Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.042
Filtrar
1.
J Drugs Dermatol ; 23(5): 366-375, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38709706

RESUMO

OBJECTIVE:   This study aimed to investigate the ultraviolet (UV) protection/repair benefits of a patented Amino Acid Complex (AAComplex). METHODS: I) AAComplex was incubated with dermal fibroblasts, with/without UVA, and collagen I was measured with a GlasBoxPlus device. II) A lotion, with/without AAComplex (1%) was applied topically to skin explants, following UVA irradiation, and quantified for health-related biomarkers (TNFalpha, histamine, and MMP-1). III) A broad spectrum sunscreen with SPF 46 and a skincare serum containing AAComplex (2%) were assessed using epidermal equivalents, in the presence of UV irradiation, for effects on IL-1alpha, thymine dimers, Ki-67, filaggrin and Nrf2. RESULTS: I) Collagen I synthesis in dermal fibroblasts was significantly decreased after UVA compared to without UV. The presence of AAComplex prevented this decrease. II) UVA irradiation of skin explants increased histamine, TNFα, and MMP-1. Hydrocortisone aceponate cream significantly decreases all 3 biomarkers. AAComplex contained lotion also significantly decreased all 3 biomarkers, the no AAComplex control lotion only reduced histamine. III) With the regimen of sunscreen + AAComplex contained skincare serum, the significant reduction in IL-1alpha was observed along with a complete recovery of Ki-67 and stimulation of filaggrin and Nrf2T. No thymine dimer positive cell was observed indicating the most positive skin impact from the regiment.  Conclusion: This research using different human skin models demonstrated that AAComplex can provide protection and damage repair caused by UV, at the ingredient level also when formulated in a serum or lotion formula. Skin may be best protected from UV damage when the regimen is used.   J Drugs Dermatol. 2024;23(5):366-375. doi:10.36849/JDD.7916.


Assuntos
Fibroblastos , Proteínas Filagrinas , Metaloproteinase 1 da Matriz , Fator 2 Relacionado a NF-E2 , Fator de Necrose Tumoral alfa , Raios Ultravioleta , Humanos , Raios Ultravioleta/efeitos adversos , Fibroblastos/efeitos dos fármacos , Fibroblastos/efeitos da radiação , Fibroblastos/metabolismo , Metaloproteinase 1 da Matriz/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Pele/efeitos da radiação , Pele/efeitos dos fármacos , Pele/metabolismo , Protetores Solares/administração & dosagem , Protetores Solares/química , Protetores Solares/farmacologia , Aminoácidos/administração & dosagem , Aminoácidos/farmacologia , Aminoácidos/química , Interleucina-1alfa/metabolismo , Histamina/sangue , Creme para a Pele/administração & dosagem , Biomarcadores/metabolismo , Colágeno Tipo I , Proteínas de Filamentos Intermediários/metabolismo , Antígeno Ki-67/metabolismo , Dímeros de Pirimidina , Células Cultivadas
2.
Chemosphere ; 358: 142235, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38705416

RESUMO

Ultraviolet (UV) radiation is a major contributor to skin aging, cancer, and other detrimental health effects. Sunscreens containing FDA-approved UV filters, like avobenzone, offer protection but suffer from photodegradation and potential phototoxicity. Encapsulation, antioxidants, and photostabilizers are strategies employed to combat these drawbacks. Octocrylene, an organic UV filter, utilizes nanotechnology to enhance sun protection factor (SPF). This review examines recent literature on octocrylene-enriched sunscreens, exploring the interplay between environmental impact, nanotechnological advancements, and clinical trial insights. A critical focus is placed on the environmental consequences of sunscreen use, particularly the potential hazards UV filters pose to marine ecosystems. Research in the Mediterranean Sea suggests bacterial sensitivity to these filters, raising concerns about their integration into the food chain. This review aims to guide researchers in developing effective strategies for photostabilization of UV filters. By combining encapsulation, photostabilizers, and antioxidants, researchers can potentially reduce phototoxic effects and contribute to developing more environmentally friendly sunscreens.


Assuntos
Protetores Solares , Raios Ultravioleta , Protetores Solares/química , Protetores Solares/toxicidade , Humanos , Acrilatos/química , Nanotecnologia , Antioxidantes/química , Fator de Proteção Solar
3.
Talanta ; 276: 126223, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38728806

RESUMO

2-ethylhexyl salicylate (EHS) is used as a UV filter in personal-care products, such as sunscreen, to prevent skin damage through UV radiation. The application of EHS-containing products leads to systemic EHS absorption, metabolization and excretion. To measure EHS and its corresponding metabolite levels in urine, a comprehensive analytical procedure based on an extended enzymatic hydrolysis, on-line-SPE, and UPLC-MS/MS was developed. The method covers a large profile of seven metabolites (including isomeric structures) as well as EHS itself in a run time only of 18 min. Easy sample preparation, consisting of a 2-h hydrolysis step, followed by on-line enrichment and purification, add to the efficiency of the method. An update, compared to a previous method for the determination of EHS and metabolites in urine, is that, during hydrolysis, both glucuronide and sulfate conjugates are considered. The method was furthermore applied to urine samples after a real-life exposure scenario to EHS-containing sunscreen. The method is highly sensitive with limits of detection ranging from 6 to 65 ng/L. Moreover, it is characterized by good precision data, accuracy, and robustness to matrix influences. Application of the method to urine samples following dermal exposure to an EHS-containing sunscreen revealed EHS as the main biomarker after dermal exposure, followed by the major biomarkers 5OH-EHS, 5cx-EPS, 4OH-EHS and 5oxo-EHS. The expansion and optimization of this method decisively contributes to the research on the dermal metabolism of EHS and can be applied in exposure studies and for human biomonitoring.


Assuntos
Salicilatos , Extração em Fase Sólida , Protetores Solares , Espectrometria de Massas em Tandem , Humanos , Espectrometria de Massas em Tandem/métodos , Hidrólise , Protetores Solares/metabolismo , Protetores Solares/química , Salicilatos/urina , Salicilatos/metabolismo , Raios Ultravioleta , Cromatografia Líquida/métodos , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massa com Cromatografia Líquida
4.
Cutan Ocul Toxicol ; 43(2): 134-147, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38608452

RESUMO

OBJECTIVES: The aim of this study of sun protection factor boosting effect sunscreen compositions with herbal extract and combination with octocrylene. MATERIALS AND METHODS: The standardized herbal extracts procured and studied their sun protection Factors. Camellia Sinensis (Green tea) leaf Extract, Eclipta prostrata (bhringraj) leaf extract are selected for the development of the herbal sunscreen composition along with octocrylene as synthetic sunscreen. The developed sunscreen composition contains defined concentration of herbal extracts and octocrylene were evaluated for their different physicochemical properties and stability. Sun protection factor boosting effect of herbal extracts is studied combination with octocrylene. RESULTS: Invitro SPF studied for herbal extract individually and combination with octocrylene. The results of Invitro SPF study revealed the presence of green tea extract and, Eclipta prostrata (bhringraj) leaf extract shows excellent sun protection factor (SPF) boosting value of sunscreen composition containing 5% concentration of herbal extract and octocrylene. The sunscreen formulation containing 5% herbal extracts are stable for 12 weeks in an oven (45 °C). CONCLUSION: The findings of this in-vitro SPF study revealed a sun protection boosting capacity of green tea extract and bhringraj extract confirmed. SUMMARY: The over exposure of human skin to Ultra-Violet Radiation (UVR) can trigger photodamage, UV burn, pigmentation, erythema, and enhance the chance of dermal carcinoma. UVR causes DNA damage, which leads to dermal cancer. Daily sunscreens protect the skin from the adverse effects of sun rays, especially UVB (290-320 nm) and UVA (320-400 nm). The ozone layer filters UVC (200-290 nm) radiation when it enters into atmosphere of the earth. UVB causes sunburn, photo damage and cause mutagenic changes in nucleic acids. UVA increases ROS (Reactive Oxygen Species) accumulation. ROS is responsible for cell repair which leads to carcinogenesis, and the cause of photodamage. Herbal extracts contain polyphenols, and flavonoids act as a natural sunscreen that will filter Ultra-Violet (UVB) light and contain antioxidant characteristics to modulate the photo-oxidative damage that results from UV-induced Reactive Oxygen Species production. The UVR protection of most herbal extracts are required to attain the higher UV protection in the sun care products. The approaches for preparing sun care products with higher Sun Protection Factor (SPF) possible through Oil in water formulation with herbal extract combinations of octocrylene. The developed sunscreen composition containing different concentration of herbal extracts were evaluated for their other physicochemical properties and stability. Invitro SPF was studied for Camellia Sinensis (Green tea) Leaf Extract and Eclipta prostrata (bhringraj) leaf extract individually and in combination with octocrylene. The results of the Invitro SPF study revealed the Camellia Sinensis (Green tea) Leaf Extract with octocrylene shows better Sun protection factor than Eclipta prostrata (bhringraj) leaf extract with octocrylene. The Sun Protection Factor (SPF) enhancement value of sunscreen compositions was compared to both sunscreen macroemulsion and nanoemulsion.


Assuntos
Acrilatos , Extratos Vegetais , Fator de Proteção Solar , Protetores Solares , Protetores Solares/química , Extratos Vegetais/química , Humanos , Acrilatos/química , Raios Ultravioleta/efeitos adversos , Folhas de Planta/química , Camellia sinensis/química , Chá/química
5.
Photochem Photobiol Sci ; 23(5): 853-869, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38613600

RESUMO

Synthetic sunscreen offers protection against excessive exposure to ultraviolet (UV) radiation from the sun, and protects the skin from possible damage. However, they have low efficacy against the formation of reactive oxygen species (ROS), which are highly reactive molecules that can be generated in the skin when it is exposed to UV radiation, and are known to play a role in oxidative stress, which can contribute to skin aging and damage. Thus, there is an ongoing search for sunscreens that do not have these negative effects. One promising source for these is natural products. Therefore, the current patent review summarizes topical formulations made from natural compounds that have antioxidant properties and can be used as photoprotective or anti-aging agents, either using a single natural extract or a combination of extracts. The review reports basic patent information (applicant country, type of applicant, and year of filing) and gives details about the invention, including its chemical composition, and the in vitro and in vivo tests performed. These patents describe natural products that can be used to protect the skin and validate their efficacy, and safety, in addition to standardizing their formulations. The compositions described illustrate the consistent innovation in the use of natural products to protect against UV damage and photoaging disorders, a promising field which is receiving growing global recognition.


Assuntos
Produtos Biológicos , Protetores Solares , Raios Ultravioleta , Protetores Solares/farmacologia , Protetores Solares/química , Humanos , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Raios Ultravioleta/efeitos adversos , Patentes como Assunto , Pele/efeitos dos fármacos , Pele/efeitos da radiação , Envelhecimento da Pele/efeitos dos fármacos , Envelhecimento da Pele/efeitos da radiação , Antioxidantes/farmacologia , Antioxidantes/química , Animais , Extratos Vegetais/farmacologia , Extratos Vegetais/química
6.
Toxicol In Vitro ; 98: 105835, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38679218

RESUMO

Octocrylene is a common sun filter ingredient used to protect the skin from damaging UV rays. Benzophenone is an impurity found in formulations containing octocrylene. [14C]-Benzophenone was spiked (0.1 g/L) into 2 commercial sunscreen formulations; Neutrogena® Beach Defense Sunscreen Spray Broad Spectrum SPF 70 Aerosol, Neutrogena® Ultra Sheer Body Mist Sunscreen Broad Spectrum SPF 30 Aerosol, and an acetone vehicle. The formulations were applied (ca 2 µL/cm2) to dermatomed human skin mounted in static diffusion cells in vitro. Receptor fluid was collected up to 24 h post dose. All samples were analyzed by liquid scintillation counting. The dermal delivery of [14C]-Benzophenone was 10.02, 9.04 and 5.19% for the 3 formulations. However, the [14C]-Benzophenone mass balances were low; 81.5, 85.3 and 8.02%, respectively. A volatility test was performed replacing skin with aluminum foil for the sunscreen formulations only. The [14C]-Benzophenone mass balance at dosing was 99% but fell to 56.9 and 60.6% at 24 h post dose, confirming the losses were due to [14C]-Benzophenone volatility. A conservative dermal absorption value of 12.42% was proposed to cover [14C]-Benzophenone containing formulations.


Assuntos
Benzofenonas , Radioisótopos de Carbono , Absorção Cutânea , Pele , Protetores Solares , Benzofenonas/farmacocinética , Benzofenonas/administração & dosagem , Humanos , Protetores Solares/farmacocinética , Protetores Solares/química , Protetores Solares/administração & dosagem , Pele/metabolismo , Técnicas In Vitro , Acrilatos/química , Acrilatos/farmacocinética
7.
Int J Biol Macromol ; 267(Pt 2): 131462, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38614163

RESUMO

The rapid development of the industry has led to the destruction of the earth's ozone layer, resulting in an increasingly serious problem of excessive ultraviolet radiation. Exploring effective measures to address these problems has become a hot topic. Lignin shows promise in the design and preparation of anti-ultraviolet products due to its inherent properties. However, it is important to investigate way to enhance the reactivity of lignin and determine its application form in related products. In this study, phenolic reactions with tea polyphenols were conducted through acid-catalyzed conversion, utilizing organic solvent lignin as the primary material. The phenolic hydroxyl content of the original lignin increased significantly by 218.8 %, resulting in notable improvements in UV resistance and oxidation resistance for phenolic lignin. Additionally, micro-nanocapsule emulsions were formed using phenolic lignin particles as surfactants through ultrasonic cavitation with small-molecule sunscreens. A bio-based sunscreen was prepared with phenolated lignin micro-nanocapsules as the active ingredient, achieving an SPF 100.2 and demonstrating excellent stability. The sunscreen also exhibited strong antioxidant properties and impermeability, ensuring user safety. This research offers a current solution for improving the application of lignin in sunscreens while also broadening the potential uses of plant-based materials in advanced functional products.


Assuntos
Lignina , Oxirredução , Polifenóis , Protetores Solares , Chá , Raios Ultravioleta , Lignina/química , Polifenóis/química , Catálise , Chá/química , Protetores Solares/química , Protetores Solares/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Ácidos/química
8.
Artigo em Inglês | MEDLINE | ID: mdl-38518984

RESUMO

Benzophenone chemicals (BPs) have been developed to prevent the adverse effects of UV radiation and they are widely contaminated. 11ß-Hydroxysteroid dehydrogenase 1 (11ß-HSD1) catalyze the conversion of inactive glucocorticoid to active glucocorticoid, playing critical role in many physiological function. However, the direct effect of BPs on human, pig, rat, and mouse 11ß-HSD1 remains unclear. In this study, we screened the inhibitory strength of 12 BPs on 4 species, and performed the structure-activity relationship (SAR) and in silico docking analysis. The inhibitory potency of BPs was: for human 11ß-HSD1, BP6 (IC50 = 18.76 µM) > BP8 (40.84 µM) > BP (88.89 µM) > other BPs; for pig 11ß-HSD1, BP8 (45.57 µM) > BP6 (59.44 µM) > BP2 (65.12 µM) > BP (135.56 µM) > other BPs; for rat 11ß-HSD1, BP7 (67.17 µM) > BP (68.83 µM) > BP8 (133.04 µM) > other BPs; and for mouse 11ß-HSD1, BP8 (41.41 µM) > BP (50.61 µM) > other BPs. These BP chemicals were mixed/competitive inhibitors of these 11ß-HSD1 enzymes. The 2,2'-dihydroxy substitutions in two benzene rings play a key role in enhancing the effectiveness of inhibiting 11ß-HSD1, possibly via increasing hydrogen bond interactions. Docking analysis shows that these BPs bind to NADPH/glucocorticoid binding sites and forms hydrogen bonds with catalytic residues Ser and/or Tyr. In conclusion, this study demonstrates that BP chemicals can inhibit 11ß-HSD1 from 4 species, and there are subtle species-dependent difference in the inhibitory strength and structural variations of BPs.


Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 1 , Benzofenonas , Simulação de Acoplamento Molecular , Animais , Benzofenonas/química , Benzofenonas/farmacologia , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/antagonistas & inibidores , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/metabolismo , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/química , Humanos , Relação Estrutura-Atividade , Ratos , Camundongos , Suínos , Protetores Solares/química , Protetores Solares/farmacologia , Protetores Solares/toxicidade , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Especificidade da Espécie , Raios Ultravioleta
9.
Int J Toxicol ; 43(3): 243-252, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38183303

RESUMO

This work investigated the safety of extracts obtained from plants growing in Colombia, which have previously shown UV-filter/antigenotoxic properties. The compounds in plant extracts obtained by the supercritical fluid (CO2) extraction method were identified using gas chromatography coupled to mass spectrometry (GC/MS) analysis. Cytotoxicity measured as cytotoxic concentration 50% (CC50) and genotoxicity of the plant extracts and some compounds were studied in human fibroblasts using the trypan blue exclusion assay and the Comet assay, respectively. The extracts from Pipper eriopodon and Salvia aratocensis species and the compound trans-ß-caryophyllene were clearly cytotoxic to human fibroblasts. Conversely, Achyrocline satureioides, Chromolaena pellia, and Lippia origanoides extracts were relatively less cytotoxic with CC50 values of 173, 184, and 89 µg/mL, respectively. The C. pellia and L. origanoides extracts produced some degree of DNA breaks at cytotoxic concentrations. The cytotoxicity of the studied compounds was as follows, with lower CC50 values representing the most cytotoxic compounds: resveratrol (91 µM) > pinocembrin (144 µM) > quercetin (222 µM) > titanium dioxide (704 µM). Quercetin was unique among the compounds assayed in being genotoxic to human fibroblasts. Our work indicates that phytochemicals can be cytotoxic and genotoxic, demonstrating the need to establish safe concentrations of these extracts for their potential use in cosmetics.


Assuntos
Sobrevivência Celular , Fibroblastos , Extratos Vegetais , Protetores Solares , Humanos , Protetores Solares/toxicidade , Protetores Solares/química , Extratos Vegetais/toxicidade , Extratos Vegetais/química , Fibroblastos/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ensaio Cometa , Salvia/química , Dano ao DNA/efeitos dos fármacos , Células Cultivadas , Lippia/química , Cromatografia Gasosa-Espectrometria de Massas
10.
Photochem Photobiol ; 100(2): 298-313, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37312642

RESUMO

Sunscreens provide a frontline defense for our DNA against the damage caused by ultraviolet (UV) radiation. The active ingredients in topically applied sunscreens that provide this defense are UV filters, which preferentially absorb or reflect UV radiation before it penetrates the skin and interacts with photosensitive nucleic acids. However, there are concerns related to human and environmental toxicity of current UV filters, and consequently a shift toward nature-inspired, particularly microbial, UV filters. In this paper, new physical insight is provided into the fundamental mechanisms of photoprotection in two synthetic analogs of mycosporine-like amino acid-type UV filters, demonstrating new methods of protection that are distinct from those of current commercial sunscreens, extending previous work in this area. Transient absorption measurements (both transient electronic absorption spectroscopy and transient vibrational absorption spectroscopy) are combined with steady-state studies and high-level computational results to aid our mapping of the experimentally derived lifetimes to real-time photodynamic processes. The conclusions reached here pave the way toward developing new and more efficient biomimetic DNA photoprotectant materials.


Assuntos
Protetores Solares , Raios Ultravioleta , Humanos , Protetores Solares/química , Isomerismo , Pele , DNA
11.
Photodermatol Photoimmunol Photomed ; 40(1): e12937, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38069506

RESUMO

BACKGROUND: Long wavelength ultraviolet-A1 in combination with visible light induces hyperpigmentation, particularly in dark-skin phototypes. This study evaluated the efficacy of four sunscreen formulations in protecting against VL + UVA1 (370-700 nm). METHODS: The test products (A-D) were applied to the back of 12 volunteers, then irradiated with 320 J/cm2 VL + UVA1 (3.5% UVA1 [370-400 nm]). Immediately after irradiation, and at Days 1, 7, and 14, erythema and pigmentation were assessed by investigator global assessment (IGA), colorimetry (Δa* and ΔITA) and diffuse reflectance spectroscopy (DRS)-measured relative dyschromia (area under the curve AUC). Control areas were irradiated without sunscreen. RESULTS: Product D, containing titanium dioxide 11%, iron oxides 1%, and antioxidants, provided the highest and most consistent protection. Compared with unprotected irradiated control, it had statistically significantly less erythema on IGA, DRS (Δoxyhemoglobin), and colorimetry (Δa*) at Day 0; less pigmentation on IGA at all time points, on DRS (relative dyschromia) at Days 7 and 14, and on colorimetry (ΔITA) at Day 0. Product B, containing zinc oxide 12% plus organic UV filters, iron oxides 4%, and antioxidants, also showed some efficacy. CONCLUSION: Of the sunscreens tested, the tinted products provided better protection against VL + UVA1 than the non-tinted products. Since the product with 1% iron oxides was superior to the product with 4% iron oxides, further studies are needed to evaluate whether iron oxide content correlates with better protection.


Assuntos
Protetores Solares , Raios Ultravioleta , Humanos , Protetores Solares/farmacologia , Protetores Solares/química , Raios Ultravioleta/efeitos adversos , Luz , Eritema , Óxidos , Ferro , Imunoglobulina A , Pele/efeitos da radiação
12.
J Cosmet Dermatol ; 23(3): 918-925, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37947116

RESUMO

BACKGROUND: UV skin exposure is an important matter of public health, as the worldwide rising prevalence of skin cancers indicates. However, a wide majority of commercially available sunscreens are responsible for ocean ecosystem damages such as coral reef degradation and phytoplankton mortality. AIMS: To answer the urge for new eco-friendly UV filters, we studied the use of lecithin-based multilamellar liposomes (MLLs) of controlled size and elasticity as a bio-sourced and biodegradable alternative to classic sunscreens. These parameters control allows different skin layers targeting. METHODS: The performance of two different MLLs compositions and a commercially available SPF50+ water-resistant liposomal sunscreen was compared on skin explants. SC-MLLs target the stratum corneum and Epi-MLLs the whole epidermis. Preparations were applied prior to skin irradiation. Their efficiencies were evaluated histologically (hematoxylin and eosin staining plus cyclobutane pyrimidine dimer [CPD] immunostaining) and by skin barrier quality assessment (trans-epithelial electrical resistance). Adhesiveness to the skin was also investigated. RESULTS: Altogether, ex vivo results indicate MLLs offer a solar protection as effective as a SPF50+ water-resistant liposomal sunscreen but with a better skin adhesiveness and an improved skin barrier function. CONCLUSION: Lecithin-based MLLs of controlled physicochemical parameters can be used as a new eco-friendly and water-resistant agent for solar protection. The stratum corneum targeted action of SC-MLLs appears to be more interesting, as SC-MLLs exhibit an overall better performance than Epi-MLLs at a lower cost. The skin barrier improvement showcased could be of interest to people suffering from dry skin or skin barrier impairment related disease.


Assuntos
Lipossomos , Protetores Solares , Humanos , Protetores Solares/química , Lipossomos/metabolismo , Lecitinas/metabolismo , Lecitinas/farmacologia , Água/metabolismo , Ecossistema , Raios Ultravioleta/efeitos adversos , Pele
13.
Photochem Photobiol ; 100(2): 477-490, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37485720

RESUMO

A reconstructed human epidermal model (RHE) colonized with human microbiota and sebum was developed to reproduce the complexity of the skin ecosystem in vitro. The RHE model was exposed to simulated solar radiation (SSR) with or without SPF50+ sunscreen (with UVB, UVA, long-UVA, and visible light protection). Structural identification of discriminant metabolites was acquired by nuclear magnetic resonance and metabolomic fingerprints were identified using reverse phase-ultra high-performance liquid chromatography-high resolution mass spectrometry, followed by pathway enrichment analysis. Over 50 metabolites were significantly altered by SSR (p < 0.05, log2 values), showing high skin oxidative stress (glutathione and purine pathways, urea cycle) and altered skin microbiota (branched-chain amino acid cycle and tryptophan pathway). 16S and internal transcribed spacer rRNA sequencing showed the relative abundance of various bacteria and fungi altered by SSR. This study identified highly accurate metabolomic fingerprints and metagenomic modifications of sun-exposed skin to help elucidate the interactions between the skin and its microbiota. Application of SPF50+ sunscreen protected the skin ecosystem model from the deleterious effects of SSR and preserved the physiological interactions within the skin ecosystem. These innovative technologies could thus be used to evaluate the effectiveness of sunscreen.


Assuntos
Multiômica , Protetores Solares , Humanos , Pele/efeitos da radiação , Protetores Solares/farmacologia , Protetores Solares/química , Raios Ultravioleta
14.
J Pharm Sci ; 113(6): 1536-1545, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38147911

RESUMO

In today's context, prolonged exposure to sunlight is widely recognized as a threat to human health, leading to a range of adverse consequences, including skin cancers, premature skin aging, and erythema. To mitigate these risks, preventive actions mainly focus on advocating the application of sunscreen lotions and minimizing direct exposure to sunlight. This research study specifically centered on ensulizole (ENS), a prominent ingredient in sunscreens. The objective was to create inclusion complexes (ICs) with Beta-cyclodextrin (B-CD) and its hydroxypropyl derivatives (H-CD). Using phase solubility measurements, we determined that both B-CD and H-CD form 1:1 stoichiometric ICs with ENS. Proton nuclear magnetic resonance spectral (1H NMR) analysis confirmed that the phenyl portion of ENS is encapsulated within the B-CD cavity. Significant changes in surface morphology were observed during the formation of these ICs compared to ENS and CDs alone. Quantum mechanical calculations were employed to further support the formation of ICs by providing energy data. Particularly, the photostability of the ENS:B-CD ICs remained intact for up to four hours of UV exposure, with no significant alterations in the structure of ENS. Furthermore, comprehensive biocompatibility assessments yielded encouraging results, suggesting the potential application of these inclusion complexes in cosmetics as a UVB sunscreen. In summary, our research underscores the successful creation of inclusion complexes characterized by enhanced photostability and safe biocompatibility.


Assuntos
Solubilidade , Protetores Solares , beta-Ciclodextrinas , Protetores Solares/química , beta-Ciclodextrinas/química , Humanos , Composição de Medicamentos/métodos , Química Farmacêutica/métodos , Materiais Biocompatíveis/química , Estabilidade de Medicamentos
15.
Arch Microbiol ; 206(1): 35, 2023 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-38141073

RESUMO

Interest in Antarctic fungi has grown due to their resilience in harsh environments, suggesting the presence of valuable compounds from its organisms, such as those presenting photoprotective potential, since this environment suffers the most dangerous UV exposure in the world. Therefore, this research aimed to assess the photoprotective potential of compounds from sustainable marine sources, specifically seaweed-derived fungi from Antarctic continent. These studies led to discovery of photoprotective and antioxidant properties of metabolites from Arthrinium sp., an endophytic fungus from Antarctic brown algae Phaeurus antarcticus. From crude extract, fractions A-I were obtained and compounds 1-6 isolated from E and F fractions, namely 3-Hydroxybenzyl alcohol (1), (-)-orthosporin (2), norlichexanthone (3), anomalin B (4), anomalin A (5), and agonodepside B (6). Compounds 1, 2, and 6 were not previously reported in Arthrinium. Fraction F demonstrated excellent absorbance in both UVA and UVB regions, while compound 6 exhibited lower UVB absorbance, possibly due to synergistic effects. Fraction F and compound 6 displayed photostability and were non-phototoxic to HaCaT cells. They also exhibited antioxidant activity by reducing intracellular ROS production induced by UVA in keratinocyte monolayers and reconstructed human skin models (resulting in 34.6% and 30.2% fluorescence reduction) and did not show irritation potential in HET-CAM assay. Thus, both are promising candidates for use in sunscreens. It is noted that Fraction F does not require further purification, making it advantageous, although clinical studies are necessary to confirm its potential applicability for sunscreen formulations.


Assuntos
Raios Ultravioleta , Xylariales , Humanos , Protetores Solares/farmacologia , Protetores Solares/química , Pele , Antioxidantes/farmacologia , Antioxidantes/metabolismo
16.
J Ind Microbiol Biotechnol ; 50(1)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-37950572

RESUMO

Exposure to ultraviolet (UV) rays is a known risk factor for skin cancer, which can be notably mitigated through the application of sun care products. However, escalating concerns regarding the adverse health and environmental impacts of synthetic anti-UV chemicals underscore a pressing need for the development of biodegradable and eco-friendly sunscreen ingredients. Mycosporine-like amino acids (MAAs) represent a family of water-soluble anti-UV natural products synthesized by various organisms. These compounds can provide a two-pronged strategy for sun protection as they not only exhibit a superior UV absorption profile but also possess the potential to alleviate UV-induced oxidative stresses. Nevertheless, the widespread incorporation of MAAs in sun protection products is hindered by supply constraints. Delving into the biosynthetic pathways of MAAs can offer innovative strategies to overcome this limitation. Here, we review recent progress in MAA biosynthesis, with an emphasis on key biosynthetic enzymes, including the dehydroquinate synthase homolog MysA, the adenosine triphosphate (ATP)-grasp ligases MysC and MysD, and the nonribosomal peptide synthetase (NRPS)-like enzyme MysE. Additionally, we discuss recently discovered MAA tailoring enzymes. The enhanced understanding of the MAA biosynthesis paves the way for not only facilitating the supply of MAA analogs but also for exploring the evolution of this unique family of natural sunscreens. ONE-SENTENCE SUMMARY: This review discusses the role of mycosporine-like amino acids (MAAs) as potent natural sunscreens and delves into recent progress in their biosynthesis.


Assuntos
Aminoácidos , Protetores Solares , Aminoácidos/química , Protetores Solares/química , Protetores Solares/farmacologia , Estresse Oxidativo , Raios Ultravioleta
17.
Environ Sci Pollut Res Int ; 30(60): 125931-125946, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38010544

RESUMO

Organic UV filters are important ingredients in many personal care products, including sunscreens. Evaluating the biodegradability of organic UV filters is key to estimate their recalcitrance and environmental fate and thus central to their overall environmental risk assessment. In order to further understand the degradation process, the aim was to investigate whether specific consortia could degrade certain UV filters. Several bacterial strains were isolated from enrichment cultures actively degrading octocrylene (OC), butyl methoxydibenzoylmethane (BM), homosalate (HS), and 2-ethylhexyl salicylate (ES) and were utilized to construct an in-house consortium. This synthetic consortium contained 27 bacterial strains and degraded OC, BM, HS, and ES 60-80% after 12 days, but not benzophenone-3 (BP3), methoxyphenyl triazine (BEMT), methylene bis-benzotriazolyl tetramethylbutylphenol (MBBT), diethylhexyl butamido triazone (DBT), ethylhexyl triazone (EHT), or diethylamino hydroxybenzoyl hexyl benzoate (DHHB). Furthermore, several commercial microbial mixtures from Greencell were tested to assess their degradation activity toward the same organic UV filters. ES and HS were degraded by some of the commercial consortia, but to a lesser extent. The rest of the tested UV filters were not degraded by any of the commercial bacterial mixes. These results confirm that some organic UV filters are recalcitrant to biodegradation, while others are degraded by a specific set of microorganisms.


Assuntos
Cosméticos , Consórcios Microbianos , Raios Ultravioleta , Protetores Solares/química , Cosméticos/química
18.
Molecules ; 28(22)2023 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-38005272

RESUMO

We reported the tunable synthesis of new vegetable oil-UV filter bioconjugates using sea buckthorn oil (SBO) and p-methoxycinnamic acid (p-MCA) as an alternative to the common UV filter, ethylhexyl-p-methoxycinnamate (octinoxate). The synthetic strategy is based on the sustainable ring-opening reaction of epoxidized SBO with p-MCA in heterogenous catalysis in eco-friendly solvents. The amount of UV-absorptive moieties grafted on the triglyceride backbone is controlled by different epoxidation degrees as determined by NMR spectroscopy. The performance of the new UV-absorber bioconjugates was assessed by in vitro sun protection factor (SPF) measurements after inclusion in SBO-ethylcellulose (EC) oleogels and comparison with the SPF value of the SBO-EC-octinoxate oleogel with equivalent p-MCA acid moieties (10% wt/wt). The concentration obtained for the SBO-EC oleogel formulated with the bioconjugate with the lowest degree of functionalization, namely 55%, represents 45% of the SPF determined for the SBO-EC-octinoxate oleogel, regardless of the concentration of measured solutions. The new concept of vegetable oil-UV-absorber bioconjugates has potential UV-B photoprotective properties when included in oleogel formulations and deserves further investigation of their properties and stability including association with UV-A absorbers, respectively.


Assuntos
Óleos de Plantas , Protetores Solares , Óleos de Plantas/química , Protetores Solares/farmacologia , Protetores Solares/química , Raios Ultravioleta , Pele
19.
Skin Res Technol ; 29(10): e13443, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37881048

RESUMO

BACKGROUND: Solar radiation is responsible for changes in the structure of human hair, the damages include proteins (65%-95%), lipids, and melanin. The aim was to examine the effectiveness of sunscreen in hair cosmetics and whether hair color affects it. MATERIALS AND METHODS: The study included nine women, divided according to hair color to three groups: light, dark, and gray hair. The 410-Solar reflectometer was used in five time points. The hair was divided into three strands, one product applied to each. RESULTS: Dark hair showed the highest absorption of radiation in all wavelength ranges, the reflectance before products application was significantly higher than the hair reflectance immediately after application. The effect of sunscreens on light hair reflectance was found at wavelengths 400 and 720 nm and between 1000 and 2500 nm, the reflectance before application was significantly higher than the reflectance after. The use of products on gray hair did not have a significant effect on hair reflectance at wavelengths 400-1100 nm, the effect of sunscreens on the gray hair reflectance was observed in the UV and infrared range, the reflectance before application was significantly higher than immediately after. CONCLUSIONS: The results showed that the 410-Solar reflectometer is useful to assess the effectiveness of hair sunscreens. All three tested hair products do not show the expected protection properties. Dark hair showed the highest absorption of radiation in all wavelength ranges, suggesting that dark hair should be more protected against radiation than light and gray hair.


Assuntos
Preparações para Cabelo , Protetores Solares , Humanos , Feminino , Protetores Solares/farmacologia , Protetores Solares/química , Preparações para Cabelo/farmacologia , Luz Solar , Cabelo , Melaninas , Raios Ultravioleta/efeitos adversos
20.
Int J Biol Macromol ; 253(Pt 6): 127289, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37806425

RESUMO

Lignin has potential to serve as promising sunscreen agents as it has good ultraviolet (UV) absorption and antioxidant properties. However, the weak absorption capacity of lignin in the long-wave UV region (UVA, 320-400 nm) limits its further development. In this work, a spiropyran-modified lignin (DLSP) with photo-responsive property was prepared by in-situ construction of spiropyran (SP) structure in the demethylated lignin (DL). Due to the presence of SP moiety, the absorption of DLSP in the UVA region was significantly improved. Under UV irradiation, its absorption peak was redshifted as unconjugated SP form isomerized to conjugated merocyanine (MC) form, and the UVA/UVB ratio increased from 0.62 to 0.74. The free-radical scavenging ability of lignin could protect SP from photodegradation, which provided DLSP excellent fatigue resistance. DLSP were blended into creams to investigate its sunscreen performance. Results indicated that DLSP exhibited radiation-enhanced sunscreen performance, the sun protection factor (SPF) of cream containing 10 wt% of DLSP improved from 20 to 67 after 8 h of UV irradiation. Moreover, DLSP showed low skin penetration and good biocompatibility. These results provide a useful guideline for the rational design of sunscreens with special functionalities.


Assuntos
Lignina , Protetores Solares , Protetores Solares/farmacologia , Protetores Solares/química , Benzopiranos , Indóis , Raios Ultravioleta , Pele/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...