Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Oxid Med Cell Longev ; 2019: 4721950, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31781336

RESUMO

Several neurodegenerative disorders exhibit selective vulnerability, with subsets of neurons more affected than others, possibly because of the high expression of an altered gene or the presence of particular features that make them more susceptible to insults. On the other hand, resilient neurons may display the ability to develop antioxidant defenses, particularly in diseases of mitochondrial origin, where oxidative stress might contribute to the neurodegenerative process. In this work, we investigated the oxidative stress response of embryonic fibroblasts and cortical neurons obtained from Afg3l2-KO mice. AFG3L2 encodes a subunit of a protease complex that is expressed in mitochondria and acts as both quality control and regulatory enzyme affecting respiration and mitochondrial dynamics. When cells were subjected to an acute oxidative stress protocol, the survival of AFG3L2-KO MEFs was not significantly influenced and was comparable to that of WT; however, the basal level of the antioxidant molecule glutathione was higher. Indeed, glutathione depletion strongly affected the viability of KO, but not of WT MEF, thereby indicating that oxidative stress is more elevated in KO MEF even though well controlled by glutathione. On the other hand, when cortical KO neurons were put in culture, they immediately appeared more vulnerable than WT to the acute oxidative stress condition, but after few days in vitro, the situation was reversed with KO neurons being more resistant than WT to acute stress. This compensatory, protective competence was not due to the upregulation of glutathione, rather of two mitochondrial antioxidant proteins: superoxide dismutase 2 and, at an even higher level, peroxiredoxin 3. This body of evidence sheds light on the capability of neurons to activate neuroprotective pathways and points the attention to peroxiredoxin 3, an antioxidant enzyme that might be critical for neuronal survival also in other disorders affecting mitochondria.


Assuntos
Proteases Dependentes de ATP/deficiência , ATPases Associadas a Diversas Atividades Celulares/deficiência , Córtex Cerebral/enzimologia , Regulação Enzimológica da Expressão Gênica , Doenças Neurodegenerativas/enzimologia , Neurônios/enzimologia , Estresse Oxidativo , Peroxirredoxina III/biossíntese , Regulação para Cima , Proteases Dependentes de ATP/metabolismo , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Animais , Sobrevivência Celular/genética , Córtex Cerebral/patologia , Camundongos , Camundongos Knockout , Mitocôndrias/enzimologia , Mitocôndrias/genética , Mitocôndrias/patologia , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/patologia , Neurônios/patologia , Peroxirredoxina III/genética
2.
Glia ; 67(8): 1526-1541, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30989755

RESUMO

Mitochondrial dysfunction causes neurodegeneration but whether impairment of mitochondrial homeostasis in astrocytes contributes to this pathological process remains largely unknown. The m-AAA protease exerts quality control and regulatory functions crucial for mitochondrial homeostasis. AFG3L2, which encodes one of the subunits of the m-AAA protease, is mutated in spinocerebellar ataxia SCA28 and in infantile syndromes characterized by spastic-ataxia, epilepsy and premature death. Here, we investigate the role of Afg3l2 and its redundant homologue Afg3l1 in the Bergmann glia (BG), radial astrocytes of the cerebellum that have functional connections with Purkinje cells (PC) and regulate glutamate homeostasis. We show that astrocyte-specific deletion of Afg3l2 in the mouse leads to late-onset motor impairment and to degeneration of BG, which display aberrant morphology, altered expression of the glutamate transporter EAAT2, and a reactive inflammatory signature. The neurological and glial phenotypes are drastically exacerbated when astrocytes lack both Afg31l and Afg3l2, and therefore, are totally depleted of the m-AAA protease. Moreover, mitochondrial stress responses and necroptotic markers are induced in the cerebellum. In both mouse models, targeted BG show a fragmented mitochondrial network and loss of mitochondrial cristae, but no signs of respiratory dysfunction. Importantly, astrocyte-specific deficiency of Afg3l1 and Afg3l2 triggers secondary morphological degeneration and electrophysiological changes in PCs, thus demonstrating a non-cell-autonomous role of glia in neurodegeneration. We propose that astrocyte dysfunction amplifies both neuroinflammation and glutamate excitotoxicity in patients carrying mutations in AFG3L2, leading to a vicious circle that contributes to neuronal death.


Assuntos
Proteases Dependentes de ATP/deficiência , ATPases Associadas a Diversas Atividades Celulares/deficiência , Astrócitos/enzimologia , Cerebelo/enzimologia , Metaloendopeptidases/deficiência , Mitocôndrias/enzimologia , Doenças Neurodegenerativas/enzimologia , Proteases Dependentes de ATP/genética , ATPases Associadas a Diversas Atividades Celulares/genética , Animais , Astrócitos/patologia , Cerebelo/patologia , Modelos Animais de Doenças , Feminino , Inflamação/enzimologia , Inflamação/patologia , Masculino , Metaloendopeptidases/genética , Camundongos Transgênicos , Mitocôndrias/patologia , Doenças Neurodegenerativas/patologia , Células de Purkinje/enzimologia , Células de Purkinje/patologia
3.
Proc Natl Acad Sci U S A ; 113(11): 3108-13, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26929331

RESUMO

The outer membrane of gram-negative bacteria is composed of phospholipids in the inner leaflet and lipopolysaccharides (LPS) in the outer leaflet. LPS is an endotoxin that elicits a strong immune response from humans, and its biosynthesis is in part regulated via degradation of LpxC (EC 3.5.1.108) and WaaA (EC 2.4.99.12/13) enzymes by the protease FtsH (EC 3.4.24.-). Because the synthetic pathways for both molecules are complex, in addition to being produced in strict ratios, we developed a computational model to interrogate the regulatory mechanisms involved. Our model findings indicate that the catalytic activity of LpxK (EC 2.7.1.130) appears to be dependent on the concentration of unsaturated fatty acids. This is biologically important because it assists in maintaining LPS/phospholipids homeostasis. Further crosstalk between the phospholipid and LPS biosynthetic pathways was revealed by experimental observations that LpxC is additionally regulated by an unidentified protease whose activity is independent of lipid A disaccharide concentration (the feedback source for FtsH-mediated LpxC regulation) but could be induced in vitro by palmitic acid. Further experimental analysis provided evidence on the rationale for WaaA regulation. Overexpression of waaA resulted in increased levels of 3-deoxy-d-manno-oct-2-ulosonic acid (Kdo) sugar in membrane extracts, whereas Kdo and heptose levels were not elevated in LPS. This implies that uncontrolled production of WaaA does not increase the LPS production rate but rather reglycosylates lipid A precursors. Overall, the findings of this work provide previously unidentified insights into the complex biogenesis of the Escherichia coli outer membrane.


Assuntos
Membrana Celular/metabolismo , Escherichia coli/metabolismo , Ácidos Graxos/metabolismo , Lipopolissacarídeos/metabolismo , Lipídeos de Membrana/metabolismo , Fosfolipídeos/metabolismo , Transferases/fisiologia , Proteases Dependentes de ATP/deficiência , Proteases Dependentes de ATP/genética , Acetiltransferases/deficiência , Acetiltransferases/genética , Amidoidrolases/fisiologia , Catálise , Biologia Computacional , Proteínas de Escherichia coli/genética , Ácido Graxo Sintase Tipo II/deficiência , Ácido Graxo Sintase Tipo II/genética , Ácidos Graxos Insaturados/metabolismo , Regulação Bacteriana da Expressão Gênica , Heptoses/biossíntese , Lipídeo A/biossíntese , Redes e Vias Metabólicas/fisiologia , Modelos Biológicos , Biogênese de Organelas , Ácido Palmítico/farmacologia , Açúcares Ácidos/metabolismo , Transferases/biossíntese , Transferases/genética
4.
BMC Microbiol ; 13: 179, 2013 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-23898868

RESUMO

BACKGROUND: The growth of Escherichia coli at elevated temperatures is limited due to the inherent instability of homoserine o-succinyltransferase, MetA, which is the first enzyme in the methionine biosynthesis pathway. MetA is also unstable under other stressful conditions, such as weak organic acids and oxidative stress. The MetA protein unfolds, even at 25°C, forms considerable aggregates at 37°C and completely aggregates at 44°C. RESULTS: We extended the MetA mutation studies using a consensus concept based on statistics and sequence database analysis to predict the point mutations resulting in increased MetA stability. In this study, four single amino acid substitutions (Q96K, I124L, I229Y and F247Y) in MetA designed according to the consensus concept and using the I-mutant2.0 modeling tool conferred accelerated growth on the E. coli strain WE at 44°C. MetA mutants that enabled E. coli growth at higher temperatures did not display increased melting temperatures (Tm) or enhanced catalytic activity but did show improved in vivo stability at mild (37°C) and elevated (44°C) temperatures. Notably, we observed that the stabilized MetA mutants partially recovered the growth defects of E. coli mutants in which ATP-dependent proteases or the DnaK chaperone was deleted. These results suggest that the impaired growth of these E. coli mutants primarily reflect the inherent instability of MetA and, thus, the methionine supply. As further evidence, the addition of methionine recovered most of the growth defects in mutants lacking either ATP-dependent proteases or the DnaK chaperone. CONCLUSIONS: A collection of stable single-residue mutated MetA enzymes were constructed and investigated as background for engineering the stabilized mutants. In summary, the mutations in a single gene, metA, reframe the window of growth temperature in both normal and mutant E. coli strains.


Assuntos
Proteases Dependentes de ATP/deficiência , Proteínas de Escherichia coli/metabolismo , Escherichia coli/crescimento & desenvolvimento , Proteínas de Choque Térmico HSP70/deficiência , Homoserina O-Succiniltransferase/metabolismo , Metionina/metabolismo , Substituição de Aminoácidos , Estabilidade Enzimática , Escherichia coli/enzimologia , Escherichia coli/genética , Escherichia coli/efeitos da radiação , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Homoserina O-Succiniltransferase/química , Homoserina O-Succiniltransferase/genética , Mutação de Sentido Incorreto , Mutação Puntual , Temperatura
5.
Hum Mol Genet ; 21(17): 3858-70, 2012 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-22678058

RESUMO

The mitochondrial protein AFG3L2 forms homo-oligomeric and hetero-oligomeric complexes with paraplegin in the inner mitochondrial membrane, named m-AAA proteases. These complexes are in charge of quality control of misfolded proteins and participate in the regulation of OPA1 proteolytic cleavage, required for mitochondrial fusion. Mutations in AFG3L2 cause spinocerebellar ataxia type 28 and a complex neurodegenerative syndrome of childhood. In this study, we demonstrated that the loss of AFG3L2 in mouse embryonic fibroblasts (MEFs) reduces mitochondrial Ca(2+) uptake capacity. This defect is neither a consequence of global alteration in cellular Ca(2+) homeostasis nor of the reduced driving force for Ca(2+) internalization within mitochondria, since cytosolic Ca(2+) transients and mitochondrial membrane potential remain unaffected. Moreover, experiments in permeabilized cells revealed unaltered mitochondrial Ca(2+) uptake speed in Afg3l2(-/-) cells, indicating the presence of functional Ca(2+) uptake machinery. Our results show that the defective Ca(2+) handling in Afg3l2(-/-) cells is caused by fragmentation of the mitochondrial network, secondary to respiratory dysfunction and the consequent processing of OPA1. This leaves a number of mitochondria devoid of connections to the ER and thus without Ca(2+) elevations, hampering the proper Ca(2+) diffusion along the mitochondrial network. The recovery of mitochondrial fragmentation in Afg3l2(-/-) MEFs by overexpression of OPA1 rescues the impaired mitochondrial Ca(2+) buffering, but fails to restore respiration. By linking mitochondrial morphology and Ca(2+) homeostasis, these findings shed new light in the molecular mechanisms underlining neurodegeneration caused by AFG3L2 mutations.


Assuntos
Proteases Dependentes de ATP/deficiência , Proteases Dependentes de ATP/metabolismo , Cálcio/metabolismo , Retículo Endoplasmático/metabolismo , Mitocôndrias/metabolismo , ATPases Associadas a Diversas Atividades Celulares , Animais , Respiração Celular , Embrião de Mamíferos/citologia , Fibroblastos/metabolismo , Fibroblastos/patologia , GTP Fosfo-Hidrolases/metabolismo , Potencial da Membrana Mitocondrial , Camundongos , Modelos Biológicos
6.
Diabetologia ; 54(6): 1437-46, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21347624

RESUMO

AIMS/HYPOTHESIS: Lon protease degrades oxidatively damaged proteins in mitochondrial matrix. To examine the relationships between mitochondrial quality control, mitochondrial functions and diabetes, we investigated whether lon protease deficiency influences insulin resistance by affecting mitochondrial function. METHODS: Lon protease-specific small interfering RNA (siRNA) was transfected into human liver SK-HEP-1 cells and changes in molecules related to insulin resistance were analysed. RESULTS: Reduction in lon protease was achieved using specific siRNA-induced mitochondrial dysfunction in human liver SK-HEP-1 cells. Concurrently, insulin signalling and subsequent insulin action were impaired and levels of gluconeogenic enzymes were increased by lon protein deficiency. Moreover, the activity of mitogen-activated protein kinases and transcription factors related to hepatic gluconeogenesis were elevated in LON (also known as LONP1) siRNA-transfected cells via increased intracellular reactive oxygen species production. Overproduction of lon protease restored mitochondrial function and also diminished the insulin resistance induced by treatment with cholesterol and palmitate. In addition, levels of lon protease decreased dramatically in livers of diabetic db/db mice compared with their lean mice counterparts. CONCLUSIONS/INTERPRETATION: Here we have demonstrated that reduction of lon protease induced hepatic insulin resistance by lowering mitochondrial function. This is the first study to report that defects in mitochondrial protein quality control could cause insulin resistance and diabetes.


Assuntos
Proteases Dependentes de ATP/deficiência , Regulação para Baixo/fisiologia , Hepatócitos/fisiologia , Resistência à Insulina/fisiologia , Mitocôndrias Hepáticas/enzimologia , Mitocôndrias Hepáticas/fisiologia , Proteínas Mitocondriais/deficiência , Protease La/deficiência , Proteases Dependentes de ATP/metabolismo , Animais , Linhagem Celular , Diabetes Mellitus/metabolismo , Diabetes Mellitus/patologia , Modelos Animais de Doenças , Gluconeogênese/fisiologia , Hepatócitos/patologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Proteínas Mitocondriais/metabolismo , Protease La/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/fisiologia , Fatores de Transcrição/metabolismo
7.
Microb Cell Fact ; 9: 41, 2010 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-20509924

RESUMO

BACKGROUND: Bacterial inclusion bodies (IBs) are key intermediates for protein production. Their quality affects the refolding yield and further purification. Recent functional and structural studies have revealed that IBs are not dead-end aggregates but undergo dynamic changes, including aggregation, refunctionalization of the protein and proteolysis. Both, aggregation of the folding intermediates and turnover of IBs are influenced by the cellular situation and a number of well-studied chaperones and proteases are included. IBs mostly contain only minor impurities and are relatively homogenous. RESULTS: IBs of alpha-glucosidase of Saccharomyces cerevisiae after overproduction in Escherichia coli contain a large amount of (at least 12 different) major product fragments, as revealed by two-dimensional polyacrylamide gel electrophoresis (2D PAGE). Matrix-Assisted-Laser-Desorption/Ionization-Time-Of-Flight Mass-Spectrometry (MALDI-ToF MS) identification showed that these fragments contain either the N- or the C-terminus of the protein, therefore indicate that these IBs are at least partially created by proteolytic action. Expression of alpha-glucosidase in single knockout mutants for the major proteases ClpP, Lon, OmpT and FtsH which are known to be involved in the heat shock like response to production of recombinant proteins or to the degradation of IB proteins, clpP, lon, ompT, and ftsH did not influence the fragment pattern or the composition of the IBs. The quality of the IBs was also not influenced by the sampling time, cultivation medium (complex and mineral salt medium), production strategy (shake flask, fed-batch fermentation process), production strength (T5-lac or T7 promoter), strain background (K-12 or BL21), or addition of different protease inhibitors during IB preparation. CONCLUSIONS: alpha-glucosidase is fragmented before aggregation, but neither by proteolytic action on the IBs by the common major proteases, nor during downstream IB preparation. Different fragments co-aggregate in the process of IB formation together with the full-length product. Other intracellular proteases than ClpP or Lon must be responsible for fragmentation. Reaggregation of protease-stable alpha-glucosidase fragments during in situ disintegration of the existing IBs does not seem to occur.


Assuntos
Escherichia coli/metabolismo , Corpos de Inclusão/metabolismo , Proteínas Recombinantes/metabolismo , Proteases Dependentes de ATP/deficiência , Proteases Dependentes de ATP/genética , Proteases Dependentes de ATP/metabolismo , Sequência de Aminoácidos , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Eletroforese em Gel Bidimensional , Endopeptidase Clp/deficiência , Endopeptidase Clp/genética , Endopeptidase Clp/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Dados de Sequência Molecular , Peptídeo Hidrolases/deficiência , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/metabolismo , Protease La/deficiência , Protease La/genética , Protease La/metabolismo , Controle de Qualidade , RNA Bacteriano/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/normas , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/normas , Fator sigma/deficiência , Fator sigma/genética , Fator sigma/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , alfa-Glucosidases/genética , alfa-Glucosidases/metabolismo , alfa-Glucosidases/normas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...