membrana/metabolismo , Microscopia Eletrônica , Proteínas Recombinantes de Fusão/ultraestrutura , Frações Subcelulares , Proteínas ras/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...