Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 189
Filtrar
1.
Plant Dis ; 108(6): 1486-1490, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38372721

RESUMO

Although it is currently eradicated from the United States, Plum pox virus (PPV) poses an ongoing threat to U.S. stone fruit production. Although almond (Prunus dulcis) is known to be largely resistant to PPV, there is conflicting evidence about its potential to serve as an asymptomatic reservoir host for the virus and thus serve as a potential route of entry. Here, we demonstrate that both Tuono and Texas Mission cultivars can be infected by the U.S. isolate PPV Dideron (D) Penn4 and that Tuono is a transmission-competent host, capable of serving as a source of inoculum for aphid transmission of the virus. These findings have important implications for efforts to keep PPV out of the United States and highlight the need for additional research to test the susceptibility of almond to other PPV-D isolates.


Assuntos
Afídeos , Doenças das Plantas , Vírus Eruptivo da Ameixa , Prunus dulcis , Vírus Eruptivo da Ameixa/fisiologia , Vírus Eruptivo da Ameixa/genética , Prunus dulcis/virologia , Doenças das Plantas/virologia , Afídeos/virologia , Animais , Prunus/virologia
2.
Sci Rep ; 13(1): 4393, 2023 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-36928763

RESUMO

Prunus necrotic ringspot virus (PNRSV) is a pathogen that infects Prunus species worldwide, causing major economic losses. Using one and two-step RT-PCR and multiplex RT-PCR, the whole genome of the PNRSV-infecting apricot was obtained and described in this study. Computational approaches were used to investigate the participation of several regulatory motifs and domains of the Replicase1, Replicase2, MP, and CP. A single degenerated reverse and three forward oligo primers were used to amplify PNRSV's tripartite genome. The size of RNA1 was 3.332 kb, RNA2 was 2.591 kb, and RNA3 was 1.952 kb, according to the sequencing analysis. The Sequence Demarcation Tool analysis determined a percentage pair-wise identity ranging between 91 and 99% for RNA1 and 2, and 87-98% for RNA3. Interestingly, the phylogenetic analysis revealed that closely related RNA1, RNA2, and RNA3 sequences of PNRSV strains from various geographical regions of the world are classified into distinct clades or groups. This is the first report on the characterization of the whole genome of PNRSV from India, which provides the cornerstone for further studies on the molecular evolution of this virus. This study will assist in molecular diagnostics and management of the diseases caused by PNRSV.


Assuntos
Prunus armeniaca , Prunus , Filogenia , Prunus/genética , Prunus/virologia , Prunus armeniaca/genética , RNA Viral/genética , Sequenciamento Completo do Genoma , Doenças das Plantas/virologia
3.
Plant Dis ; 106(1): 101-106, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34293916

RESUMO

Plum pox virus (PPV) is a significant pathogen of Prunus worldwide and is known for having a broad experimental host range. Many of these hosts represent epidemiological risks as potential wild viral reservoirs. A comparative study of the PPV reservoir capacity of three commonly found native North American species, western choke cherry (Prunus virginiana var. demissa), black cherry (Prunus serotina), and American plum (Prunus americana) was conducted. Pennsylvania isolates of PPV-D were transmitted from the original host peach (Prunus persica cv. GF305) to all three species. Viral accumulation and transmission rates to alternative hosts and peach were monitored over the course of five vegetative growth and cold induced dormancy (CID) cycles. The three alternative host species demonstrated differences in their ability to maintain PPV-D and the likelihood of transmission to additional alternative hosts or back transmission to peach. Western choke cherry had low (5.8%) initial infection levels, PPV-D was not transmissible to additional western choke cherry, and transmission of PPV-D from western choke cherry to peach was only possible before the first CID cycle. Black cherry had intermediate initial infection levels (26.6%) but did not maintain high infection levels after repeated CID cycles. Conversely, American plum had a high level (50%) of initial infection that was not significantly different from initial infection in peach (72.2%) and maintained moderate levels (15 to 25%) of infection and PPV-D transmission to both American plum and peach through all five cycles of CID. Our results indicate that American plum has the greatest potential to act as a reservoir host for Pennsylvania isolates of PPV-D.


Assuntos
Doenças das Plantas/virologia , Vírus Eruptivo da Ameixa , Prunus persica , Prunus , Frutas , Vírus Eruptivo da Ameixa/patogenicidade , Prunus/classificação , Prunus/virologia , Prunus persica/virologia
4.
Genes (Basel) ; 12(6)2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-34071769

RESUMO

Our goal was to target silencing of the Plum pox virus coat protein (PPV CP) gene independently expressed in plants. Clone C-2 is a transgenic plum expressing CP. We introduced and verified, in planta, the effects of the inverse repeat of CP sequence split by a hairpin (IRSH) that was characterized in the HoneySweet plum. The IRSH construct was driven by two CaMV35S promoter sequences flanking the CP sequence and had been introduced into C1738 plum. To determine if this structure was enough to induce silencing, cross-hybridization was made with the C1738 clone and the CP expressing but PPV-susceptible C2 clone. In total, 4 out of 63 clones were silenced. While introduction of the IRSH is reduced due to the heterozygous character in C1738 plum, the silencing induced by the IRSH PPV CP is robust. Extensive studies, in greenhouse containment, demonstrated that the genetic resource of C1738 clone can silence the CP production. In addition, these were verified through the virus transgene pyramiding in the BO70146 BlueByrd cv. plum that successfully produced resistant BlueByrd BO70146 × C1738 (HybC1738) hybrid plums.


Assuntos
Resistência à Doença , Inativação Gênica , Vírus Eruptivo da Ameixa/genética , Prunus/genética , Biotecnologia/métodos , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Engenharia Genética/métodos , Vírus Eruptivo da Ameixa/patogenicidade , Prunus/virologia , Transgenes
5.
Methods Mol Biol ; 2172: 155-163, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32557368

RESUMO

Virus-induced gene silencing (VIGS) is a gene silencing mechanism by which an invading virus targets and silences the endogenous genes that have significant sequence similarity with the virus. It opens the door for us to develop viruses as powerful viral vectors and modify them for molecular characterization of gene functions in plants. In the past two decades, VIGS has been studied extensively in plants, and various VIGS vectors have been developed. Despite the fact that VIGS is in particular practical for functional genomic study of perennial woody vines and trees with a long life cycle and recalcitrant to genetic transformation, not many studies have been reported in this area. Here, we describe a protocol for the use of a Prunus necrotic ringspot virus (PNRSV)-based VIGS vector we have recently developed for functional genomic studies in Prunus fruit trees.


Assuntos
Ilarvirus/patogenicidade , Prunus/genética , Prunus/virologia , Inativação Gênica/fisiologia , Ilarvirus/genética , Doenças das Plantas/virologia , Interferência de RNA/fisiologia
6.
Acta Virol ; 64(1): 100-103, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32180424

RESUMO

To investigate the occurrence of little cherry virus 1 (LChV-1), little cherry virus 2 (LChV-2), cherry green ring mottle virus (CGRMV), cherry necrotic rusty mottle virus (CNRMV), and cherry virus A (CVA) in stone fruit trees in Poland, leaf samples were collected from sweet and sour cherry, peach, and apricot trees. Two sets of primers were used to increase the effectiveness of virus detection. The RT-PCR results indicated that the most frequently detected virus in all of the tested samples was CVA (60%), followed by CGRMV (13%), CNRMV (12%), LChV-1 (11%), and LChV-2 (4%). CVA and CNRMV were not detected in peaches. Mixed infections of these viruses were frequently detected. Keywords: little- cherry virus 1; little cherry virus 2; cherry green ring mottle virus; cherry necrotic rusty mottle virus; cherry virus A; RT-PCR.


Assuntos
Doenças das Plantas/virologia , Vírus de Plantas/isolamento & purificação , Prunus/virologia , Closteroviridae , Flexiviridae , Frutas , Polônia , Árvores
7.
Viruses ; 12(3)2020 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-32178365

RESUMO

Phosphorylation and O-GlcNAcylation are widespread post-translational modifications (PTMs), often sharing protein targets. Numerous studies have reported the phosphorylation of plant viral proteins. In plants, research on O-GlcNAcylation lags behind that of other eukaryotes, and information about O-GlcNAcylated plant viral proteins is extremely scarce. The potyvirus Plum pox virus (PPV) causes sharka disease in Prunus trees and also infects a wide range of experimental hosts. Capsid protein (CP) from virions of PPV-R isolate purified from herbaceous plants can be extensively modified by O-GlcNAcylation and phosphorylation. In this study, a combination of proteomics and biochemical approaches was employed to broaden knowledge of PPV CP PTMs. CP proved to be modified regardless of whether or not it was assembled into mature particles. PTMs of CP occurred in the natural host Prunus persica, similarly to what happens in herbaceous plants. Additionally, we observed that O-GlcNAcylation and phosphorylation were general features of different PPV strains, suggesting that these modifications contribute to general strategies deployed during plant-virus interactions. Interestingly, phosphorylation at a casein kinase II motif conserved among potyviral CPs exhibited strain specificity in PPV; however, it did not display the critical role attributed to the same modification in the CP of another potyvirus, Potato virus A.


Assuntos
Proteínas do Capsídeo/metabolismo , Vírus Eruptivo da Ameixa/fisiologia , Potyvirus/fisiologia , Processamento de Proteína Pós-Traducional , Proteínas do Capsídeo/genética , Caseína Quinase II , Fosforilação , Doenças das Plantas/virologia , Vírus Eruptivo da Ameixa/genética , Vírus Eruptivo da Ameixa/isolamento & purificação , Potyvirus/genética , Proteômica , Prunus/virologia , Proteínas Virais/genética , Proteínas Virais/metabolismo , Vírion/metabolismo
8.
Viruses ; 12(2)2020 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-32102210

RESUMO

One hundred Prunus trees, including almond (P. dulcis), apricot (P. armeniaca), nectarine (P. persica var. nucipersica), peach (P. persica), plum (P. domestica), purple leaf plum (P. cerasifera) and sweet cherry (P. avium), were selected from growing regions Australia-wide and tested for the presence of 34 viruses and three viroids using species-specific reverse transcription-polymerase chain reaction (RT-PCR) or polymerase chain reaction (PCR) tests. In addition, the samples were tested using some virus family or genus-based RT-PCR tests. The following viruses were detected: Apple chlorotic leaf spot virus (ACLSV) (13/100), Apple mosaic virus (ApMV) (1/100), Cherry green ring mottle virus (CGRMV) (4/100), Cherry necrotic rusty mottle virus (CNRMV) (2/100), Cherry virus A (CVA) (14/100), Little cherry virus 2 (LChV2) (3/100), Plum bark necrosis stem pitting associated virus (PBNSPaV) (4/100), Prune dwarf virus (PDV) (3/100), Prunus necrotic ringspot virus (PNRSV) (52/100), Hop stunt viroid (HSVd) (9/100) and Peach latent mosaic viroid (PLMVd) (6/100). The results showed that PNRSV is widespread in Prunus trees in Australia. Metagenomic high-throughput sequencing (HTS) and bioinformatics analysis were used to characterise the genomes of some viruses that were detected by RT-PCR tests and Apricot latent virus (ApLV), Apricot vein clearing associated virus (AVCaV), Asian Prunus Virus 2 (APV2) and Nectarine stem pitting-associated virus (NSPaV) were also detected. This is the first report of ApLV, APV2, CGRMV, CNRNV, LChV1, LChV2, NSPaV and PBNSPaV occurring in Australia. It is also the first report of ASGV infecting Prunus species in Australia, although it is known to infect other plant species including pome fruit and citrus.


Assuntos
Genoma Viral , Doenças das Plantas/virologia , Vírus de Plantas/classificação , Prunus/virologia , Biologia Computacional , Sequenciamento de Nucleotídeos em Larga Escala , Metagenômica , Vírus de Plantas/isolamento & purificação , Viroides/genética , Viroides/isolamento & purificação
9.
Mol Plant Microbe Interact ; 33(1): 6-17, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31454296

RESUMO

Plum pox virus, the agent that causes sharka disease, is among the most important plant viral pathogens, affecting Prunus trees across the globe. The fabric of interactions that the virus is able to establish with the plant regulates its life cycle, including RNA uncoating, translation, replication, virion assembly, and movement. In addition, plant-virus interactions are strongly conditioned by host specificities, which determine infection outcomes, including resistance. This review attempts to summarize the latest knowledge regarding Plum pox virus-host interactions, giving a comprehensive overview of their relevance for viral infection and plant survival, including the latest advances in genetic engineering of resistant species.


Assuntos
Interações Hospedeiro-Patógeno , Vírus Eruptivo da Ameixa , Prunus , Resistência à Doença/genética , Especificidade de Hospedeiro , Interações Hospedeiro-Patógeno/genética , Doenças das Plantas/virologia , Vírus Eruptivo da Ameixa/fisiologia , Prunus/genética , Prunus/virologia , Montagem de Vírus
10.
BMC Plant Biol ; 19(1): 440, 2019 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-31640557

RESUMO

BACKGROUND: In plants, host factors encoded by susceptibility (S) genes are indispensable for viral infection. Resistance is achieved through the impairment or the absence of those susceptibility factors. Many S genes have been cloned from model and crop species and a majority of them are coding for members of the eukaryotic translation initiation complex, mainly eIF4E, eIF4G and their isoforms. The aim of this study was to investigate the role of those translation initiation factors in susceptibility of stone fruit species to sharka, a viral disease due to Plum pox virus (PPV). RESULTS: For this purpose, hairpin-inducing silencing constructs based on Prunus persica orthologs were used to generate Prunus salicina (Japanese plum) 4E and 4G silenced plants by Agrobacterium tumefaciens-mediated transformation and challenged with PPV. While down-regulated eIFiso4E transgenic Japanese plums were not regenerated in our conditions, eIFiso4G11-, but not the eIFiso4G10-, silenced plants displayed durable and stable resistance to PPV. We also investigated the alteration of the si- and mi-RNA profiles in transgenic and wild-type Japanese plums upon PPV infection and confirmed that the newly generated small interfering (si) RNAs, which are derived from the engineered inverted repeat construct, are the major contributor of resistance to sharka. CONCLUSIONS: Our results indicate that S gene function of the translation initiation complex isoform is conserved in Prunus species. We discuss the possibilities of using RNAi silencing or loss-of-function mutations of the different isoforms of proteins involved in this complex to breed for resistance to sharka in fruit trees.


Assuntos
Resistência à Doença/genética , Fatores de Iniciação em Eucariotos/metabolismo , Doenças das Plantas/imunologia , Vírus Eruptivo da Ameixa/fisiologia , Prunus/genética , Fatores de Iniciação em Eucariotos/genética , Frutas/genética , Frutas/imunologia , Frutas/virologia , Doenças das Plantas/virologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Isoformas de Proteínas , Prunus/imunologia , Prunus/virologia , Interferência de RNA , RNA de Plantas/genética , RNA Interferente Pequeno/genética , Árvores
11.
Arch Virol ; 164(12): 3103-3106, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31520218

RESUMO

A large contig with sequence similarities to members of the genus Robigovirus was identified by high-throughput sequencing analysis from a symptomless cherry accession. The complete genome sequence of this new virus is 8,384 nucleotides in length, excluding the 3' poly(A) tail. Its genome organization is very similar to those of four known robigoviruses, encoding a putative replicase, three 'triple gene block' proteins, a coat protein, and an unknown protein, 2a. Unlike the four cherry robigoviruses, the new virus does not contain a putative ORF5a. The full-length genome of the virus, which is provisionally named "cherry robigovirus 5" (CRV-5), is 52-57% identical to genome sequences of other robigoviruses. Phylogenetic analysis showed that CRV-5 and other robigoviruses group in a cluster, supporting its assignment to a new species in the genus Robigovirus.


Assuntos
Flexiviridae/classificação , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Prunus/virologia , Flexiviridae/genética , Flexiviridae/isolamento & purificação , Tamanho do Genoma , Fases de Leitura Aberta , Filogenia , Análise de Sequência de RNA , Homologia de Sequência do Ácido Nucleico
12.
Sci Rep ; 9(1): 12261, 2019 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-31439919

RESUMO

We analyzed virus and viroid communities in five individual trees of two nectarine cultivars with different disease phenotypes using next-generation sequencing technology. Different viral communities were found in different cultivars and individual trees. A total of eight viruses and one viroid in five families were identified in a single tree. To our knowledge, this is the first report showing that the most-frequently identified viral and viroid species co-infect a single individual peach tree, and is also the first report of peach virus D infecting Prunus in China. Combining analyses of genetic variation and sRNA data for co-infecting viruses/viroid in individual trees revealed for the first time that viral synergisms involving a few virus genera in the Betaflexiviridae, Closteroviridae, and Luteoviridae families play a role in determining disease symptoms. Evolutionary analysis of one of the most dominant peach pathogens, peach latent mosaic viroid (PLMVd), shows that the PLMVd sequences recovered from symptomatic and asymptomatic nectarine leaves did not all cluster together, and intra-isolate divergent sequence variants co-infected individual trees. Our study provides insight into the role that mixed viral/viroid communities infecting nectarine play in host symptom development, and will be important in further studies of epidemiological features of host-pathogen interactions.


Assuntos
Interações Hospedeiro-Patógeno , Doenças das Plantas/virologia , Vírus de Plantas/fisiologia , Prunus/virologia , Árvores/virologia , Sequenciamento de Nucleotídeos em Larga Escala , Folhas de Planta/genética , Folhas de Planta/virologia , Prunus/genética , Árvores/genética
13.
Viruses ; 11(7)2019 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-31261922

RESUMO

Little cherry disease, caused by little cherry virus 1 (LChV-1) and little cherry virus 2 (LChV-2), which are both members of the family Closteroviridae, severely affects sweet (Prunus avium L.) and sour cherry (P. cerasus L.) orchards lifelong production worldwide. An intensive survey was conducted across different geographic regions of Belgium to study the disease presence on these perennial woody plants and related species. Symptomatic as well as non-symptomatic Prunus spp. trees tested positive via RT-PCR for LChV-1 and -2 in single or mixed infections, with a slightly higher incidence for LChV-1. Both viruses were widespread and highly prevalent in nearly all Prunus production areas as well as in private gardens and urban lane trees. The genetic diversity of Belgian LChV-1 and -2 isolates was assessed by Sanger sequencing of partial genomic regions. A total RNA High-Throughput Sequencing (HTS) approach confirmed the presence of both viruses, and revealed the occurrence of other Prunus-associated viruses, namely cherry virus A (CVA), prune dwarf virus (PDV) and prunus virus F (PrVF). The phylogenetic inference from full-length genomes revealed well-defined evolutionary phylogroups with high genetic variability and diversity for LChV-1 and LChV-2 Belgian isolates, yet with little or no correlation with planting area or cultivated varieties. The global diversity and the prevalence in horticultural areas of LChV-1 and -2 variants, in association with other recently described fruit tree viruses, are of particular concern. Future epidemiological implications as well as new investigation avenues are exhaustively discussed.


Assuntos
Closteroviridae/genética , Genoma Viral , Doenças das Plantas/virologia , Bélgica/epidemiologia , Closteroviridae/classificação , Closteroviridae/isolamento & purificação , Variação Genética , Sequenciamento de Nucleotídeos em Larga Escala , Filogenia , Doenças das Plantas/estatística & dados numéricos , Prunus/virologia
14.
Phytopathology ; 109(7): 1198-1207, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31166155

RESUMO

Epidemiological models are increasingly used to predict epidemics and improve management strategies. However, they rarely consider landscape characteristics although such characteristics can influence the epidemic dynamics and, thus, the effectiveness of disease management strategies. Here, we present a generic in silico approach which assesses the influence of landscape aggregation on the costs associated with an epidemic and on improved management strategies. We apply this approach to sharka, one of the most damaging diseases of Prunus trees, for which a management strategy is already applied in France. Epidemic simulations were carried out with a spatiotemporal stochastic model under various management strategies in landscapes differing in patch aggregation. Using sensitivity analyses, we highlight the impact of management parameters on the economic output of the model. We also show that the sensitivity analysis can be exploited to identify several strategies that are, according to the model, more profitable than the current French strategy. Some of these strategies are specific to a given aggregation level, which shows that management strategies should generally be tailored to each specific landscape. However, we also identified a strategy that is efficient for all levels of landscape aggregation. This one-size-fits-all strategy has important practical implications because of its simple applicability at a large scale.


Assuntos
Doenças das Plantas , Prunus , Produtos Agrícolas , França , Doenças das Plantas/prevenção & controle , Prunus/virologia , Árvores
15.
J Virol Methods ; 271: 113673, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31170470

RESUMO

Pollen transmitted viruses require accurate detection and identification to minimize the risk of spread through the global import and export of pollen. Therefore in this study we developed RT-qPCR assays for the detection of Cherry leaf roll virus (CLRV), Prune dwarf virus (PDV), Prunus necrotic ringspot virus (PNRSV), and Cherry virus A (CVA), four viruses that infect pollen of Prunus species. Assays were designed against alignments of extant sequences, optimized, and specificity was tested against known positive, negative, and non-target controls. An examination of assay sensitivity showed that detection of virus at concentrations as low as 101 copies was possible, although 102 copies was more consistent. Furthermore, comparison against extant assays showed that in both pollen and plant samples, the newly developed RT-qPCR assays were more sensitive and could detect a greater range of isolates than extant endpoint RT-PCR and ELISA assays. Use of updated assays will improve biosecurity protocols as well as the study of viruses infecting pollen.


Assuntos
Abastecimento de Alimentos , Vírus de Plantas/genética , Vírus de Plantas/isolamento & purificação , Pólen/virologia , Prunus/virologia , Primers do DNA/genética , Ensaio de Imunoadsorção Enzimática , Flexiviridae/genética , Flexiviridae/isolamento & purificação , Ilarvirus/genética , Ilarvirus/isolamento & purificação , Nepovirus/genética , Nepovirus/isolamento & purificação , Doenças das Plantas/virologia , RNA Viral/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real , Sensibilidade e Especificidade , Análise de Sequência de DNA
16.
Arch Virol ; 164(5): 1245-1248, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30923968

RESUMO

In September 2017, a yellow spot leaf disease was noted on the leaves of Prunus davidiana (Carr.) Franch. plants in Liaoning, China, and spherical virions (approx. 30 nm in diameter) were later observed in preparations of symptomatic leaves. Subsequent deep sequencing of small RNA revealed the presence of a virus in these symptomatic leaves The complete genome of this viral isolate consists of 6,072 nucleotides, excluding the poly(A) tail. The virus showed the closest genetic relationship to grapevine-associated tymo-like virus, reported in Colmar, France (GaTLV, MH383239), which is the sole member of the newly proposed genus "Gratylivirus" within the order Tymovirales, which is currently unassigned to a particular family. The virus clustered closely with GaTLV in a phylogenetic tree constructed based on complete genomic sequences. On the basis of the nucleotide and amino acid sequences of the replicase and coat protein genes, this virus shares the highest (although still relatively low) sequence similarity with those of GaTLV (41.6%-60.8% identity), indicating that the virus is a distinct member of the order Tymovirales, for which the name "prunus yellow spot-associated virus" (PYSaV) is proposed. To our knowledge, this is the first report of a virus naturally infecting P. davidiana.


Assuntos
Genoma Viral/genética , Folhas de Planta/virologia , Prunus/virologia , Tymoviridae/classificação , Tymoviridae/genética , Proteínas do Capsídeo/genética , China , Sequenciamento de Nucleotídeos em Larga Escala , Doenças das Plantas/virologia , RNA Viral/genética , RNA Polimerase Dependente de RNA/genética , Tymoviridae/isolamento & purificação
17.
Phytopathology ; 109(7): 1184-1197, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30844325

RESUMO

Improvement of management strategies of epidemics is often hampered by constraints on experiments at large spatiotemporal scales. A promising approach consists of modeling the biological epidemic process and human interventions, which both impact disease spread. However, few methods enable the simultaneous optimization of the numerous parameters of sophisticated control strategies. To do so, we propose a heuristic approach (i.e., a practical improvement method approximating an optimal solution) based on sequential sensitivity analyses. In addition, we use an economic improvement criterion based on the net present value, accounting for both the cost of the different control measures and the benefit generated by disease suppression. This work is motivated by sharka (caused by Plum pox virus), a vector-borne disease of prunus trees (especially apricot, peach, and plum), the management of which in orchards is mainly based on surveillance and tree removal. We identified the key parameters of a spatiotemporal model simulating sharka spread and control and approximated optimal values for these parameters. The results indicate that the current French management of sharka efficiently controls the disease, but it can be economically improved using alternative strategies that are identified and discussed. The general approach should help policy makers to design sustainable and cost-effective strategies for disease management.


Assuntos
Doenças das Plantas/prevenção & controle , Vírus Eruptivo da Ameixa , Prunus domestica , Prunus , Prunus/virologia , Árvores
18.
Viruses ; 10(7)2018 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-30037079

RESUMO

Little cherry virus 1 (LChV1, Velarivirus, Closteroviridae) is a widespread pathogen of sweet or sour cherry and other Prunus species, which exhibits high genetic diversity and lacks a putative efficient transmission vector. Thus far, four distinct phylogenetic clusters of LChV1 have been described, including isolates from different Prunus species. The recent application of high throughput sequencing (HTS) technologies in fruit tree virology has facilitated the acquisition of new viral genomes and the study of virus diversity. In the present work, several new LChV1 isolates from different countries were fully sequenced using different HTS approaches. Our results reveal the presence of further genetic diversity within the LChV1 species. Interestingly, mixed infections of the same sweet cherry tree with different LChV1 variants were identified for the first time. Taken together, the high intra-host and intra-species diversities of LChV1 might affect its pathogenicity and have clear implications for its accurate diagnostics.


Assuntos
Closteroviridae/genética , Sequenciamento de Nucleotídeos em Larga Escala , Doenças das Plantas/virologia , Viroses/diagnóstico , Closteroviridae/isolamento & purificação , Frutas , Variação Genética , Genoma Viral , Filogenia , Prunus/virologia , RNA Viral/genética , Análise de Sequência de DNA
19.
PLoS Comput Biol ; 14(4): e1006085, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29708968

RESUMO

Characterising the spatio-temporal dynamics of pathogens in natura is key to ensuring their efficient prevention and control. However, it is notoriously difficult to estimate dispersal parameters at scales that are relevant to real epidemics. Epidemiological surveys can provide informative data, but parameter estimation can be hampered when the timing of the epidemiological events is uncertain, and in the presence of interactions between disease spread, surveillance, and control. Further complications arise from imperfect detection of disease and from the huge number of data on individual hosts arising from landscape-level surveys. Here, we present a Bayesian framework that overcomes these barriers by integrating over associated uncertainties in a model explicitly combining the processes of disease dispersal, surveillance and control. Using a novel computationally efficient approach to account for patch geometry, we demonstrate that disease dispersal distances can be estimated accurately in a patchy (i.e. fragmented) landscape when disease control is ongoing. Applying this model to data for an aphid-borne virus (Plum pox virus) surveyed for 15 years in 605 orchards, we obtain the first estimate of the distribution of flight distances of infectious aphids at the landscape scale. About 50% of aphid flights terminate beyond 90 m, which implies that most infectious aphids leaving a tree land outside the bounds of a 1-ha orchard. Moreover, long-distance flights are not rare-10% of flights exceed 1 km. By their impact on our quantitative understanding of winged aphid dispersal, these results can inform the design of management strategies for plant viruses, which are mainly aphid-borne.


Assuntos
Afídeos/virologia , Insetos Vetores/virologia , Doenças das Plantas/prevenção & controle , Doenças das Plantas/virologia , Vírus Eruptivo da Ameixa/patogenicidade , Agricultura , Algoritmos , Animais , Teorema de Bayes , Biologia Computacional , Simulação por Computador , Modelos Biológicos , Doenças das Plantas/estatística & dados numéricos , Prunus/virologia
20.
Viruses ; 10(4)2018 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-29670059

RESUMO

During their lifetime, perennial woody plants are expected to face multiple infection events. Furthermore, multiple genotypes of individual virus species may co-infect the same host. This may eventually lead to a situation where plants harbor complex communities of viral species/strains. Using high-throughput sequencing, we describe co-infection of sweet and sour cherry trees with diverse genomic variants of two closely related viruses, namely prunus virus F (PrVF) and cherry virus F (CVF). Both viruses are most homologous to members of the Fabavirus genus (Secoviridae family). The comparison of CVF and PrVF RNA2 genomic sequences suggests that the two viruses may significantly differ in their expression strategy. Indeed, similar to comoviruses, the smaller genomic segment of PrVF, RNA2, may be translated in two collinear proteins while CVF likely expresses only the shorter of these two proteins. Linked with the observation that identity levels between the coat proteins of these two viruses are significantly below the family species demarcation cut-off, these findings support the idea that CVF and PrVF represent two separate Fabavirus species.


Assuntos
Fabavirus/genética , Variação Genética , Doenças das Plantas/virologia , Prunus/virologia , Perfilação da Expressão Gênica , Genoma Viral , Sequenciamento de Nucleotídeos em Larga Escala
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...