Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Am J Physiol Renal Physiol ; 320(5): F734-F747, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33682442

RESUMO

The physiological role of the shorter isoform of with no lysine kinase (WNK)1 that is exclusively expressed in the kidney (KS-WNK1), with particular abundance in the distal convoluted tubule, remains elusive. KS-WNK1, despite lacking the kinase domain, is nevertheless capable of stimulating the NaCl cotransporter, apparently through activation of WNK4. It has recently been shown that a less severe form of familial hyperkalemic hypertension featuring only hyperkalemia is caused by missense mutations in the WNK1 acidic domain that preferentially affect cullin 3 (CUL3)-Kelch-like protein 3 (KLHL3) E3-induced degradation of KS-WNK1 rather than that of full-length WNK1. Here, we show that full-length WNK1 is indeed less impacted by the CUL3-KLHL3 E3 ligase complex compared with KS-WNK1. We demonstrated that the unique 30-amino acid NH2-terminal fragment of KS-WNK1 is essential for its activating effect on the NaCl cotransporter and recognition by KLHL3. We identified specific amino acid residues in this region critical for the functional effect of KS-WNK1 and KLHL3 sensitivity. To further explore this, we generated KLHL3-R528H knockin mice that mimic human mutations causing familial hyperkalemic hypertension. These mice revealed that the KLHL3 mutation specifically increased expression of KS-WNK1 in the kidney. We also observed that in wild-type mice, the expression of KS-WNK1 was only detectable after exposure to a low-K+ diet. These findings provide new insights into the regulation and function of KS-WNK1 by the CUL3-KLHL3 complex in the distal convoluted tubule and indicate that this pathway is regulated by dietary K+ levels.NEW & NOTEWORTHY In this work, we demonstrated that the kidney-specific isoform of with no lysine kinase 1 (KS-WNK1) in the kidney is modulated by dietary K+ and activity of the ubiquitin ligase protein Kelch-like protein 3. We analyzed the role of different amino acid residues of KS-WNK1 in its activity against the NaCl cotransporter and sensitivity to Kelch-like protein 3.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Rim/enzimologia , Proteínas dos Microfilamentos/metabolismo , Potássio na Dieta/metabolismo , Pseudo-Hipoaldosteronismo/enzimologia , Proteína Quinase 1 Deficiente de Lisina WNK/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Proteínas Culina/metabolismo , Estabilidade Enzimática , Feminino , Rim/fisiopatologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas dos Microfilamentos/genética , Mutação , Domínios e Motivos de Interação entre Proteínas , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteólise , Pseudo-Hipoaldosteronismo/genética , Pseudo-Hipoaldosteronismo/fisiopatologia , Membro 3 da Família 12 de Carreador de Soluto/genética , Membro 3 da Família 12 de Carreador de Soluto/metabolismo , Proteína Quinase 1 Deficiente de Lisina WNK/deficiência , Proteína Quinase 1 Deficiente de Lisina WNK/genética , Xenopus laevis
2.
Am J Physiol Renal Physiol ; 316(1): F146-F158, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30089030

RESUMO

The renal thiazide-sensitive NaCl cotransporter (NCC) is the major salt transport pathway in the distal convoluted tubule of the mammalian nephron. NCC activity is critical for modulation of arterial blood pressure and serum potassium levels. Reduced activity of NCC in genetic diseases results in arterial hypotension and hypokalemia, while increased activity results in genetic diseases featuring hypertension and hyperkalemia. Several hormones and physiological conditions modulate NCC activity through a final intracellular complex pathway involving kinases and ubiquitin ligases. A substantial amount of work has been conducted to understand this pathway in the last 15 yr, but advances over the last 3 yr have helped to begin to understand how these regulatory proteins interact with each other and modulate the activity of this important cotransporter. In this review, we present the current model of NCC regulation by the Cullin 3 protein/Kelch-like 3 protein/with no lysine kinase/STE20-serine-proline alanine-rich kinase (CUL3/KELCH3-WNK-SPAK) pathway. We present a review of all genetically altered mice that have been used to translate most of the proposals made from in vitro experiments into in vivo observations that have helped to elucidate the model at the physiological level. Many questions have been resolved, but some others will require further models to be constructed. In addition, unexpected observations in mice have raised new questions and identified regulatory pathways that were previously unknown.


Assuntos
Rim/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Membro 3 da Família 12 de Carreador de Soluto/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Proteínas Culina/genética , Proteínas Culina/metabolismo , Modelos Animais de Doenças , Predisposição Genética para Doença , Síndrome de Gitelman/enzimologia , Síndrome de Gitelman/genética , Humanos , Camundongos Transgênicos , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Fenótipo , Proteínas Serina-Treonina Quinases/genética , Pseudo-Hipoaldosteronismo/enzimologia , Pseudo-Hipoaldosteronismo/genética , Transdução de Sinais , Membro 3 da Família 12 de Carreador de Soluto/genética , Proteína Quinase 1 Deficiente de Lisina WNK/genética , Proteína Quinase 1 Deficiente de Lisina WNK/metabolismo
3.
Am J Physiol Renal Physiol ; 314(5): F915-F920, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29361671

RESUMO

Autosomal dominant mutations in cullin-3 ( Cul3) cause the most severe form of familial hyperkalemic hypertension (FHHt). Cul3 mutations cause skipping of exon 9, which results in an internal deletion of 57 amino acids from the CUL3 protein (CUL3-∆9). The precise mechanism by which this altered form of CUL3 causes FHHt is controversial. CUL3 is a member of the cullin-RING ubiquitin ligase family that mediates ubiquitination and thus degradation of cellular proteins, including with-no-lysine [K] kinases (WNKs). In CUL3-∆9-mediated FHHt, proteasomal degradation of WNKs is abrogated, leading to overactivation of the WNK targets sterile 20/SPS-1 related proline/alanine-rich kinase and oxidative stress-response kinase-1, which directly phosphorylate and activate the thiazide-sensitive Na+-Cl- cotransporter. Several groups have suggested different mechanisms by which CUL3-∆9 causes FHHt. The majority of these are derived from in vitro data, but recently the Kurz group (Schumacher FR, Siew K, Zhang J, Johnson C, Wood N, Cleary SE, Al Maskari RS, Ferryman JT, Hardege I, Figg NL, Enchev R, Knebel A, O'Shaughnessy KM, Kurz T. EMBO Mol Med 7: 1285-1306, 2015) described the first mouse model of CUL3-∆9-mediated FHHt. Analysis of this model suggested that CUL3-∆9 is degraded in vivo, and thus Cul3 mutations cause FHHt by inducing haploinsufficiency. We recently directly tested this model but found that other dominant effects of CUL3-∆9 must contribute to the development of FHHt. In this review, we focus on our current knowledge of CUL3-∆9 action gained from in vitro and in vivo models that may help unravel this complex problem.


Assuntos
Pressão Sanguínea , Proteínas Culina/genética , Mutação , Néfrons/enzimologia , Pseudo-Hipoaldosteronismo/genética , Proteínas Adaptadoras de Transdução de Sinal , Animais , Pressão Sanguínea/genética , Proteínas de Transporte/metabolismo , Proteínas Culina/metabolismo , Modelos Animais de Doenças , Estabilidade Enzimática , Predisposição Genética para Doença , Haploinsuficiência , Humanos , Proteínas dos Microfilamentos , Néfrons/fisiopatologia , Fenótipo , Pseudo-Hipoaldosteronismo/diagnóstico , Pseudo-Hipoaldosteronismo/enzimologia , Pseudo-Hipoaldosteronismo/fisiopatologia
4.
Physiol Rep ; 4(13)2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27378813

RESUMO

Familial hyperkalemic hypertension (FHHt) is a rare inherited form of salt-dependent hypertension caused by mutations in proteins that regulate the renal Na(+)-Cl(-) cotransporter NCC Mutations in four genes have been reported to cause FHHt including CUL3 (Cullin3) that encodes a component of a RING E3 ligase. Cullin-3 binds to WNK kinase-bound KLHL3 (the substrate recognition subunit of the ubiquitin ligase complex) to promote ubiquitination and proteasomal degradation of WNK kinases. Deletion of exon 9 from CUL3 (affecting residues 403-459, CUL3(Δ403-459)) causes a severe form of FHHt (PHA2E) that is recapitulated closely in a knock-in mouse model. The loss of functionality of CUL3(Δ403-459) and secondary accumulation of WNK kinases causes substantial NCC activation. This accounts for the hypertension in FHHt but the origin of the hyperkalemia is less clear. Hence, we explored the impact of CUL3(Δ403-459) on expression of the distal secretory K channel, ROMK, both in vitro and in vivo. We found that expressing wild-type but not the CUL3(Δ403-459) mutant form of CUL3 prevented the suppression of ROMK currents by WNK4 expressed in Xenopus oocytes. The mutant CUL3 protein was also unable to affect ROMK-EGFP protein expression at the surface of mouse M-1 cortical collecting duct (CCD) cells. The effects of CUL3 on ROMK expression in both oocytes and M-1 CCD cells was reduced by addition of the neddylation inhibitor, MLN4924. This confirms that neddylation is important for CUL3 activity. Nevertheless, in our knock-in mouse model expressing CUL3(Δ403-459) we could not show any alteration in ROMK expression by either western blotting whole kidney lysates or confocal microscopy of kidney sections. This suggests that the hyperkalemia in our knock-in mouse and human PHA2E subjects with the CUL3(Δ403-459) mutation is not caused by reduced ROMK expression in the distal nephron.


Assuntos
Proteínas Culina/genética , Rim/enzimologia , Mutação , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Pseudo-Hipoaldosteronismo/enzimologia , Proteínas Adaptadoras de Transdução de Sinal , Animais , Biomarcadores/sangue , Linhagem Celular , Técnicas de Introdução de Genes , Predisposição Genética para Doença , Potenciais da Membrana , Camundongos Transgênicos , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Oócitos , Fenótipo , Potássio/sangue , Canais de Potássio Corretores do Fluxo de Internalização/genética , Processamento de Proteína Pós-Traducional , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Pseudo-Hipoaldosteronismo/sangue , Pseudo-Hipoaldosteronismo/genética , Transfecção , Xenopus laevis
5.
Curr Opin Nephrol Hypertens ; 23(5): 487-93, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24992566

RESUMO

PURPOSE OF REVIEW: Efforts to explore the pathogenic mechanisms underlying hereditary hypertension caused by a single gene mutation have brought about conceptual advances in our understanding of blood pressure regulation. We here discuss a novel pathogenic mechanism underlying the hereditary hypertensive disease pseudohypoaldosteronism type II (PHAII), caused by mutations in three different genes encoding for Cullin-3, Kelch-like protein 3 (KLHL3), and with-no-lysine kinases (WNKs). RECENT FINDINGS: In 2001, mutations in genes encoding for WNKs were identified as being responsible for PHAII. Recent advancements in genetics, in particular whole-exome sequencing, have revealed that mutations in two additional genes encoding for KLHL3 and Cyllin3 also cause PHAII. This discovery contributed to the clarification of the previously unknown regulatory mechanism of WNKs, namely WNK ubiquitination by the KLHL3-Cullin-3 E3 ligase complex. SUMMARY: Levels of WNKs within cells are regulated via ubiquitination by the KLHL3-Cullin-3 E3 ligase complex and are important determinants of the activity of the WNK-oxidative stress-responsive gene 1 and Ste20-related proline-alanine-rich kinase-SLC12A transporter signaling cascade. The PHAII-causing mutations in WNK4, KLHL3, and Cullin-3 result in the decreased ubiquitination and increased abundance of WNK4 in the kidney, thereby activating the thiazide-sensitive NaCl cotransporter and causing PHAII.


Assuntos
Pressão Sanguínea , Proteínas Culina/metabolismo , Rim/enzimologia , Pseudo-Hipoaldosteronismo/enzimologia , Equilíbrio Hidroeletrolítico , Proteínas Adaptadoras de Transdução de Sinal , Animais , Pressão Sanguínea/genética , Proteínas de Transporte/metabolismo , Proteínas Culina/genética , Predisposição Genética para Doença , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Rim/fisiopatologia , Proteínas dos Microfilamentos , Antígenos de Histocompatibilidade Menor , Mutação , Fenótipo , Proteínas Serina-Treonina Quinases/metabolismo , Pseudo-Hipoaldosteronismo/genética , Pseudo-Hipoaldosteronismo/fisiopatologia , Transdução de Sinais , Proteína Quinase 1 Deficiente de Lisina WNK , Equilíbrio Hidroeletrolítico/genética
6.
Biol Cell ; 106(2): 45-56, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24313290

RESUMO

In 2001, with-no-lysine (WNK) kinases were identified as the genes responsible for the human hereditary hypertensive disease pseudohypoaldosteronism type II (PHAII). It took a further 6 years to clarify that WNK kinases participate in a signaling cascade with oxidative stress-responsive gene 1 (OSR1), Ste20-related proline-alanine-rich kinase (SPAK), and thiazide-sensitive NaCl cotransporter (NCC) in the kidney and the constitutive activation of this signaling cascade is the molecular basis of PHAII. Since this discovery, the WNK-OSR1/SPAK-NCC signaling cascade has been shown to be involved not only in PHAII but also in the regulation of blood pressure under normal and pathogenic conditions, such as hyperinsulinemia. However, the molecular mechanisms of WNK kinase regulation by dietary and hormonal factors and by PHAII-causing mutations remain poorly understood. In 2012, two additional genes responsible for PHAII, Kelch-like 3 (KLHL3) and Cullin3, were identified. At the time of their discovery, the molecular mechanisms underlying the interaction between these genes and their involvement in PHAII were unknown. Here we review the pathophysiological roles of the WNK signaling cascade clarified to date and introduce a new mechanism of WNK kinase regulation by KLHL3 and Cullin3, which provides insight on previously unknown mechanisms of WNK kinase regulation.


Assuntos
Proteínas de Transporte/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Pseudo-Hipoaldosteronismo/metabolismo , Transdução de Sinais , Proteínas Adaptadoras de Transdução de Sinal , Animais , Proteínas de Transporte/química , Proteínas de Transporte/genética , Proteínas Culina/química , Proteínas Culina/genética , Proteínas Culina/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas dos Microfilamentos , Antígenos de Histocompatibilidade Menor , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/genética , Pseudo-Hipoaldosteronismo/enzimologia , Pseudo-Hipoaldosteronismo/genética , Proteína Quinase 1 Deficiente de Lisina WNK
7.
Am J Physiol Renal Physiol ; 305(10): F1436-44, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24026182

RESUMO

Aldosterone is a major regulator of Na(+) absorption and acts by activating the mineralocorticoid receptor (MR) to stimulate the epithelial Na(+) channel (ENaC). MR(-/-) mice exhibited pseudohypoaldosteronism type 1 (hyponatremia, hyperkalemia, salt wasting, and high levels of aldosterone) and died around postnatal day 10. However, if and how MR regulates ENaC transcription remain incompletely understood. Our earlier work demonstrated that aldosterone activates αENaC transcription by reducing expression of Dot1a and Af9 and by impairing Dot1a-Af9 interaction. Most recently, we reported identification of a major Af9 binding site in the αENaC promoter and upregulation of αENaC mRNA expression in mouse kidneys lacking Dot1a. Despite these findings, the putative antagonism between the MR/aldosterone and Dot1a-Af9 complexes has never been addressed. The molecular defects leading to PHA-1 in MR(-/-) mice remain elusive. Here, we report that MR competes with Dot1a to bind Af9. MR/aldosterone and Dot1a-Af9 complexes mutually counterbalance ENaC mRNA expression in inner medullary collecting duct 3 (IMCD3) cells. Real-time RT-quantitative PCR revealed that 5-day-old MR(-/-) vs. MR(+/+) mice had significantly lower αENaC mRNA levels. This change was associated with an increased Af9 binding and H3 K79 hypermethylation in the αENaC promoter. Therefore, this study identified MR as a novel binding partner and regulator of Af9 and a novel mechanism coupling MR-mediated activation with relief of Dot1a-Af9-mediated repression via MR-Af9 interaction. Impaired ENaC expression due to failure to inhibit Dot1a-Af9 may play an important role in the early stages of PHA-1 (before postnatal day 8) in MR(-/-) mice.


Assuntos
Canais Epiteliais de Sódio/metabolismo , Túbulos Renais Coletores/enzimologia , Metiltransferases/metabolismo , Proteínas Nucleares/metabolismo , Pseudo-Hipoaldosteronismo/enzimologia , Receptores de Mineralocorticoides/metabolismo , Transcrição Gênica , Animais , Ligação Competitiva , Linhagem Celular , Metilação de DNA , Modelos Animais de Doenças , Canais Epiteliais de Sódio/genética , Predisposição Genética para Doença , Histona-Lisina N-Metiltransferase , Humanos , Camundongos , Camundongos Knockout , Fenótipo , Regiões Promotoras Genéticas , Ligação Proteica , Pseudo-Hipoaldosteronismo/genética , RNA Mensageiro/metabolismo , Receptores de Mineralocorticoides/deficiência , Receptores de Mineralocorticoides/genética , Transfecção , Regulação para Cima
8.
Clin Exp Pharmacol Physiol ; 40(12): 876-84, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23683032

RESUMO

Human blood pressure is dependent on balancing dietary salt intake with its excretion by the kidney. Mendelian syndromes of altered blood pressure demonstrate the importance of the distal nephron in this process and of the thiazide-sensitive pathway in particular. Gordon syndrome (GS), the phenotypic inverse of the salt-wasting Gitelman syndrome, is a condition of hyperkalaemic hypertension that is reversed by low-dose thiazide diuretics or a low-salt diet. Variants within at least four genes [i.e. with-no-lysine(K) kinase 1 (WNK1), WNK4, kelch-like family member 3 (KLHL3) and cullin 3 (CUL3)] can cause the phenotype of GS. Details are still emerging for some of these genes, but it is likely that they all cause a gain-of-function in the thiazide-sensitive Na(+) -Cl(-) cotransporter (NCC) and hence salt retention. Herein, we discuss the key role of STE20/sporulation-specific protein 1 (SPS1)-related proline/alanine-rich kinase (SPAK), which functions as an intermediary between the WNKs and NCC and for which a loss-of-function mutation produces a Gitelman-type phenotype in a mouse model. In addition to Mendelian blood pressure syndromes, the study of patients who develop thiazide-induced-hyponatraemia (TIH) may give further molecular insights into the role of the thiazide-sensitive pathway for salt reabsorption. In the present paper we discuss the key features of TIH, including its high degree of reproducibility on rechallenge, possible genetic predisposition and mechanisms involving excessive saliuresis and water retention. Together, studies of Gordon syndrome and TIH may increase our understanding of the molecular regulation of sodium trafficking via the thiazide-sensitive pathway and have important implications for hypertensive patients, both in the identification of new antihypertensive drug targets and avoidance of hyponatraemic side-effects.


Assuntos
Diuréticos/efeitos adversos , Hiponatremia/induzido quimicamente , Rim/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/genética , Pseudo-Hipoaldosteronismo/tratamento farmacológico , Receptores de Droga/genética , Simportadores de Cloreto de Sódio/genética , Tiazidas/efeitos adversos , Animais , Diuréticos/administração & dosagem , Diuréticos/uso terapêutico , Predisposição Genética para Doença , Síndrome de Gitelman/tratamento farmacológico , Síndrome de Gitelman/enzimologia , Síndrome de Gitelman/genética , Humanos , Hiponatremia/enzimologia , Hiponatremia/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Rim/enzimologia , Camundongos , Antígenos de Histocompatibilidade Menor , Pseudo-Hipoaldosteronismo/enzimologia , Pseudo-Hipoaldosteronismo/genética , Sódio/metabolismo , Tiazidas/administração & dosagem , Tiazidas/uso terapêutico , Proteína Quinase 1 Deficiente de Lisina WNK
9.
Biochem J ; 451(1): 111-22, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23387299

RESUMO

The WNK (with no lysine kinase)-SPAK (SPS1-related proline/alanine-rich kinase)/OSR1 (oxidative stress-responsive kinase 1) signalling pathway plays an important role in controlling mammalian blood pressure by modulating the activity of ion co-transporters in the kidney. Recent studies have identified Gordon's hypertension syndrome patients with mutations in either CUL3 (Cullin-3) or the BTB protein KLHL3 (Kelch-like 3). CUL3 assembles with BTB proteins to form Cullin-RING E3 ubiquitin ligase complexes. To explore how a CUL3-KLHL3 complex might operate, we immunoprecipitated KLHL3 and found that it associated strongly with WNK isoforms and CUL3, but not with other components of the pathway [SPAK/OSR1 or NCC (Na(+)/Cl(-) co-transporter)/NKCC1 (Na(+)/K(+)/2Cl(-) co-transporter 1)]. Strikingly, 13 out of the 15 dominant KLHL3 disease mutations analysed inhibited binding to WNK1 or CUL3. The recombinant wild-type CUL3-KLHL3 E3 ligase complex, but not a disease-causing CUL3-KLHL3[R528H] mutant complex, ubiquitylated WNK1 in vitro. Moreover, siRNA (small interfering RNA)-mediated knockdown of CUL3 increased WNK1 protein levels and kinase activity in HeLa cells. We mapped the KLHL3 interaction site in WNK1 to a non-catalytic region (residues 479-667). Interestingly, the equivalent region in WNK4 encompasses residues that are mutated in Gordon's syndrome patients. Strikingly, we found that the Gordon's disease-causing WNK4[E562K] and WNK4[Q565E] mutations, as well as the equivalent mutation in the WNK1[479-667] fragment, abolished the ability to interact with KLHL3. These results suggest that the CUL3-KLHL3 E3 ligase complex regulates blood pressure via its ability to interact with and ubiquitylate WNK isoforms. The findings of the present study also emphasize that the missense mutations in WNK4 that cause Gordon's syndrome strongly inhibit interaction with KLHL3. This could elevate blood pressure by increasing the expression of WNK4 thereby stimulating inappropriate salt retention in the kidney by promoting activation of the NCC/NKCC2 ion co-transporters. The present study reveals how mutations that disrupt the ability of an E3 ligase to interact with and ubiquitylate a critical cellular substrate such as WNK isoforms can trigger a chronic disease such as hypertension.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas Culina/metabolismo , Mutação de Sentido Incorreto , Proteínas Serina-Treonina Quinases/metabolismo , Pseudo-Hipoaldosteronismo/enzimologia , Ubiquitinação , Proteínas Adaptadoras de Transdução de Sinal , Substituição de Aminoácidos , Proteínas de Transporte/genética , Proteínas Culina/genética , Células HEK293 , Células HeLa , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas dos Microfilamentos , Antígenos de Histocompatibilidade Menor , Proteínas Serina-Treonina Quinases/genética , Pseudo-Hipoaldosteronismo/genética , Simportadores de Cloreto de Sódio-Potássio/genética , Simportadores de Cloreto de Sódio-Potássio/metabolismo , Membro 2 da Família 12 de Carreador de Soluto , Proteína Quinase 1 Deficiente de Lisina WNK
10.
Clin Sci (Lond) ; 124(12): 701-8, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23336180

RESUMO

Mutations in the novel serine/threonine WNK [With No lysine (=K)] kinases WNK1 and WNK4 cause PHAII (pseudohypoaldosteronism type II or Gordon's syndrome), a rare monogenic syndrome which causes hypertension and hyperkalaemia on a background of a normal glomerular filtration rate. Current animal models for PHAII recapitulate some aspects of the disease phenotype, but give no clues to how rapidly the phenotype emerges or whether it is reversible. To this end we have created an inducible PHAII transgenic animal model that expresses a human disease-causing WNK4 mutation, WNK4 Q565E, under the control of the Tet-On system. Several PHAII inducible transgenic mouse lines were created, each with differing TG (transgene) copy numbers and displaying varying degrees of TG expression (low, medium and high). Each of these transgenic lines demonstrated similar elevations of BP (blood pressure) and plasma potassium after 4 weeks of TG induction. Withdrawal of doxycycline switched off mutant TG expression and the disappearance of the PHAII phenotype. Western blotting of microdissected kidney nephron segments confirmed that expression of the thiazide-sensitive NCC (Na⁺-Cl⁻ co-transporter) was increased, as expected, in the distal convoluted tubule when transgenic mice were induced with doxycycline. The kidneys of these mice also do not show the morphological changes seen in the previous transgenic model expressing the same mutant form of WNK4. This inducible model shows, for the first time, that in vivo expression of a mutant WNK4 protein is sufficient to cause the rapid and reversible appearance of a PHAII disease phenotype in mice.


Assuntos
Rim/enzimologia , Proteínas Serina-Treonina Quinases/metabolismo , Pseudo-Hipoaldosteronismo/enzimologia , Animais , Biomarcadores/sangue , Pressão Sanguínea , Western Blotting , Modelos Animais de Doenças , Doxiciclina/farmacologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Genótipo , Humanos , Hibridização in Situ Fluorescente , Rim/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação , Fenótipo , Potássio/sangue , Proteínas Serina-Treonina Quinases/genética , Pseudo-Hipoaldosteronismo/sangue , Pseudo-Hipoaldosteronismo/genética , Pseudo-Hipoaldosteronismo/fisiopatologia , Simportadores de Cloreto de Sódio/metabolismo , Fatores de Tempo
11.
Physiol Rev ; 91(1): 177-219, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21248166

RESUMO

WNKs are serine/threonine kinases that comprise a unique branch of the kinome. They are so-named owing to the unusual placement of an essential catalytic lysine. WNKs have now been identified in diverse organisms. In humans and other mammals, four genes encode WNKs. WNKs are widely expressed at the message level, although data on protein expression is more limited. Soon after the WNKs were identified, mutations in genes encoding WNK1 and -4 were determined to cause the human disease familial hyperkalemic hypertension (also known as pseudohypoaldosteronism II, or Gordon's Syndrome). For this reason, a major focus of investigation has been to dissect the role of WNK kinases in renal regulation of ion transport. More recently, a different mutation in WNK1 was identified as the cause of hereditary sensory and autonomic neuropathy type II, an early-onset autosomal disease of peripheral sensory nerves. Thus the WNKs represent an important family of potential targets for the treatment of human disease, and further elucidation of their physiological actions outside of the kidney and brain is necessary. In this review, we describe the gene structure and mechanisms regulating expression and activity of the WNKs. Subsequently, we outline substrates and targets of WNKs as well as effects of WNKs on cellular physiology, both in the kidney and elsewhere. Next, consequences of these effects on integrated physiological function are outlined. Finally, we discuss the known and putative pathophysiological relevance of the WNKs.


Assuntos
Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Sistemas de Liberação de Medicamentos , Regulação da Expressão Gênica , Pleiotropia Genética , Neuropatias Hereditárias Sensoriais e Autônomas/enzimologia , Humanos , Hipertensão/enzimologia , Peptídeos e Proteínas de Sinalização Intracelular , Antígenos de Histocompatibilidade Menor , Dados de Sequência Molecular , Família Multigênica , Neoplasias/enzimologia , Pseudo-Hipoaldosteronismo/enzimologia , Proteína Quinase 1 Deficiente de Lisina WNK
12.
Hum Mol Genet ; 20(5): 855-66, 2011 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-21131289

RESUMO

WNK1 (with-no-lysine[K]-1) is a protein kinase of which mutations cause a familial hypertension and hyperkalemia syndrome known as pseudohypoaldosteronism type 2 (PHA2). Kidney-specific (KS) WNK1 is an alternatively spliced form of WNK1 kinase missing most of the kinase domain. KS-WNK1 downregulates the Na(+)-Cl(-) cotransporter NCC by antagonizing the effect of full-length WNK1 when expressed in Xenopus oocytes. The physiological role of KS-WNK1 in the regulation of NCC and potentially other Na(+) transporters in vivo is unknown. Here, we report that mice overexpressing KS-WNK1 in the kidney exhibited renal Na(+) wasting, elevated plasma levels of angiotensin II and aldosterone yet lower blood pressure relative to wild-type littermates. Immunofluorescent staining revealed reduced surface expression of total and phosphorylated NCC and the Na(+)-K(+)-2Cl(-) cotransporter NKCC2 in the distal convoluted tubule and the thick ascending limb of Henle's loop, respectively. Conversely, mice with targeted deletion of exon 4A (the first exon for KS-WNK1) exhibited Na(+) retention, elevated blood pressure on a high-Na(+) diet and increased surface expression of total and phosphorylated NCC and NKCC2 in respective nephron segments. Thus, KS-WNK1 is a negative regulator of NCC and NKCC2 in vivo and plays an important role in the control of Na(+) homeostasis and blood pressure. These results have important implications to the pathogenesis of PHA2 with WNK1 mutations.


Assuntos
Regulação para Baixo , Inativação Gênica , Rim/enzimologia , Proteínas Serina-Treonina Quinases/metabolismo , Pseudo-Hipoaldosteronismo/metabolismo , Receptores de Droga/genética , Simportadores de Cloreto de Sódio-Potássio/genética , Simportadores/genética , Sequência de Aminoácidos , Animais , Pressão Sanguínea , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica , Humanos , Rim/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Antígenos de Histocompatibilidade Menor , Dados de Sequência Molecular , Especificidade de Órgãos , Proteínas Serina-Treonina Quinases/genética , Estrutura Terciária de Proteína , Pseudo-Hipoaldosteronismo/enzimologia , Pseudo-Hipoaldosteronismo/genética , Pseudo-Hipoaldosteronismo/fisiopatologia , Receptores de Droga/metabolismo , Sódio/metabolismo , Simportadores de Cloreto de Sódio-Potássio/química , Simportadores de Cloreto de Sódio-Potássio/metabolismo , Membro 1 da Família 12 de Carreador de Soluto , Membro 3 da Família 12 de Carreador de Soluto , Simportadores/metabolismo , Proteína Quinase 1 Deficiente de Lisina WNK
13.
Horm Res Paediatr ; 74(1): 72-5, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20431271

RESUMO

We report herein the case of a premature infant who presented with failure to thrive, hyponatremia, hyperkalemia and metabolic acidosis. Initial serum hormone profiling suggested isolated hypoaldosteronism (aldosterone: 0.01 pg/ml, normal range: 50-900 pg/ml). A gas chromatography-mass spectrometry spot urinary steroid profile showed grossly elevated levels of 18-hydroxy-tetrahydro-11-dehydrocorticosterone (18-hydroxy-THA: 5,893 microg/l; normal upper limit 36 microg/l) and tetrahydroaldosterone (TH-Aldo: 5,749 microg/l; normal upper limit 36 microg/l) which are aldosterone precursor metabolite and aldosterone metabolite, respectively. Thus, aldosterone synthase deficiency was excluded and pseudohypoaldosteronism (PHA) was suggested. A repeated test after dilution of the serum revealed a very high level of aldosterone (6,490 pg/ml), confirming the diagnosis of PHA in this case.


Assuntos
Aldosterona/sangue , Citocromo P-450 CYP11B2/deficiência , Hipoaldosteronismo/diagnóstico , Pseudo-Hipoaldosteronismo/diagnóstico , Diagnóstico Diferencial , Humanos , Hiperpotassemia , Hipoaldosteronismo/sangue , Hipoaldosteronismo/enzimologia , Hiponatremia , Lactente , Masculino , Pseudo-Hipoaldosteronismo/sangue , Pseudo-Hipoaldosteronismo/enzimologia
14.
Am J Physiol Renal Physiol ; 297(3): F685-92, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19587141

RESUMO

Mutations in WNK4 protein kinase cause pseudohypoaldosteronism type II (PHAII), a genetic disorder that is characterized by renal NaCl and K(+) retention leading to hypertension and hyperkalemia. Consistent with this, WNK4 is known to regulate several renal tubule transporters, including the NaCl cotransporter, NCC, and the K(+) channel, ROMK, but the mechanisms are incompletely understood, and the role of the kinase activity in its actions is highly controversial. To assay WNK4 kinase activity, we have now succeeded in expressing and purifying full-length, enzymatically active WNK4 protein from HEK293 cells. We show that full-length wild-type WNK4 phosphorylates oxidative stress response kinase 1 (OSR1) and Ste20/SPS1-related proline/alanine-rich kinase (SPAK) in vitro. Introducing the PHAII-associated mutations, E559K, D561A, and Q562E, into our protein had no significant effect on this phosphorylation. We conclude that PHAII is unlikely to be caused by abnormal WNK4 kinase activity. We also made the intriguing observation that inactivating mutations of the WNK4 kinase domain did not completely abolish in vitro phosphorylation of OSR1/SPAK. Led by this, we identified a novel 40-kDa kinase that associates specifically with the COOH-terminal half of WNK4 and is able to phosphorylate both WNK4 and SPAK/OSR1. We suggest that this 40-kDa kinase functions in the WNK4 signal transduction pathway and may mediate some of the physiological actions attributed to WNK4.


Assuntos
Proteínas Serina-Treonina Quinases/metabolismo , Pseudo-Hipoaldosteronismo/enzimologia , Animais , Células CHO , Células COS , Chlorocebus aethiops , Cricetinae , Cricetulus , Humanos , Camundongos , Peso Molecular , Mutação , Fosforilação , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/genética , Estrutura Terciária de Proteína , Pseudo-Hipoaldosteronismo/genética , Proteínas Recombinantes de Fusão/metabolismo , Especificidade por Substrato , Transfecção
15.
Curr Opin Nephrol Hypertens ; 17(2): 133-7, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18277144

RESUMO

PURPOSE OF REVIEW: The present review summarizes recent literature and discusses the potential roles of WNKs in the pathogenesis of essential hypertension. RECENT FINDINGS: WNKs (with-no-lysine [K]) are a recently discovered family of serine-threonine protein kinases with unusual protein kinase domains. The role of WNK kinases in the control of blood pressure was first revealed by the findings that mutations of two members, WNK1 and WNK4, cause Gordon's syndrome. Laboratory studies have revealed that WNK kinases play important roles in the regulation of sodium and potassium transport. Animal models have been created to unravel the pathophysiology of sodium transport disorders caused by mutations of the WNK4 gene. Potassium deficiency causes sodium retention and increases hypertension prevalence. The expression of WNK1 is upregulated by potassium deficiency, raising the possibility that WNK1 may contribute to salt-sensitive essential hypertension associated with potassium deficiency. Associations of polymorphisms of WNK genes with essential hypertension in the general population have been reported. SUMMARY: Mutations of WNK1 and WNK4 cause hypertension at least partly by increasing renal sodium retention. The role of WNK kinases in salt-sensitive hypertension within general hypertension is suggested, but future work is required to firmly establish the connection.


Assuntos
Pressão Sanguínea , Hipertensão/enzimologia , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Animais , Pressão Sanguínea/genética , Predisposição Genética para Doença , Humanos , Hipertensão/induzido quimicamente , Hipertensão/genética , Hipertensão/fisiopatologia , Peptídeos e Proteínas de Sinalização Intracelular , Antígenos de Histocompatibilidade Menor , Modelos Animais , Mutação , Polimorfismo Genético , Deficiência de Potássio/complicações , Deficiência de Potássio/enzimologia , Deficiência de Potássio/patologia , Proteínas Serina-Treonina Quinases/genética , Pseudo-Hipoaldosteronismo/enzimologia , Pseudo-Hipoaldosteronismo/fisiopatologia , Fatores de Risco , Transdução de Sinais/genética , Cloreto de Sódio na Dieta/efeitos adversos , Proteína Quinase 1 Deficiente de Lisina WNK , Equilíbrio Hidroeletrolítico
16.
Exp Mol Med ; 39(5): 565-73, 2007 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-18059132

RESUMO

WNKs (with-no-lysine [K]) are a family of serine-threonine protein kinases with an atypical placement of the catalytic lysine relative to all other protein kinases. The roles of WNK kinases in regulating ion transport were first revealed by the findings that mutations of two members cause a genetic hypertension and hyperkalemia syndrome. More recent studies suggest that WNKs are pleiotropic protein kinases with important roles in many cell processes in addition to ion transport. Here, we review roles of WNK kinases in the regulation of ion balance, cell signaling, survival, and proliferation, and embryonic organ development.


Assuntos
Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Sequência de Aminoácidos , Animais , Proliferação de Células , Sobrevivência Celular , Humanos , Hiperpotassemia/enzimologia , Hiperpotassemia/etiologia , Hiperpotassemia/genética , Hipertensão/enzimologia , Hipertensão/etiologia , Hipertensão/genética , Peptídeos e Proteínas de Sinalização Intracelular , Rim/enzimologia , Antígenos de Histocompatibilidade Menor , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Neoplasias/enzimologia , Neoplasias/etiologia , Neoplasias/genética , Proteínas Serina-Treonina Quinases/genética , Estrutura Terciária de Proteína , Pseudo-Hipoaldosteronismo/enzimologia , Pseudo-Hipoaldosteronismo/etiologia , Pseudo-Hipoaldosteronismo/genética , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Síndrome , Proteína Quinase 1 Deficiente de Lisina WNK
17.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-82953

RESUMO

WNKs (with-no-lysine [K]) are a family of serine-threonine protein kinases with an atypical placement of the catalytic lysine relative to all other protein kinases. The roles of WNK kinases in regulating ion transport were first revealed by the findings that mutations of two members cause a genetic hypertension and hyperkalemia syndrome. More recent studies suggest that WNKs are pleiotropic protein kinases with important roles in many cell processes in addition to ion transport. Here, we review roles of WNK kinases in the regulation of ion balance, cell signaling, survival, and proliferation, and embryonic organ development.


Assuntos
Animais , Humanos , Sequência de Aminoácidos , Proliferação de Células , Sobrevivência Celular , Hiperpotassemia/enzimologia , Hipertensão/enzimologia , Rim/enzimologia , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Neoplasias/enzimologia , Estrutura Terciária de Proteína , Proteínas Serina-Treonina Quinases/química , Pseudo-Hipoaldosteronismo/enzimologia , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Síndrome
18.
Pediatr Nephrol ; 21(9): 1231-6, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16683163

RESUMO

Gordon's syndrome, also known as pseudohypoaldosteronism type II (PHA II) or familial hypertension with hyperkalemia, is an autosomal-dominant disease characterized by hypertension, hyperkalemia, hyperchloremic metabolic acidosis, and normal glomerular filtration rate. Recent positional cloning has linked mutations of WNK1 and WNK4 to Gordon's syndrome. With-no-lysine [K] (WNK) kinases are a new family of large serine-threonine protein kinases with an atypical placement of the catalytic lysine. Here, we review the pathogenesis of PHA II based on current understanding of the actions of WNK1 and WNK4 on Na+ and K+ handling in the renal distal tubule.


Assuntos
Proteínas Serina-Treonina Quinases/fisiologia , Pseudo-Hipoaldosteronismo/enzimologia , Pseudo-Hipoaldosteronismo/etiologia , Animais , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Antígenos de Histocompatibilidade Menor , Proteína Quinase 1 Deficiente de Lisina WNK
20.
Science ; 293(5532): 1107-12, 2001 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-11498583

RESUMO

Hypertension is a major public health problem of largely unknown cause. Here, we identify two genes causing pseudohypoaldosteronism type II, a Mendelian trait featuring hypertension, increased renal salt reabsorption, and impaired K+ and H+ excretion. Both genes encode members of the WNK family of serine-threonine kinases. Disease-causing mutations in WNK1 are large intronic deletions that increase WNK1 expression. The mutations in WNK4 are missense, which cluster in a short, highly conserved segment of the encoded protein. Both proteins localize to the distal nephron, a kidney segment involved in salt, K+, and pH homeostasis. WNK1 is cytoplasmic, whereas WNK4 localizes to tight junctions. The WNK kinases and their associated signaling pathway(s) may offer new targets for the development of antihypertensive drugs.


Assuntos
Hipertensão/genética , Mutação , Proteínas Serina-Treonina Quinases/genética , Pseudo-Hipoaldosteronismo/genética , Sequência de Aminoácidos , Sequência de Bases , Mapeamento Cromossômico , Cromossomos Humanos Par 12/genética , Cromossomos Humanos Par 17/genética , Citoplasma/enzimologia , Feminino , Regulação Enzimológica da Expressão Gênica , Ligação Genética , Humanos , Hipertensão/enzimologia , Hipertensão/fisiopatologia , Junções Intercelulares/enzimologia , Peptídeos e Proteínas de Sinalização Intracelular , Íntrons , Túbulos Renais Coletores/enzimologia , Túbulos Renais Coletores/ultraestrutura , Túbulos Renais Distais/enzimologia , Túbulos Renais Distais/ultraestrutura , Masculino , Proteínas de Membrana/metabolismo , Microscopia de Fluorescência , Antígenos de Histocompatibilidade Menor , Dados de Sequência Molecular , Mutação de Sentido Incorreto , Linhagem , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Pseudo-Hipoaldosteronismo/enzimologia , Pseudo-Hipoaldosteronismo/fisiopatologia , Deleção de Sequência , Transdução de Sinais , Proteína Quinase 1 Deficiente de Lisina WNK , Proteína da Zônula de Oclusão-1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...