Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74.413
Filtrar
1.
Hereditas ; 161(1): 15, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702800

RESUMO

BACKGROUND: Rhododendron chrysanthum Pall. (R. chrysanthum) is a plant that lives in high mountain with strong UV-B radiation, so R. chrysanthum possess resistance to UV-B radiation. The process of stress resistance in plants is closely related to metabolism. Lysine acetylation is an important post-translational modification, and this modification process is involved in a variety of biological processes, and affected the expression of enzymes in metabolic processes. However, little is known about acetylation proteomics during UV-B stress resistance in R. chrysanthum. RESULTS: In this study, R. chrysanthum OJIP curves indicated that UV-B stress damaged the receptor side of the PSII reaction center, with a decrease in photosynthesis, a decrease in sucrose content and an increase in starch content. A total of 807 differentially expressed proteins, 685 differentially acetylated proteins and 945 acetylation sites were identified by quantitative proteomic and acetylation modification histological analysis. According to COG and subcellular location analyses, DEPs with post-translational modification of proteins and carbohydrate metabolism had important roles in resistance to UV-B stress and DEPs were concentrated in chloroplasts. KEGG analyses showed that DEPs were enriched in starch and sucrose metabolic pathways. Analysis of acetylation modification histology showed that the enzymes in the starch and sucrose metabolic pathways underwent acetylation modification and the modification levels were up-regulated. Further analysis showed that only GBSS and SSGBSS changed to DEPs after undergoing acetylation modification. Metabolomics analyses showed that the metabolite content of starch and sucrose metabolism in R. chrysanthum under UV-B stress. CONCLUSIONS: Decreased photosynthesis in R. chrysanthum under UV-B stress, which in turn affects starch and sucrose metabolism. In starch synthesis, GBSS undergoes acetylation modification and the level is upregulated, promotes starch synthesis, making R. chrysanthum resistant to UV-B stress.


Assuntos
Proteínas de Plantas , Proteômica , Rhododendron , Raios Ultravioleta , Acetilação , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Rhododendron/genética , Rhododendron/metabolismo , Rhododendron/fisiologia , Estresse Fisiológico , Metabolômica , Processamento de Proteína Pós-Traducional , Regulação da Expressão Gênica de Plantas , Amido/metabolismo , Fotossíntese
2.
PeerJ ; 12: e17186, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38708342

RESUMO

Pulmonary hypertension (PH), a common complication in dogs affected by degenerative mitral valve disease (DMVD), is a progressive disorder characterized by increased pulmonary arterial pressure (PAP) and pulmonary vascular remodeling. Phosphorylation of proteins, impacting vascular function and cell proliferation, might play a role in the development and progression of PH. Unlike gene or protein studies, phosphoproteomic focuses on active proteins that function as end-target proteins within signaling cascades. Studying phosphorylated proteins can reveal active contributors to PH development. Early diagnosis of PH is crucial for effective management and improved clinical outcomes. This study aimed to identify potential serum biomarkers for diagnosing PH in dogs affected with DMVD using a phosphoproteomic approach. Serum samples were collected from healthy control dogs (n = 28), dogs with DMVD (n = 24), and dogs with DMVD and PH (n = 29). Phosphoproteins were enriched from the serum samples and analyzed using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Data analysis was performed to identify uniquely expressed phosphoproteins in each group and differentially expressed phosphoproteins among groups. Phosphoproteomic analysis revealed nine uniquely expressed phosphoproteins in the serum of dogs in the DMVD+PH group and 15 differentially upregulated phosphoproteins in the DMVD+PH group compared to the DMVD group. The phosphoproteins previously implicated in PH and associated with pulmonary arterial remodeling, including small nuclear ribonucleoprotein G (SNRPG), alpha-2-macroglobulin (A2M), zinc finger and BTB domain containing 42 (ZBTB42), hemopexin (HPX), serotransferrin (TRF) and complement C3 (C3), were focused on. Their unique expression and differential upregulation in the serum of DMVD dogs with PH suggest their potential as biomarkers for PH diagnosis. In conclusion, this phosphoproteomic study identified uniquely expressed and differentially upregulated phosphoproteins in the serum of DMVD dogs with PH. Further studies are warranted to validate the diagnostic utility of these phosphoproteins.


Assuntos
Biomarcadores , Doenças do Cão , Hipertensão Pulmonar , Fosfoproteínas , Proteômica , Animais , Cães , Hipertensão Pulmonar/veterinária , Hipertensão Pulmonar/sangue , Proteômica/métodos , Fosfoproteínas/sangue , Fosfoproteínas/metabolismo , Doenças do Cão/sangue , Doenças do Cão/metabolismo , Biomarcadores/sangue , Espectrometria de Massas em Tandem , Masculino , Doenças das Valvas Cardíacas/veterinária , Doenças das Valvas Cardíacas/sangue , Feminino , Valva Mitral , Cromatografia Líquida
3.
Am J Reprod Immunol ; 91(5): e13856, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38709906

RESUMO

INTRODUCTION: Endometriosis is a chronic inflammatory disease that leads to a series of pathological reactions. The basis is a changed proinflammatory activated immune system, which results in more pronounced oxidative stress, disturbed function of proteolysis and cell apoptosis. These processes are crucial in the development of the disease because their dysfunctional activities cause the progression of the disease. It is believed that the proteins excreted in the urine interact with each other and promote pathological processes in endometriosis. METHODS: We analyzed the urine proteome of patients and aimed to detect a potential protein biomarker for endometriosis in the urine proteome. We collected urine samples from 16 patients with endometriosis and 16 patients in the control group with functional ovarian cysts. The diagnosis for all patients was confirmed through pathohistological analysis. After the preanalytical preparation of the urine, chromatography and mass spectrometry (LC-MS/MS) used the technology of urine proteome analysis. RESULTS: The main finding was a significantly different concentration of 14 proteins in the urine samples. We recorded a considerably higher concentration of proteins that have a significant role in activating the immune system (SELL), iron metabolism (HAMP) and cell apoptosis (CHGA) in endometriosis compared to controls. Proteins having an antioxidant function (SOD1) and a role in proteolysis of the extracellular matrix (MMP-9) were significantly reduced in endometriosis compared to controls. CONCLUSION: Consistent with the known pathogenesis of endometriosis, the study results complement the pathological responses that occur with disease progression.


Assuntos
Biomarcadores , Endometriose , Humanos , Endometriose/urina , Endometriose/diagnóstico , Feminino , Biomarcadores/urina , Adulto , Superóxido Dismutase-1/urina , Espectrometria de Massas em Tandem , Proteoma , Metaloproteinase 9 da Matriz/urina , Proteômica/métodos , Cromatografia Líquida , Estresse Oxidativo
4.
Biomed Khim ; 70(2): 89-98, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38711408

RESUMO

Comparative proteomic analysis of kidney tissue from normotensive (WKY) and spontaneously hypertensive (SHR) rats revealed quantitative and qualitative changes in renal proteins. The number of renal proteins specific for WKY rats (blood pressure 110-120 mm Hg) was 13-16. There were 20-24 renal proteins specific for SHR (blood pressure 180 mm Hg and more). The total number of identified renal proteins common for both rat strains included 972-975 proteins. A pairwise comparison of all possible (SHR-WKY) variants identified 8 proteins specific only for normotensive (WKY) animals, and 7 proteins specific only for hypertensive ones (SHR). Taking into consideration their biological roles, the lack of some enzyme proteins in hypertensive rats (for example, biliverdin reductase A) reduces the production of molecules exhibiting antihypertensive properties, while the appearance of others (e.g. betaine-homocysteine S-methyltransferase 2, septin 2, etc.) can be interpreted as a compensatory reaction. Renal proteins with altered relative content (with more than 2.5-fold change) accounted for no more than 5% of all identified proteins. Among the proteins with an increased relative content in hypertensive animals, the largest group consisted of proteins involved in the processes of energy generation and carbohydrate metabolism, as well as antioxidant and protective proteins. In the context of the development of hypertension, the identified relative changes can apparently be considered compensatory. Among the proteins with the most pronounced decrease in the relative content in hypertensive rats, the dramatic reduction in acyl-CoA medium-chain synthetase-3 (ACSM3) appears to make an important contribution to the development of renal pathology in these animals.


Assuntos
Hipertensão , Rim , Proteômica , Ratos Endogâmicos SHR , Animais , Ratos , Hipertensão/metabolismo , Rim/metabolismo , Proteômica/métodos , Masculino , Ratos Endogâmicos WKY , Proteoma/metabolismo , Proteoma/análise , Pressão Sanguínea
5.
Geobiology ; 22(3): e12600, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38725144

RESUMO

Microbial sulfate reduction is central to the global carbon cycle and the redox evolution of Earth's surface. Tracking the activity of sulfate reducing microorganisms over space and time relies on a nuanced understanding of stable sulfur isotope fractionation in the context of the biochemical machinery of the metabolism. Here, we link the magnitude of stable sulfur isotopic fractionation to proteomic and metabolite profiles under different cellular energetic regimes. When energy availability is limited, cell-specific sulfate respiration rates and net sulfur isotope fractionation inversely covary. Beyond net S isotope fractionation values, we also quantified shifts in protein expression, abundances and isotopic composition of intracellular S metabolites, and lipid structures and lipid/water H isotope fractionation values. These coupled approaches reveal which protein abundances shift directly as a function of energy flux, those that vary minimally, and those that may vary independent of energy flux and likely do not contribute to shifts in S-isotope fractionation. By coupling the bulk S-isotope observations with quantitative proteomics, we provide novel constraints for metabolic isotope models. Together, these results lay the foundation for more predictive metabolic fractionation models, alongside interpretations of environmental sulfur and sulfate reducer lipid-H isotope data.


Assuntos
Desulfovibrio vulgaris , Proteômica , Isótopos de Enxofre , Isótopos de Enxofre/análise , Isótopos de Enxofre/metabolismo , Desulfovibrio vulgaris/metabolismo , Proteoma/metabolismo , Proteoma/análise , Metabolismo Energético , Metaboloma , Proteínas de Bactérias/metabolismo , Oxirredução , Sulfatos/metabolismo
6.
J Sep Sci ; 47(9-10): e2400061, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38726749

RESUMO

Determination of proteins from dried matrix spots using MS is an expanding research area. Mainly, the collected dried matrix sample is whole blood from a finger or heal prick, resulting in dried blood spots. However as other matrices such as plasma, serum, urine, and tear fluid also can be collected in this way, the term dried matrix spot is used as an overarching term. In this review, the focus is on advancements in the field made from 2017 up to 2023. In the first part reviews concerning the subject are discussed. After this, advancements made for clinical purposes are highlighted. Both targeted protein analyses, with and without the use of affinity extractions, as well as untargeted, global proteomic approaches are discussed. In the last part, both methodological advancements are being reviewed as well as the possibility to integrate sample preparation steps during the sample handling. The focus, of this so-called smart sampling, is on the incorporation of cell separation, proteolysis, and antibody-based affinity capture.


Assuntos
Teste em Amostras de Sangue Seco , Espectrometria de Massas , Proteínas , Humanos , Cromatografia Líquida , Proteínas/análise , Proteômica/métodos , Manejo de Espécimes , Espectrometria de Massa com Cromatografia Líquida
7.
Front Immunol ; 15: 1352469, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38711504

RESUMO

Vibriosis, caused by Vibrio, seriously affects the health of fish, shellfish, and shrimps, causing large economic losses. Teleosts are represent the first bony vertebrates with both innate and adaptive immune responses against pathogens. Aquatic animals encounter hydraulic pressure and more pathogens, compared to terrestrial animals. The skin is the first line of defense in fish, constituting the skin-associated lymphoid tissue (SALT), which belongs to the main mucosa-associated lymphoid tissues (MALT). However, little is known about the function of immunity related proteins in fish. Therefore, this study used iTRAQ (isobaric tags for relative and absolute quantitation) to compare the skin proteome between the resistant and susceptible families of Cynoglossus semilaevis. The protein integrin beta-2, the alpha-enolase isoform X1, subunit B of V-type proton ATPase, eukaryotic translation initiation factor 6, and ubiquitin-like protein ISG15, were highly expressed in the resistant family. The 16S sequencing of the skin tissues of the resistant and susceptible families showed significant differences in the microbial communities of the two families. The protein-microbial interaction identified ten proteins associated with skin microbes, including immunoglobulin heavy chain gene (IGH), B-cell lymphoma/leukemia 10 (BCL10) and pre-B-cell leukemia transcription factor 1 isoform X2 (PBX2). This study highlights the interaction between skin proteins and the microbial compositions of C. semilaevis and provides new insights into understanding aquaculture breeding research.


Assuntos
Resistência à Doença , Doenças dos Peixes , Proteínas de Peixes , Linguados , Microbiota , Pele , Vibrioses , Vibrio , Animais , Pele/imunologia , Pele/microbiologia , Pele/metabolismo , Doenças dos Peixes/imunologia , Doenças dos Peixes/microbiologia , Resistência à Doença/imunologia , Vibrioses/imunologia , Vibrioses/veterinária , Linguados/imunologia , Linguados/microbiologia , Microbiota/imunologia , Vibrio/imunologia , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Proteínas de Peixes/imunologia , Proteoma , Proteômica/métodos
8.
Nat Commun ; 15(1): 3860, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38719824

RESUMO

Dual blocker therapy (DBT) has the enhanced antitumor benefits than the monotherapy. Yet, few effective biomarkers are developed to monitor the therapy response. Herein, we investigate the DBT longitudinal plasma proteome profiling including 113 longitudinal samples from 22 patients who received anti-PD1 and anti-CTLA4 DBT therapy. The results show the immune response and cholesterol metabolism are upregulated after the first DBT cycle. Notably, the cholesterol metabolism is activated in the disease non-progressive group (DNP) during the therapy. Correspondingly, the clinical indicator prealbumin (PA), free triiodothyronine (FT3) and triiodothyronine (T3) show significantly positive association with the cholesterol metabolism. Furthermore, by integrating proteome and radiology approach, we observe the high-density lipoprotein partial remodeling are activated in DNP group and identify a candidate biomarker APOC3 that can reflect DBT response. Above, we establish a machine learning model to predict the DBT response and the model performance is validated by an independent cohort with balanced accuracy is 0.96. Thus, the plasma proteome profiling strategy evaluates the alteration of cholesterol metabolism and identifies a panel of biomarkers in DBT.


Assuntos
Colesterol , Proteoma , Humanos , Colesterol/sangue , Colesterol/metabolismo , Proteoma/metabolismo , Feminino , Masculino , Pessoa de Meia-Idade , Antígeno CTLA-4/antagonistas & inibidores , Antígeno CTLA-4/metabolismo , Antígeno CTLA-4/sangue , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/metabolismo , Receptor de Morte Celular Programada 1/sangue , Biomarcadores/sangue , Idoso , Tri-Iodotironina/sangue , Aprendizado de Máquina , Inibidores de Checkpoint Imunológico/uso terapêutico , Inibidores de Checkpoint Imunológico/farmacologia , Neoplasias/tratamento farmacológico , Neoplasias/sangue , Neoplasias/metabolismo , Proteômica/métodos
9.
Int J Biol Sci ; 20(7): 2339-2355, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38725853

RESUMO

Chronic cholestatic damage is associated to both accumulation of cytotoxic levels of bile acids and expansion of adult hepatic progenitor cells (HPC) as part of the ductular reaction contributing to the regenerative response. Here, we report a bile acid-specific cytotoxic response in mouse HPC, which is partially impaired by EGF signaling. Additionally, we show that EGF synergizes with bile acids to trigger inflammatory signaling and NLRP3 inflammasome activation in HPC. Aiming at understanding the impact of this HPC specific response on the liver microenvironment we run a proteomic analysis of HPC secretome. Data show an enrichment in immune and TGF-ß regulators, ECM components and remodeling proteins in HPC secretome. Consistently, HPC-derived conditioned medium promotes hepatic stellate cell (HSC) activation and macrophage M1-like polarization. Strikingly, EGF and bile acids co-treatment leads to profound changes in the secretome composition, illustrated by an abolishment of HSC activating effect and by promoting macrophage M2-like polarization. Collectively, we provide new specific mechanisms behind HPC regulatory action during cholestatic liver injury, with an active role in cellular interactome and inflammatory response regulation. Moreover, findings prove a key contribution for EGFR signaling jointly with bile acids in HPC-mediated actions.


Assuntos
Ácidos e Sais Biliares , Receptores ErbB , Inflamação , Camundongos Endogâmicos C57BL , Transdução de Sinais , Animais , Ácidos e Sais Biliares/metabolismo , Receptores ErbB/metabolismo , Camundongos , Inflamação/metabolismo , Células-Tronco/metabolismo , Fígado/metabolismo , Fígado/patologia , Masculino , Proteômica , Macrófagos/metabolismo , Células Estreladas do Fígado/metabolismo
10.
Food Res Int ; 186: 114356, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38729722

RESUMO

The quality of Pacific oyster (Crassostrea gigas) can be affected by many factors during depuration, in which temperature is the major element. In this study, we aim to determine the quality and plasmalogen changes in C. gigas depurated at different temperatures. The quality was significantly affected by temperature, represented by varying survival rate, glycogen content, total antioxidant capacity, alkaline phosphatase activity between control and stressed groups. Targeted MS analysis demonstrated that plasmalogen profile was significantly changed during depuration with PUFA-containing plasmalogen species being most affected by temperature. Proteomics analysis and gene expression assay further verified that plasmalogen metabolism is regulated by temperature, specifically, the plasmalogen synthesis enzyme EPT1 was significantly downregulated by high temperature and four plasmalogen-related genes (GPDH, PEDS, Pex11, and PLD1) were transcriptionally regulated. The positive correlations between the plasmalogen level and quality characteristics suggested plasmalogen could be regarded as a quality indicator of oysters during depuration.


Assuntos
Crassostrea , Plasmalogênios , Temperatura , Animais , Plasmalogênios/metabolismo , Plasmalogênios/análise , Crassostrea/genética , Crassostrea/metabolismo , Frutos do Mar/análise , Proteômica/métodos , Antioxidantes/metabolismo , Antioxidantes/análise , Fosfatase Alcalina/metabolismo , Qualidade dos Alimentos
11.
Transl Vis Sci Technol ; 13(5): 1, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38691083

RESUMO

Purpose: This feasibility study investigated the practicability of collecting and analyzing tear proteins from preterm infants at risk of retinopathy of prematurity (ROP). We sought to identify any tear proteins which might be implicated in the pathophysiology of ROP as well as prognostic markers. Methods: Schirmer's test was used to obtain tear samples from premature babies, scheduled for ROP screening, after parental informed consent. Mass spectrometry was used for proteomic analysis. Results: Samples were collected from 12 infants, which were all adequate for protein analysis. Gestational age ranged from 25 + 6 to 31 + 1 weeks. Postnatal age at sampling ranged from 19 to 66 days. One infant developed self-limiting ROP. Seven hundred one proteins were identified; 261 proteins identified in the majority of tear samples, including several common tear proteins, were used for analyses. Increased risk of ROP as determined by the postnatal growth ROP (G-ROP) criteria was associated with an increase in lactate dehydrogenase B chain in tears. Older infants demonstrated increased concentration of immunoglobulin complexes within their tear samples and two sets of twins in the cohort showed exceptionally similar proteomes, supporting validity of the analysis. Conclusions: Tear sampling by Schirmer test strips and subsequent proteomic analysis by mass spectrometry in preterm infants is feasible. A larger study is required to investigate the potential use of tear proteomics in identification of ROP. Translational Relevance: Tear sampling and subsequent mass spectrometry in preterm infants is feasible. Investigation of the premature tear proteome may increase our understanding of retinal development and provide noninvasive biomarkers for identification of treatment-warranted ROP.


Assuntos
Biomarcadores , Proteínas do Olho , Estudos de Viabilidade , Idade Gestacional , Recém-Nascido Prematuro , Proteômica , Retinopatia da Prematuridade , Lágrimas , Humanos , Retinopatia da Prematuridade/diagnóstico , Retinopatia da Prematuridade/metabolismo , Proteômica/métodos , Recém-Nascido , Feminino , Lágrimas/química , Lágrimas/metabolismo , Masculino , Biomarcadores/metabolismo , Biomarcadores/análise , Proteínas do Olho/metabolismo , Proteínas do Olho/análise , Lactente , Espectrometria de Massas/métodos
12.
Plant Cell Rep ; 43(5): 135, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38704787

RESUMO

KEY MESSAGE: The disruption of the SWL1 gene leads to a significant down regulation of chloroplast and secondary metabolites gene expression in Arabidopsis thaliana. And finally results in a dysfunction of chloroplast and plant growth. Although the development of the chloroplast has been a consistent focus of research, the corresponding regulatory mechanisms remain unidentified. In this study, the CRISPR/Cas9 system was used to mutate the SWL1 gene, resulting in albino cotyledons and variegated true leaf phenotype. Confocal microscopy and western blot of chloroplast protein fractions revealed that SWL1 localized in the chloroplast stroma. Electron microscopy indicated chloroplasts in the cotyledons of swl1 lack well-defined grana and internal membrane structures, and similar structures have been detected in the albino region of variegated true leaves. Transcriptome analysis revealed that down regulation of chloroplast and nuclear gene expression related to chloroplast, including light harvesting complexes, porphyrin, chlorophyll metabolism and carbon metabolism in the swl1 compared to wild-type plant. In addition, proteomic analysis combined with western blot analysis, showed that a significant decrease in chloroplast proteins of swl1. Furthermore, the expression of genes associated with secondary metabolites and growth hormones was also reduced, which may be attributed to SWL1 associated with absorption and fixation of inorganic carbon during chloroplast development. Together, the above findings provide valuable information to elucidate the exact function of SWL1 in chloroplast biogenesis and development.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Cloroplastos , Regulação da Expressão Gênica de Plantas , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Cloroplastos/metabolismo , Cloroplastos/ultraestrutura , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/ultraestrutura , Cotilédone/genética , Cotilédone/metabolismo , Cotilédone/crescimento & desenvolvimento , Proteômica , Proteínas de Cloroplastos/metabolismo , Proteínas de Cloroplastos/genética , Biogênese de Organelas , Clorofila/metabolismo , Sistemas CRISPR-Cas
13.
Bone Res ; 12(1): 27, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714649

RESUMO

Tendon adhesion is a common complication after tendon injury with the development of accumulated fibrotic tissues without effective anti-fibrotic therapies, resulting in severe disability. Macrophages are widely recognized as a fibrotic trigger during peritendinous adhesion formation. However, different clusters of macrophages have various functions and receive multiple regulation, which are both still unknown. In our current study, multi-omics analysis including single-cell RNA sequencing and proteomics was performed on both human and mouse tendon adhesion tissue at different stages after tendon injury. The transcriptomes of over 74 000 human single cells were profiled. As results, we found that SPP1+ macrophages, RGCC+ endothelial cells, ACKR1+ endothelial cells and ADAM12+ fibroblasts participated in tendon adhesion formation. Interestingly, despite specific fibrotic clusters in tendon adhesion, FOLR2+ macrophages were identified as an antifibrotic cluster by in vitro experiments using human cells. Furthermore, ACKR1 was verified to regulate FOLR2+ macrophages migration at the injured peritendinous site by transplantation of bone marrow from Lysm-Cre;R26RtdTomato mice to lethally irradiated Ackr1-/- mice (Ackr1-/- chimeras; deficient in ACKR1) and control mice (WT chimeras). Compared with WT chimeras, the decline of FOLR2+ macrophages was also observed, indicating that ACKR1 was specifically involved in FOLR2+ macrophages migration. Taken together, our study not only characterized the fibrosis microenvironment landscape of tendon adhesion by multi-omics analysis, but also uncovered a novel antifibrotic cluster of macrophages and their origin. These results provide potential therapeutic targets against human tendon adhesion.


Assuntos
Movimento Celular , Macrófagos , Regeneração , Humanos , Animais , Macrófagos/metabolismo , Camundongos , Tendões/metabolismo , Tendões/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Traumatismos dos Tendões/patologia , Traumatismos dos Tendões/metabolismo , Traumatismos dos Tendões/genética , Proteômica , Feminino , Multiômica
14.
Nat Commun ; 15(1): 3837, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714665

RESUMO

Although metabolic reprogramming within tumor cells and tumor microenvironment (TME) is well described in breast cancer, little is known about how the interplay of immune state and cancer metabolism evolves during treatment. Here, we characterize the immunometabolic profiles of tumor tissue samples longitudinally collected from individuals with breast cancer before, during and after neoadjuvant chemotherapy (NAC) using proteomics, genomics and histopathology. We show that the pre-, on-treatment and dynamic changes of the immune state, tumor metabolic proteins and tumor cell gene expression profiling-based metabolic phenotype are associated with treatment response. Single-cell/nucleus RNA sequencing revealed distinct tumor and immune cell states in metabolism between cold and hot tumors. Potential drivers of NAC based on above analyses were validated in vitro. In summary, the study shows that the interaction of tumor-intrinsic metabolic states and TME is associated with treatment outcome, supporting the concept of targeting tumor metabolism for immunoregulation.


Assuntos
Neoplasias da Mama , Terapia Neoadjuvante , Microambiente Tumoral , Humanos , Neoplasias da Mama/imunologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Feminino , Microambiente Tumoral/imunologia , Regulação Neoplásica da Expressão Gênica , Perfilação da Expressão Gênica , Estudos Longitudinais , Pessoa de Meia-Idade , Proteômica , Adulto , Linhagem Celular Tumoral , Análise de Célula Única
15.
BMC Genomics ; 25(1): 449, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714914

RESUMO

BACKGROUND: Previous studies have shown that protein kinase MoKin1 played an important role in the growth, conidiation, germination and pathogenicity in rice blast fungus, Magnaporthe oryzae. ΔMokin1 mutant showed significant phenotypic defects and significantly reduced pathogenicity. However, the internal mechanism of how MoKin1 affected the development of physiology and biochemistry remained unclear in M. oryzae. RESULT: This study adopted a multi-omics approach to comprehensively analyze MoKin1 function, and the results showed that MoKin1 affected the cellular response to endoplasmic reticulum stress (ER stress). Proteomic analysis revealed that the downregulated proteins in ΔMokin1 mutant were enriched mainly in the response to ER stress triggered by the unfolded protein. Loss of MoKin1 prevented the ER stress signal from reaching the nucleus. Therefore, the phosphorylation of various proteins regulating the transcription of ER stress-related genes and mRNA translation was significantly downregulated. The insensitivity to ER stress led to metabolic disorders, resulting in a significant shortage of carbohydrates and a low energy supply, which also resulted in severe phenotypic defects in ΔMokin1 mutant. Analysis of MoKin1-interacting proteins indicated that MoKin1 really took participate in the response to ER stress. CONCLUSION: Our results showed the important role of protein kinase MoKin1 in regulating cellular response to ER stress, providing a new research direction to reveal the mechanism of MoKin1 affecting pathogenic formation, and to provide theoretical support for the new biological target sites searching and bio-pesticides developing.


Assuntos
Estresse do Retículo Endoplasmático , Proteínas Fúngicas , Oryza , Proteômica , Oryza/microbiologia , Oryza/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Doenças das Plantas/microbiologia , Regulação Fúngica da Expressão Gênica , Proteínas Quinases/metabolismo , Proteínas Quinases/genética , Mutação , Multiômica , Ascomicetos
16.
BMC Plant Biol ; 24(1): 377, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38714916

RESUMO

BACKGROUND: European beech (Fagus sylvatica L.) trees produce seeds irregularly; therefore, it is necessary to store beech seeds for forestation. Despite the acquisition of desiccation tolerance during development, beech seeds are classified as intermediate because they lose viability during long-term storage faster than typical orthodox seeds. In this study, beech seeds stored for short (3 years) or long (20 years) periods under optimal conditions and displaying 92 and 30% germination capacity, respectively, were compared. RESULTS: Aged seeds displayed increased membrane damage, manifested as electrolyte leakage and lipid peroxidation levels. Analyses have been based on embryonic axes, which contained higher levels of reactive oxygen species (ROS) and higher levels of protein-bound methionine sulfoxide (MetO) in aged seeds. Using label-free quantitative proteomics, 3,949 proteins were identified, of which 2,442 were reliably quantified pointing to 24 more abundant proteins and 35 less abundant proteins in beech seeds under long-term storage conditions. Functional analyses based on gene ontology annotations revealed that nucleic acid binding activity (molecular function), ribosome organization or biogenesis and transmembrane transport (cellular processes), translational proteins (protein class) and membranous anatomical entities (cellular compartment) were affected in aged seeds. To verify whether MetO, the oxidative posttranslational modification of proteins that can be reversed via the action of methionine sulfoxide reductase (Msr) enzymes, is involved in the aging of beech seeds, we identified and quantified 226 MetO-containing proteins, among which 9 and 19 exhibited significantly up- and downregulated MetO levels, respectively, in beech seeds under long-term storage conditions. Several Msr isoforms were identified and recognized as MsrA1-like, MsrA4, MsrB5 and MsrB5-like in beech seeds. Only MsrA1-like displayed decreased abundance in aged seeds. CONCLUSIONS: We demonstrated that the loss of membrane integrity reflected in the elevated abundance of membrane proteins had a higher impact on seed aging progress than the MetO/Msr system. Proteome analyses enabled us to propose protein Sec61 and glyceraldehyde-3-phosphate dehydrogenase as potential longevity modulators in beech seeds.


Assuntos
Fagus , Metionina , Proteínas de Plantas , Proteômica , Sementes , Fagus/metabolismo , Metionina/metabolismo , Metionina/análogos & derivados , Sementes/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Germinação , Espécies Reativas de Oxigênio/metabolismo , Regulação da Expressão Gênica de Plantas
17.
BMC Genomics ; 25(1): 451, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714919

RESUMO

BACKGROUND: Sturgeon species are living fossils that exhibit unique reproductive characteristics, and elucidation of the molecular processes governing the formation and quality of sturgeon eggs is crucial. However, comprehensive data on the protein composition of sturgeon ovarian fluid (OF) and eggs and their functional significance are lacking. To address this knowledge gap, the aim of the present study was to conduct a comprehensive comparative proteomic analysis of Siberian sturgeon OF and eggs using liquid chromatography-mass spectrometry (LC-MS/MS). RESULTS: A total of 617 proteins were identified in OF, and 565 proteins were identified in eggs. A total of 772 proteins showed differential abundance. Among the differentially abundant proteins, 365 were more abundant in OFs, while 407 were more abundant in eggs. We identified 339 proteins unique to OFs and 287 proteins specific to eggs, and further investigated the top 10 most abundant proteins in each. The functional annotation of the OF proteins highlighted their predominant association with immune system processes, including the complement and coagulation cascade, neutrophil and leukocyte-mediated immunity, cholesterol metabolism, and regulation of the actin cytoskeleton. Analysis of egg proteins revealed enrichment in metabolic pathways, such as oxidative phosphorylation and fatty acid metabolism, and protein ubiquitination and translation. OF-specific proteins included extracellular matrix and secretory vesicles, and eggs were enriched in proteins localized to mitochondria and ribosome components. CONCLUSIONS: This study presents the first comprehensive characterization of the protein composition of sturgeon OF and eggs and elucidates their distinct functional roles. These findings advance our understanding of sturgeon reproduction, OF-egg signaling and the origin of OF proteins. The mass spectrometry proteomics data have been deposited in the ProteomeXchange Consortium with the dataset identifier PXD044168 to ensure accessibility for further research.


Assuntos
Peixes , Ovário , Proteômica , Animais , Peixes/metabolismo , Feminino , Proteômica/métodos , Ovário/metabolismo , Espectrometria de Massas em Tandem , Cromatografia Líquida , Proteoma/metabolismo , Proteoma/análise , Proteínas de Peixes/metabolismo , Óvulo/metabolismo , Proteínas do Ovo/metabolismo , Proteínas do Ovo/análise
18.
J Cardiothorac Surg ; 19(1): 280, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38715006

RESUMO

OBJECTIVES: The long-term prognosis of patients with coronary artery disease (CAD) with diffuse long lesion underwent coronary artery bypass graft (CABG) or percutaneous coronary intervention (PCI) remains worse. Here, we aimed to identify distinctive genes involved and offer novel insights into the pathogenesis of diffuse long lesion. MATERIALS AND METHODS: Whole exome sequencing was performed on peripheral blood samples from 20 CAD patients with diffuse long lesion (CAD-DLL) and from 10 controls with focal lesion (CAD-FL) through a uniform pipeline. Proteomics analysis was conducted on the serum samples from 10 CAD-DLL patients and from 10 controls with CAD-FL by mass spectrometry. Bioinformatics analysis was performed to elucidate the involved genes, including functional annotation and protein-protein interaction analysis. RESULTS: A total of 742 shared variant genes were found in CAD-DLL patients but not in controls. Of these, 46 genes were identified as high-frequency variant genes (≥ 4/20) distinctive genes. According to the consensus variant site, 148 shared variant sites were found in the CAD-DLL group. The lysosome and cellular senescence-related pathway may be the most significant pathway in diffuse long lesion. Following the DNA-protein combined analysis, eight genes were screened whose expression levels were altered at both DNA and protein levels. Among these genes, the MAN2A2 gene, the only one that was highly expressed at the protein level, was associated with metabolic and immune-inflammatory dysregulation. CONCLUSIONS: Compared to individuals with CAD-FL, patients with CAD-DLL show additional variants. These findings contribute to the understanding of the mechanism of CAD-DLL and provide potential targets for the diagnosis and treatment of CAD-DLL.


Assuntos
Doença da Artéria Coronariana , Sequenciamento do Exoma , Proteômica , Humanos , Doença da Artéria Coronariana/genética , Doença da Artéria Coronariana/cirurgia , Doença da Artéria Coronariana/sangue , Masculino , Proteômica/métodos , Feminino , Pessoa de Meia-Idade , Idoso
19.
J Transl Med ; 22(1): 431, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38715059

RESUMO

BACKGROUND: In humans, two ubiquitously expressed N-myristoyltransferases, NMT1 and NMT2, catalyze myristate transfer to proteins to facilitate membrane targeting and signaling. We investigated the expression of NMTs in numerous cancers and found that NMT2 levels are dysregulated by epigenetic suppression, particularly so in hematologic malignancies. This suggests that pharmacological inhibition of the remaining NMT1 could allow for the selective killing of these cells, sparing normal cells with both NMTs. METHODS AND RESULTS: Transcriptomic analysis of 1200 NMT inhibitor (NMTI)-treated cancer cell lines revealed that NMTI sensitivity relates not only to NMT2 loss or NMT1 dependency, but also correlates with a myristoylation inhibition sensitivity signature comprising 54 genes (MISS-54) enriched in hematologic cancers as well as testis, brain, lung, ovary, and colon cancers. Because non-myristoylated proteins are degraded by a glycine-specific N-degron, differential proteomics revealed the major impact of abrogating NMT1 genetically using CRISPR/Cas9 in cancer cells was surprisingly to reduce mitochondrial respiratory complex I proteins rather than cell signaling proteins, some of which were also reduced, albeit to a lesser extent. Cancer cell treatments with the first-in-class NMTI PCLX-001 (zelenirstat), which is undergoing human phase 1/2a trials in advanced lymphoma and solid tumors, recapitulated these effects. The most downregulated myristoylated mitochondrial protein was NDUFAF4, a complex I assembly factor. Knockout of NDUFAF4 or in vitro cell treatment with zelenirstat resulted in loss of complex I, oxidative phosphorylation and respiration, which impacted metabolomes. CONCLUSIONS: Targeting of both, oxidative phosphorylation and cell signaling partly explains the lethal effects of zelenirstat in select cancer types. While the prognostic value of the sensitivity score MISS-54 remains to be validated in patients, our findings continue to warrant the clinical development of zelenirstat as cancer treatment.


Assuntos
Aciltransferases , Neoplasias , Fosforilação Oxidativa , Humanos , Neoplasias/metabolismo , Neoplasias/patologia , Neoplasias/genética , Linhagem Celular Tumoral , Fosforilação Oxidativa/efeitos dos fármacos , Aciltransferases/metabolismo , Ácido Mirístico/metabolismo , Proteômica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Perfilação da Expressão Gênica , Multiômica
20.
BMC Vet Res ; 20(1): 179, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38715123

RESUMO

Salmonella infections pose a significant threat to animal and human health. Phytochemicals present a potential alternative treatment. Galla chinensis tannic acid (GCTA), a hydrolyzable polyphenolic compound, inhibits bacterial growth and demonstrates potential as an alternative or supplement to antibiotics to prevent Salmonella infections. However, little is known about the antimicrobial mechanism of GCTA against Salmonella. Here, we revealed 456 differentially expressed proteins upon GCTA treatment, impacting pathways related to DNA replication, repair, genomic stability, cell wall biogenesis, and lipid metabolism using TMT-labeled proteomic analysis. TEM analysis suggested altered bacterial morphology and structure post-treatment. A Salmonella-infected-mouse model indicated that GCTA administration improved inflammatory markers, alleviated intestinal histopathological alterations, and reduced Salmonella enterica serovar Enteritidis (S. Enteritidis) colonization in the liver and spleen of Salmonella-infected mice. The LD50 of GCTA was 4100 mg/kg with an oral single dose, vastly exceeding the therapeutic dose. Thus, GCTA exhibited antibacterial and anti-infective activity against S. Enteritidis. Our results provided insight into the molecular mechanisms of these antibacterial effects, and highlights the potential of GCTA as an alternative to antibiotics.


Assuntos
Proteômica , Salmonelose Animal , Salmonella enteritidis , Taninos , Animais , Salmonella enteritidis/efeitos dos fármacos , Camundongos , Taninos/farmacologia , Taninos/uso terapêutico , Salmonelose Animal/tratamento farmacológico , Salmonelose Animal/microbiologia , Feminino , Antibacterianos/uso terapêutico , Antibacterianos/farmacologia , Camundongos Endogâmicos BALB C , Medicamentos de Ervas Chinesas , Polifenóis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...