Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.666
Filtrar
1.
Int J Mol Sci ; 25(11)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38892351

RESUMO

Pulmonary arteriovenous malformations (PAVMs) are vascular anomalies resulting in abnormal connections between pulmonary arteries and veins. In 80% of cases, PAVMs are present from birth, but clinical manifestations are rarely seen in childhood. These congenital malformations are typically associated with Hereditary Hemorrhagic Telangiectasia (HHT), a rare disease that affects 1 in 5000/8000 individuals. HHT disease is frequently caused by mutations in genes involved in the TGF-ß pathway. However, approximately 15% of patients do not have a genetic diagnosis and, among the genetically diagnosed, more than 33% do not meet the Curaçao criteria. This makes clinical diagnosis even more challenging in the pediatric age group. Here, we introduce an 8-year-old patient bearing a severe phenotype of multiple diffuse PAVMs caused by an unknown mutation which ended in lung transplantation. Phenotypically, the case under study follows a molecular pattern which is HHT-like. Therefore, molecular- biological and cellular-functional analyses have been performed in primary endothelial cells (ECs) isolated from the explanted lung. The findings revealed a loss of functionality in lung endothelial tissue and a stimulation of endothelial-to-mesenchymal transition. Understanding the molecular basis of this transition could potentially offer new therapeutic strategies to delay lung transplantation in severe cases.


Assuntos
Células Endoteliais , Artéria Pulmonar , Veias Pulmonares , Telangiectasia Hemorrágica Hereditária , Humanos , Telangiectasia Hemorrágica Hereditária/genética , Telangiectasia Hemorrágica Hereditária/patologia , Criança , Artéria Pulmonar/anormalidades , Artéria Pulmonar/patologia , Veias Pulmonares/anormalidades , Veias Pulmonares/patologia , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Masculino , Mutação , Malformações Arteriovenosas/genética , Malformações Arteriovenosas/patologia , Malformações Arteriovenosas/metabolismo , Transição Epitelial-Mesenquimal/genética , Transplante de Pulmão , Fístula Arteriovenosa/patologia , Fístula Arteriovenosa/genética , Pulmão/patologia , Pulmão/irrigação sanguínea , Feminino
2.
Khirurgiia (Mosk) ; (6): 70-76, 2024.
Artigo em Russo | MEDLINE | ID: mdl-38888021

RESUMO

Congenital anomalies of respiratory system are quite diverse and not all of them are subject to surgical treatment. One example is accessory lobe of the azygos vein. This anomaly usually has no clinical manifestations and requires only follow-up, as well as attention in surgery on the right half of the chest for some other disease. This situation changes when complications occur, for example, purulent-inflammatory process. Therapy is not always effective, and lung tissue destruction requires surgical treatment. Progressive destruction complicates diagnosis and choosing surgical tactics. We present a rare case of severe purulent-inflammatory complication with abscess in accessory lobe of v. azygos. Anatomical abnormalities following this congenital pulmonary anomaly can cause difficulties in surgeries for other intra-thoracic diseases. The situation is especially relevant for thoracoscopic access. This report will be useful for radiologists, pulmonologists and thoracic surgeons.


Assuntos
Veia Ázigos , Humanos , Veia Ázigos/cirurgia , Veia Ázigos/anormalidades , Resultado do Tratamento , Masculino , Tomografia Computadorizada por Raios X/métodos , Toracoscopia/métodos , Pulmão/cirurgia , Pulmão/anormalidades , Pulmão/irrigação sanguínea , Pulmão/diagnóstico por imagem , Feminino , Abscesso Pulmonar/cirurgia , Abscesso Pulmonar/diagnóstico , Abscesso Pulmonar/etiologia
3.
J Pathol ; 263(3): 347-359, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38734878

RESUMO

Vascular permeability is temporarily heightened during inflammation, but excessive inflammation-associated microvascular leakage can be detrimental, as evidenced in the inflamed lung. Formylated peptides regulate vascular leakage indirectly via formylated peptide receptor-1 (FPR1)-mediated recruitment and activation of neutrophils. Here we identify how the GTPase-activating protein ARAP3 protects against formylated peptide-induced microvascular permeability via endothelial cells and neutrophils. In vitro, Arap3-/- endothelial monolayers were characterised by enhanced formylated peptide-induced permeability due to upregulated endothelial FPR1 and enhanced vascular endothelial cadherin internalisation. In vivo, enhanced inflammation-associated microvascular leakage was observed in Arap3-/- mice. Leakage of plasma protein into the lungs of Arap3-/- mice increased within hours of formylated peptide administration. Adoptive transfer experiments indicated this was dependent upon ARAP3 deficiency in both immune and non-immune cells. Bronchoalveolar lavages of formylated peptide-challenged Arap3-/- mice contained neutrophil extracellular traps (NETs). Pharmacological inhibition of NET formation abrogated excessive microvascular leakage, indicating a critical function of NETs in this context. The observation that Arap3-/- mice developed more severe influenza suggests these findings are pertinent to pathological situations characterised by abundant formylated peptides. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Permeabilidade Capilar , Células Endoteliais , Camundongos Knockout , Neutrófilos , Animais , Neutrófilos/metabolismo , Permeabilidade Capilar/efeitos dos fármacos , Humanos , Células Endoteliais/metabolismo , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/patologia , Camundongos , Proteínas Ativadoras de GTPase/metabolismo , Proteínas Ativadoras de GTPase/genética , Camundongos Endogâmicos C57BL , Armadilhas Extracelulares/metabolismo , Pulmão/metabolismo , Pulmão/patologia , Pulmão/irrigação sanguínea
4.
Comput Methods Programs Biomed ; 253: 108256, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38820713

RESUMO

OBJECTIVE: Numerous clinical and pathological studies have confirmed that lung injury can cause cardiovascular disease, but there is no explanation for the mechanism by which the degree of lung injury affects cardiac function. We attempt to reveal this mechanism of influence by simulating a cyclic model. METHOD: This study established a closed-loop cardiovascular model with a series of electrical parameters. Including the heart, lungs, arteries, veins, etc., each part of the cardiovascular system is modeled using centralized parameters. Adjusting these lung resistances to alter the degree of lung injury is aimed at reflecting the impact of different degrees of lung injury on cardiac function. Finally, analyze and compare the changes in blood pressure, aortic flow, atrioventricular volume, and atrioventricular pressure among different lung injuries to obtain the changes in cardiac function. RESULTS: In this model, the peak aortic flow decreased, the earlier the trough appeared, and the total aortic flow decreased. Left atrial blood pressure decreased from 6.5 mmHg to around 5.5 mmHg, left ventricular blood pressure decreased from 100 mmHg to around 50 mmHg, and aortic blood pressure also decreased from 100 mmHg to around 50 mmHg. The blood pressure in the pulmonary artery, right atrium, and right ventricle increases. The right ventricular blood pressure decreased from 20 mmHg to around 40 mmHg, while the right atrial blood pressure slightly increased. It can be seen that the increase in impedance has a greater impact on ventricular blood pressure than on atrium. Pulmonary arterial pressure significantly increases, rising from 20 mmHg to around 50 mmHg, forming pulmonary hypertension. The left ventricular end-systolic potential energy, filling energy, stroke work, stroke output, left ventricular filling period, maximum blood pressure during ventricular ejection period, and stroke energy efficiency decrease. CONCLUSION: We established a closed-loop cardiovascular model that reveals that the more severe lung injury, the higher blood pressure in the pulmonary artery, right atrium, and right ventricle, while the lower blood pressure in the left atrium, left ventricle, and aorta. The increase in pulmonary impedance leads to abnormalities in myocardial contraction, diastolic function, and cardiac reserve capacity, leading to a decrease in cardiac function. This closed-loop model provides a method for pre assessment of cardiovascular disease after lung injury.


Assuntos
Lesão Pulmonar , Humanos , Lesão Pulmonar/fisiopatologia , Pressão Sanguínea , Modelos Cardiovasculares , Coração/fisiopatologia , Simulação por Computador , Pulmão/fisiopatologia , Pulmão/irrigação sanguínea
5.
Cell Mol Life Sci ; 81(1): 240, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38806818

RESUMO

The pulmonary endothelium is a dynamic and metabolically active monolayer of endothelial cells. Dysfunction of the pulmonary endothelial barrier plays a crucial role in the acute lung injury (ALI) and acute respiratory distress syndrome (ARDS), frequently observed in the context of viral pneumonia. Dysregulation of tight junction proteins can lead to the disruption of the endothelial barrier and subsequent leakage. Here, the highly pathogenic porcine reproductive and respiratory syndrome virus (HP-PRRSV) served as an ideal model for studying ALI and ARDS. The alveolar lavage fluid of pigs infected with HP-PRRSV, and the supernatant of HP-PRRSV infected pulmonary alveolar macrophages were respectively collected to treat the pulmonary microvascular endothelial cells (PMVECs) in Transwell culture system to explore the mechanism of pulmonary microvascular endothelial barrier leakage caused by viral infection. Cytokine screening, addition and blocking experiments revealed that proinflammatory cytokines IL-1ß and TNF-α, secreted by HP-PRRSV-infected macrophages, disrupt the pulmonary microvascular endothelial barrier by downregulating claudin-8 and upregulating claudin-4 synergistically. Additionally, three transcription factors interleukin enhancer binding factor 2 (ILF2), general transcription factor III C subunit 2 (GTF3C2), and thyroid hormone receptor-associated protein 3 (THRAP3), were identified to accumulate in the nucleus of PMVECs, regulating the transcription of claudin-8 and claudin-4. Meanwhile, the upregulation of ssc-miR-185 was found to suppress claudin-8 expression via post-transcriptional inhibition. This study not only reveals the molecular mechanisms by which HP-PRRSV infection causes endothelial barrier leakage in acute lung injury, but also provides novel insights into the function and regulation of tight junctions in vascular homeostasis.


Assuntos
Claudinas , Células Endoteliais , Pulmão , Vírus da Síndrome Respiratória e Reprodutiva Suína , Animais , Suínos , Vírus da Síndrome Respiratória e Reprodutiva Suína/fisiologia , Pulmão/metabolismo , Pulmão/virologia , Pulmão/patologia , Pulmão/irrigação sanguínea , Células Endoteliais/metabolismo , Células Endoteliais/virologia , Claudinas/metabolismo , Claudinas/genética , Síndrome Respiratória e Reprodutiva Suína/metabolismo , Síndrome Respiratória e Reprodutiva Suína/virologia , Síndrome Respiratória e Reprodutiva Suína/patologia , Claudina-4/metabolismo , Claudina-4/genética , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/virologia , Endotélio Vascular/metabolismo , Endotélio Vascular/virologia , Endotélio Vascular/patologia , Células Cultivadas , Permeabilidade Capilar , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/virologia , Lesão Pulmonar Aguda/patologia , Citocinas/metabolismo
6.
Microvasc Res ; 154: 104694, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38723844

RESUMO

INTRODUCTION: Critical illness is associated with organ failure, in which endothelial hyperpermeability and tissue edema play a major role. The endothelial angiopoietin/Tie2 system, a regulator of endothelial permeability, is dysbalanced during critical illness. Elevated circulating angiopoietin-2 and decreased Tie2 receptor levels are reported, but it remains unclear whether they cause edema independent of other critical illness-associated alterations. Therefore, we have studied the effect of angiopoietin-2 administration and/or reduced Tie2 expression on microvascular leakage and edema under normal conditions. METHODS: Transgenic male mice with partial deletion of Tie2 (heterozygous exon 9 deletion, Tie2+/-) and wild-type controls (Tie2+/+) received 24 or 72 pg/g angiopoietin-2 or PBS as control (n = 12 per group) intravenously. Microvascular leakage and edema were determined by Evans blue dye (EBD) extravasation and wet-to-dry weight ratio, respectively, in lungs and kidneys. Expression of molecules related to endothelial angiopoietin/Tie2 signaling were determined by ELISA and RT-qPCR. RESULTS: In Tie2+/+ mice, angiopoietin-2 administration increased EBD extravasation (154 %, p < 0.05) and wet-to-dry weight ratio (133 %, p < 0.01) in lungs, but not in the kidney compared to PBS. Tie2+/- mice had higher pulmonary (143 %, p < 0.001), but not renal EBD extravasation, compared to wild-type control mice, whereas a more pronounced wet-to-dry weight ratio was observed in lungs (155 %, p < 0.0001), in contrast to a minor higher wet-to-dry weight ratio in kidneys (106 %, p < 0.05). Angiopoietin-2 administration to Tie2+/- mice did not further increase pulmonary EBD extravasation, pulmonary wet-to-dry weight ratio, or renal wet-to-dry weight ratio. Interestingly, angiopoietin-2 administration resulted in an increased renal EBD extravasation in Tie2+/- mice compared to Tie2+/- mice receiving PBS. Both angiopoietin-2 administration and partial deletion of Tie2 did not affect circulating angiopoietin-1, soluble Tie2, VEGF and NGAL as well as gene expression of angiopoietin-1, -2, Tie1, VE-PTP, ELF-1, Ets-1, KLF2, GATA3, MMP14, Runx1, VE-cadherin, VEGFα and NGAL, except for gene and protein expression of Tie2, which was decreased in Tie2+/- mice compared to Tie2+/+ mice. CONCLUSIONS: In mice, the microvasculature of the lungs is more vulnerable to angiopoietin-2 and partial deletion of Tie2 compared to those in the kidneys with respect to microvascular leakage and edema.


Assuntos
Angiopoietina-2 , Permeabilidade Capilar , Pulmão , Receptor TIE-2 , Animais , Receptor TIE-2/metabolismo , Receptor TIE-2/genética , Angiopoietina-2/metabolismo , Angiopoietina-2/genética , Masculino , Pulmão/irrigação sanguínea , Pulmão/metabolismo , Pulmão/patologia , Rim/irrigação sanguínea , Rim/metabolismo , Transdução de Sinais , Camundongos Knockout , Camundongos , Camundongos Endogâmicos C57BL , Edema Pulmonar/metabolismo , Edema Pulmonar/genética , Edema Pulmonar/patologia , Edema Pulmonar/induzido quimicamente , Edema Pulmonar/fisiopatologia , Modelos Animais de Doenças , Edema/metabolismo , Camundongos Transgênicos , Ribonuclease Pancreático
8.
Vascul Pharmacol ; 155: 107381, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38795838

RESUMO

AIMS: Bone morphogenetic protein-9 (BMP9) is critical for bone morphogenetic protein receptor type-2 (BMPR2) signalling in pulmonary vascular endothelial cells. Furthermore, human genetics studies support the central role of disrupted BMPR2 mediated BMP9 signalling in vascular endothelial cells in the initiation of pulmonary arterial hypertension (PAH). In addition, loss-of-function mutations in BMP9 have been identified in PAH patients. BMP9 is considered to play an important role in vascular homeostasis and quiescence. METHODS AND RESULTS: We identified a novel BMP9 target as the class-3 semaphorin, SEMA3G. Although originally identified as playing a role in neuronal development, class-3 semaphorins may have important roles in endothelial function. Here we show that BMP9 transcriptional regulation of SEMA3G occurs via ALK1 and the canonical Smad pathway, requiring both Smad1 and Smad5. Knockdown studies demonstrated redundancy between type-2 receptors in that BMPR2 and ACTR2A were compensatory. Increased SEMA3G expression by BMP9 was found to be regulated by the transcription factor, SOX17. Moreover, we observed that SEMA3G regulates VEGF signalling by inhibiting VEGFR2 phosphorylation and that VEGF, in contrast to BMP9, negatively regulated SEMA3G transcription. Functional endothelial cell assays of VEGF-mediated migration and network formation revealed that BMP9 inhibition of VEGF was abrogated by SEMA3G knockdown. Conversely, treatment with recombinant SEMA3G partially mimicked the inhibitory action of BMP9 in these assays. CONCLUSIONS: This study provides further evidence for the anti-angiogenic role of BMP9 in microvascular endothelial cells and these functions are mediated at least in part via SOX17 and SEMA3G induction.


Assuntos
Movimento Celular , Células Endoteliais , Fator 2 de Diferenciação de Crescimento , Semaforinas , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular , Humanos , Movimento Celular/efeitos dos fármacos , Semaforinas/metabolismo , Semaforinas/genética , Fator 2 de Diferenciação de Crescimento/genética , Fator 2 de Diferenciação de Crescimento/metabolismo , Células Endoteliais/metabolismo , Células Endoteliais/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Proteína Smad5/metabolismo , Proteína Smad5/genética , Receptores de Ativinas Tipo I/metabolismo , Receptores de Ativinas Tipo I/genética , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/metabolismo , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/genética , Proteína Smad1/metabolismo , Proteína Smad1/genética , Pulmão/metabolismo , Pulmão/irrigação sanguínea , Neovascularização Fisiológica/efeitos dos fármacos , Células Cultivadas
9.
Transl Res ; 271: 93-104, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38797433

RESUMO

Hepatopulmonary syndrome (HPS) is a serious pulmonary complication in the advanced stage of liver disease. The occurrence of pulmonary edema in HPS patients is life-threatening. Increased pulmonary vascular permeability is an important mechanism leading to pulmonary edema, and endothelial glycocalyx (EG) is a barrier that maintains stable vascular permeability. However, in HPS, whether the pulmonary vascular EG changes and its regulatory mechanism are still unclear. Spleen derived monocytes are involved in the pathogenesis of HPS. However, whether they regulate the pulmonary vascular permeability in HPS patients or rats and what is the mechanism is still unclear. Healthy volunteers and HPS patients with splenectomy or not were enrolled in this study. We found that the respiration of HPS patients was significantly improved in response to splenectomy, while the EG degradation and pulmonary edema were aggravated. In addition, HPS patients expressed higher levels of oncostatin M (OSM) and fibroblast growth factor (FGF). Subsequently, the co-culture system of monocytes and human umbilical vein endothelial cells (HUVECs) was constructed. It was found that monocytes secreted OSM and activated the FGF/FGFR1 signaling pathway in HUVECs. Then, an HPS rat model was constructed by common bile duct ligation (CBDL) for in vivo verification. HPS rats were intravenously injected with OSM recombinant protein and/or TNF-α into the rats via tail vein 30 min before CBDL. The results showed that the respiration of HPS rats was improved after splenectomy, while the degradation of EG in pulmonary vessels and vascular permeability were increased, and pulmonary edema was aggravated. Moreover, the expression of OSM and FGF was upregulated in HPS rats, while both were downregulated after splenectomy. Intravenous injection of exogenous OSM eliminated the effect of splenectomy on FGF and improved EG degradation. It can be seen that during HPS, spleen-derived monocytes secrete OSM to promote pulmonary vascular EG remodeling by activating the FGF/FGFR1 pathway, thereby maintaining stable vascular permeability, and diminishing pulmonary edema. This study provides a promising therapeutic target for the treatment of HPS.


Assuntos
Permeabilidade Capilar , Síndrome Hepatopulmonar , Monócitos , Oncostatina M , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos , Transdução de Sinais , Baço , Animais , Humanos , Síndrome Hepatopulmonar/metabolismo , Masculino , Monócitos/metabolismo , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Baço/metabolismo , Oncostatina M/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Ratos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Esplenectomia , Ratos Sprague-Dawley , Pulmão/metabolismo , Pulmão/irrigação sanguínea , Feminino , Pessoa de Meia-Idade , Adulto , Glicocálix/metabolismo
10.
ACS Appl Mater Interfaces ; 16(23): 29930-29945, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38819955

RESUMO

The inherent extracellular matrix (ECM) originating from a specific tissue impacts the process of vascularization, specifically vascular network formation (VNF) orchestrated by endothelial cells (ECs). The specific contribution toward these processes of ECM from highly disparate organs such as the skin and lungs remains a relatively unexplored area. In this study, we compared VNF and ECM remodeling mediated by microvascular ECs within gel, lung, and combinations thereof (hybrid) ECM hydrogels. Irrespective of the EC source, the skin-derived ECM hydrogel exhibited a higher propensity to drive and support VNF compared to both lung and hybrid ECM hydrogels. There were distinct disparities in the physical properties of the three types of hydrogels, including viscoelastic properties and complex architectural configurations, including fiber diameter, pore area, and numbers among the fibers. The hybrid ECM hydrogel properties were unique and not the sum of the component ECM parts. Furthermore, cellular ECM remodeling responses varied with skin ECM hydrogels promoting matrix metalloproteinase 1 (MMP1) secretion, while hybrid ECM hydrogels exhibited increased MMP9, fibronectin, and collagen IV deposition. Principal component analysis (PCA) indicated that the influence of a gel's mechanical properties on VNF was stronger than the biochemical composition. These data indicate that the organ-specific properties of an ECM dictate its capacity to support VNF, while intriguingly showing that ECs respond to more than just the biochemical constituents of an ECM. The study suggests potential applications in regenerative medicine by strategically selecting ECM origin or combinations to manipulate vascularization, offering promising prospects for enhancing wound healing through pro-regenerative interventions.


Assuntos
Matriz Extracelular , Hidrogéis , Neovascularização Fisiológica , Hidrogéis/química , Matriz Extracelular/química , Matriz Extracelular/metabolismo , Neovascularização Fisiológica/efeitos dos fármacos , Humanos , Animais , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Pele/química , Pele/metabolismo , Pulmão/irrigação sanguínea , Metaloproteinase 1 da Matriz/metabolismo , Metaloproteinase 1 da Matriz/química , Camundongos , Metaloproteinase 9 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/química
11.
Sci Rep ; 14(1): 10624, 2024 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724555

RESUMO

To date, the presence of pulmonary organs in the fossil record is extremely rare. Among extant vertebrates, lungs are described in actinopterygian polypterids and in all sarcopterygians, including coelacanths and lungfish. However, vasculature of pulmonary arteries has never been accurately identified neither in fossil nor extant coelacanths due to the paucity of fossil preservation of pulmonary organs and limitations of invasive studies in extant specimens. Here we present the first description of the pulmonary vasculature in both fossil and extant actinistian, a non-tetrapod sarcopterygian clade, contributing to a more in-depth discussion on the morphology of these structures and on the possible homology between vertebrate air-filled organs (lungs of sarcopterygians, lungs of actinopterygians, and gas bladders of actinopterygians).


Assuntos
Evolução Biológica , Peixes , Fósseis , Artéria Pulmonar , Animais , Artéria Pulmonar/anatomia & histologia , Peixes/anatomia & histologia , Vertebrados/anatomia & histologia , Pulmão/irrigação sanguínea , Filogenia
12.
Respir Res ; 25(1): 205, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38730297

RESUMO

BACKGROUND: Obesity is the main risk factor leading to the development of various respiratory diseases, such as asthma and pulmonary hypertension. Pulmonary microvascular endothelial cells (PMVECs) play a significant role in the development of lung diseases. Aconitate decarboxylase 1 (Acod1) mediates the production of itaconate, and Acod1/itaconate axis has been reported to play a protective role in multiple diseases. However, the roles of Acod1/itaconate axis in the PMVECs of obese mice are still unclear. METHODS: mRNA-seq was performed to identify the differentially expressed genes (DEGs) between high-fat diet (HFD)-induced PMVECs and chow-fed PMVECs in mice (|log2 fold change| ≥ 1, p ≤ 0.05). Free fatty acid (FFA) was used to induce cell injury, inflammation and mitochondrial oxidative stress in mouse PMVECs after transfection with the Acod1 overexpressed plasmid or 4-Octyl Itaconate (4-OI) administration. In addition, we investigated whether the nuclear factor erythroid 2-like 2 (Nrf2) pathway was involved in the effects of Acod1/itaconate in FFA-induced PMVECs. RESULTS: Down-regulated Acod1 was identified in HFD mouse PMVECs by mRNA-seq. Acod1 expression was also reduced in FFA-treated PMVECs. Acod1 overexpression inhibited cell injury, inflammation and mitochondrial oxidative stress induced by FFA in mouse PMVECs. 4-OI administration showed the consistent results in FFA-treated mouse PMVECs. Moreover, silencing Nrf2 reversed the effects of Acod1 overexpression and 4-OI administration in FFA-treated PMVECs, indicating that Nrf2 activation was required for the protective effects of Acod1/itaconate. CONCLUSION: Our results demonstrated that Acod1/Itaconate axis might protect mouse PMVECs from FFA-induced injury, inflammation and mitochondrial oxidative stress via activating Nrf2 pathway. It was meaningful for the treatment of obesity-caused pulmonary microvascular endotheliopathy.


Assuntos
Carboxiliases , Células Endoteliais , Pulmão , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2 , Obesidade , Succinatos , Animais , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Camundongos , Células Endoteliais/metabolismo , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/patologia , Carboxiliases/metabolismo , Carboxiliases/genética , Obesidade/metabolismo , Obesidade/complicações , Masculino , Succinatos/farmacologia , Pulmão/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/patologia , Pulmão/irrigação sanguínea , Células Cultivadas , Microvasos/metabolismo , Microvasos/efeitos dos fármacos , Microvasos/patologia , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Dieta Hiperlipídica/efeitos adversos , Endotélio Vascular/metabolismo , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/patologia , Hidroliases
14.
Chem Biol Interact ; 397: 111078, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38815668

RESUMO

Sevoflurane can attenuate lung ischaemia‒reperfusion injury (LIRI). However, the protective mechanism is unclear. In this study, we developed a LIRI model in vivo that animals (SD, n = 15) were subjected to the administration of 2.2 % sevoflurane 30 min before the onset of left pulmonary artery clamping for 45 min, which was then followed by 60 min of reperfusion treatment. Then, transcriptome sequencing was used to analyse lung tissues. Autophagy inhibition (3-MA) and Rac1-overexpression transfection plasmids were used in BEAS-2B cells, and BEAS-2B cells were subjected to hypoxia reoxygenation (H/R) and sevoflurane treatment. In both animal tissue and cells, inflammatory cytokines and apoptotic and autophagy molecules were measured by quantitative real-time PCR, western blotting and immunostaining. As a result, decreased arterial partial oxygen and damage to the histological structure of lung tissues were observed in LIRI model rats, and these effects were reversed by sevoflurane treatment. Activation of inflammation (elevated IL-1ß, IL-6, and TNF-α) and apoptosis (elevated cleaved caspase3/caspase3 and Bax, degraded expression of Bcl2) and inhibition of autophagy (elevated P62, degraded expression of Beclin1 and LC3-II/LC3I) in the model group were ameliorated by sevoflurane. Transcriptome sequencing indicated that the PI3K/Akt pathway regulated by Rac1 plays an important role in LIRI. Furthermore, overexpression of Rac1 in a cell line inhibited the protective effect of sevoflurane in LIRI. Autophagy inhibition (3-MA) also prevented the protective effect of sevoflurane on inflammation and apoptosis. As shown in the present study, sevoflurane enhances autophagy via Rac1/PI3K/AKT signalling to attenuate lung ischaemia‒reperfusion injury.


Assuntos
Apoptose , Autofagia , Pulmão , Ratos Sprague-Dawley , Traumatismo por Reperfusão , Sevoflurano , Proteínas rac1 de Ligação ao GTP , Sevoflurano/farmacologia , Animais , Proteínas rac1 de Ligação ao GTP/metabolismo , Autofagia/efeitos dos fármacos , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Ratos , Masculino , Pulmão/patologia , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/irrigação sanguínea , Apoptose/efeitos dos fármacos , Linhagem Celular , Humanos , Transdução de Sinais/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo
15.
Eur Radiol Exp ; 8(1): 57, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38724831

RESUMO

BACKGROUND: We compared computed tomography (CT) images and holograms (HG) to assess the number of arteries of the lung lobes undergoing lobectomy and assessed easiness in interpretation by radiologists and thoracic surgeons with both techniques. METHODS: Patients scheduled for lobectomy for lung cancer were prospectively included and underwent CT for staging. A patient-specific three-dimensional model was generated and visualized in an augmented reality setting. One radiologist and one thoracic surgeon evaluated CT images and holograms to count lobar arteries, having as reference standard the number of arteries recorded at surgery. The easiness of vessel identification was graded according to a Likert scale. Wilcoxon signed-rank test and κ statistics were used. RESULTS: Fifty-two patients were prospectively included. The two doctors detected the same number of arteries in 44/52 images (85%) and in 51/52 holograms (98%). The mean difference between the number of artery branches detected by surgery and CT images was 0.31 ± 0.98, whereas it was 0.09 ± 0.37 between surgery and HGs (p = 0.433). In particular, the mean difference in the number of arteries detected in the upper lobes was 0.67 ± 1.08 between surgery and CT images and 0.17 ± 0.46 between surgery and holograms (p = 0.029). Both radiologist and surgeon showed a higher agreement for holograms (κ = 0.99) than for CT (κ = 0.81) and found holograms easier to evaluate than CTs (p < 0.001). CONCLUSIONS: Augmented reality by holograms is an effective tool for preoperative vascular anatomy assessment of lungs, especially when evaluating the upper lobes, more prone to anatomical variations. TRIAL REGISTRATION: ClinicalTrials.gov, NCT04227444 RELEVANCE STATEMENT: Preoperative evaluation of the lung lobe arteries through augmented reality may help the thoracic surgeons to carefully plan a lobectomy, thus contributing to optimize patients' outcomes. KEY POINTS: • Preoperative assessment of the lung arteries may help surgical planning. • Lung artery detection by augmented reality was more accurate than that by CT images, particularly for the upper lobes. • The assessment of the lung arterial vessels was easier by using holograms than CT images.


Assuntos
Realidade Aumentada , Holografia , Neoplasias Pulmonares , Artéria Pulmonar , Tomografia Computadorizada por Raios X , Humanos , Feminino , Masculino , Tomografia Computadorizada por Raios X/métodos , Idoso , Estudos Prospectivos , Neoplasias Pulmonares/cirurgia , Neoplasias Pulmonares/diagnóstico por imagem , Pessoa de Meia-Idade , Holografia/métodos , Artéria Pulmonar/diagnóstico por imagem , Artéria Pulmonar/anatomia & histologia , Imageamento Tridimensional , Padrões de Referência , Pulmão/diagnóstico por imagem , Pulmão/irrigação sanguínea , Pulmão/cirurgia
16.
Pediatr Surg Int ; 40(1): 125, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714568

RESUMO

BACKGROUND: Postoperative pulmonary growth in congenital diaphragmatic hernias (CDH) remains unclear. We investigated postoperative pulmonary vascular growth using serial lung perfusion scintigraphy in patients with CDH. METHODS: Neonates with left CDH who underwent surgery and postoperative lung perfusion scintigraphy at our institution between 2001 and 2020 were included. Patient demographics, clinical courses, and lung scintigraphy data were retrospectively analyzed by reviewing medical records. RESULTS: Twenty-one patients with CDH were included. Of these, 10 underwent serial lung scintigraphy. The ipsilateral perfusion rate and median age on the 1st and serial lung scintigraphy were 32% (34 days) and 33% (3.6 years), respectively. Gestational age at prenatal diagnosis (p = 0.02), alveolar-arterial oxygen difference (A-aDO2) at birth (p = 0.007), and preoperative nitric oxide (NO) use (p = 0.014) significantly correlated with the 1st lung scintigraphy. No other variables, including operative approach, were significantly correlated with the 1st or serial scintigraphy findings. All patients improved lung perfusion with serial studies [Difference: + 7.0 (4.3-13.25) %, p = 0.001, paired t-test]. This improvement was not significantly correlated with preoperative A-aDO2 (p = 0.96), NO use (p = 0.28), or liver up (p = 0.90). The difference was significantly larger in patients who underwent thoracoscopic repair than in those who underwent open abdominal repair [+ 10.6 (5.0-17.1) % vs. + 4.25 (1.2-7.9) %, p = 0.042]. CONCLUSION: Our study indicated a postoperative improvement in ipsilateral lung vascular growth, which is possibly enhanced by a minimally invasive approach, in patients with CDH.


Assuntos
Hérnias Diafragmáticas Congênitas , Pulmão , Humanos , Hérnias Diafragmáticas Congênitas/cirurgia , Hérnias Diafragmáticas Congênitas/diagnóstico por imagem , Estudos Retrospectivos , Feminino , Masculino , Recém-Nascido , Pulmão/diagnóstico por imagem , Pulmão/irrigação sanguínea , Período Pós-Operatório , Imagem de Perfusão/métodos , Pré-Escolar
17.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38732160

RESUMO

Despite the end of the pandemic, coronavirus disease 2019 (COVID-19) remains a major public health concern. The first waves of the virus led to a better understanding of its pathogenesis, highlighting the fact that there is a specific pulmonary vascular disorder. Indeed, COVID-19 may predispose patients to thrombotic disease in both venous and arterial circulation, and many cases of severe acute pulmonary embolism have been reported. The demonstrated presence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) within the endothelial cells suggests that direct viral effects, in addition to indirect effects of perivascular inflammation and coagulopathy, may contribute to pulmonary vasculopathy in COVID-19. In this review, we discuss the pathological mechanisms leading to pulmonary vascular damage during acute infection, which appear to be mainly related to thromboembolic events, an impaired coagulation cascade, micro- and macrovascular thrombosis, endotheliitis and hypoxic pulmonary vasoconstriction. As many patients develop post-COVID symptoms, including dyspnea, we also discuss the hypothesis of pulmonary vascular damage and pulmonary hypertension as a sequela of the infection, which may be involved in the pathophysiology of long COVID.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/complicações , COVID-19/virologia , COVID-19/patologia , SARS-CoV-2/patogenicidade , Pulmão/irrigação sanguínea , Pulmão/patologia , Pulmão/virologia , Embolia Pulmonar/virologia , Embolia Pulmonar/etiologia , Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/fisiopatologia , Hipertensão Pulmonar/virologia , Hipertensão Pulmonar/patologia , Síndrome de COVID-19 Pós-Aguda , Trombose/virologia , Trombose/etiologia , Trombose/patologia
18.
PLoS One ; 19(5): e0289854, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38771750

RESUMO

INTRODUCTION: Recent research suggests that endothelial activation plays a role in coronavirus disease 2019 (COVID-19) pathogenesis by promoting a pro-inflammatory state. However, the mechanism by which the endothelium is activated in COVID-19 remains unclear. OBJECTIVE: To investigate the mechanism by which COVID-19 activates the pulmonary endothelium and drives pro-inflammatory phenotypes. HYPOTHESIS: The "inflammatory load or burden" (cytokine storm) of the systemic circulation activates endothelial NADPH oxidase 2 (NOX2) which leads to the production of reactive oxygen species (ROS) by the pulmonary endothelium. Endothelial ROS subsequently activates pro-inflammatory pathways. METHODS: The inflammatory burden of COVID-19 on the endothelial network, was recreated in vitro, by exposing human pulmonary microvascular endothelial cells (HPMVEC) to media supplemented with serum from COVID-19 affected individuals (sera were acquired from patients with COVID-19 infection that eventually died. Sera was isolated from blood collected at admission to the Intensive Care Unit of the Hospital of the University of Pennsylvania). Endothelial activation, inflammation and cell death were assessed in HPMVEC treated with serum either from patients with COVID-19 or from healthy individuals. Activation was monitored by measuring NOX2 activation (Rac1 translocation) and ROS production; inflammation (or appearance of a pro-inflammatory phenotype) was monitored by measuring the induction of moieties such as intercellular adhesion molecule (ICAM-1), P-selectin and the NLRP3 inflammasome; cell death was measured via SYTOX™ Green assays. RESULTS: Endothelial activation (i.e., NOX2 activation and subsequent ROS production) and cell death were significantly higher in the COVID-19 model than in healthy samples. When HPMVEC were pre-treated with the novel peptide PIP-2, which blocks NOX2 activation (via inhibition of Ca2+-independent phospholipase A2, aiPLA2), significant abrogation of ROS was observed. Endothelial inflammation and cell death were also significantly blunted. CONCLUSIONS: The endothelium is activated during COVID-19 via cytokine storm-driven NOX2-ROS activation, which causes a pro-inflammatory phenotype. The concept of endothelial NOX2-ROS production as a unifying pathophysiological axis in COVID-19 raises the possibility of using PIP-2 to maintain vascular health.


Assuntos
COVID-19 , Células Endoteliais , NADPH Oxidase 2 , Espécies Reativas de Oxigênio , SARS-CoV-2 , Transdução de Sinais , Humanos , COVID-19/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Células Endoteliais/metabolismo , SARS-CoV-2/fisiologia , NADPH Oxidase 2/metabolismo , Endotélio Vascular/metabolismo , Pulmão/patologia , Pulmão/metabolismo , Pulmão/virologia , Pulmão/irrigação sanguínea , Peptídeos/metabolismo , Molécula 1 de Adesão Intercelular/metabolismo
19.
Transpl Int ; 37: 12751, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38800671

RESUMO

Airway complications following lung transplantation remain an important cause of morbidity and mortality. We aimed to identify the incidence, risk factors and outcomes associated with clinically significant airway ischemia (CSAI) in our center. We reviewed 217 lung transplants (386 airway anastomoses) performed at our institution between February 2016 and December 2020. Airway images were graded using the 2018 ISHLT grading guidelines modified slightly for retrospective analysis. Airways were considered to have CSAI if they developed ischemia severity >B2, stenosis >50%, and/or any degree of dehiscence within 6-months of transplant. Regression analyses were used to evaluate outcomes and risk factors for CSAI. Eighty-two patients (37.8%) met criteria for CSAI. Of these, twenty-six (32%) developed stenosis and/or dehiscence, and 17 (21%) required interventions. Patients with CSAI had lower one-year (80.5% vs. 91.9%, p = 0.05) and three-year (67.1% vs. 77.8%, p = 0.08) survival than patients without CSAI. Factors associated with CSAI included younger recipient age, recipient diabetes, single running suture technique, performance of the left anastomosis first, lower venous oxygen saturation within 48-h, and takeback for major bleeding. Our single-center analysis suggests that airway ischemia remains a major obstacle in contemporary lung transplantation. Improving the local healing milieu of the airway anastomosis could potentially mitigate this risk.


Assuntos
Isquemia , Transplante de Pulmão , Humanos , Masculino , Fatores de Risco , Pessoa de Meia-Idade , Feminino , Estudos Retrospectivos , Incidência , Transplante de Pulmão/efeitos adversos , Isquemia/etiologia , Adulto , Complicações Pós-Operatórias/epidemiologia , Complicações Pós-Operatórias/etiologia , Idoso , Pulmão/irrigação sanguínea
20.
Sci Prog ; 107(2): 368504241257060, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38807538

RESUMO

INTRODUCTION: Ischemia-reperfusion (IR) injury is a major concern that frequently occurs during vascular surgeries. Hydrogen-rich saline (HRS) solution exhibits antioxidant and anti-inflammatory properties. This study aimed to examine the effects of HRS applied before ischemia in the lungs of rats using a lower extremity IR model. MATERIAL AND METHODS: After approval was obtained from the ethics committee, 18 male Wistar albino rats weighing 250-280 g were randomly divided into three groups: control (C), IR and IR-HRS. In the IR and IR-HRS groups, an atraumatic microvascular clamp was used to clamp the infrarenal abdominal aorta, and skeletal muscle ischemia was induced. After 120 min, the clamp was removed, and reperfusion was achieved for 120 min. In the IR-HRS group, HRS was administered intraperitoneally 30 min before the procedure. Lung tissue samples were examined under a light microscope and stained with hematoxylin-eosin (H&E). Malondialdehyde (MDA) levels, total sulfhydryl (SH) levels, and histopathological parameters were evaluated in the tissue samples. RESULTS: MDA and total SH levels were significantly higher in the IR group than in the control group (p < 0.0001 and p = 0.001, respectively). MDA and total SH levels were significantly lower in the IR-HRS group than in the IR group (p < 0.0001 and p = 0.013, respectively). A histopathological examination revealed that neutrophil infiltration/aggregation, alveolar wall thickness, and total lung injury score were significantly higher in the IR group than in the control group (p < 0.0001, p = 0.001, and p < 0.0001, respectively). Similarly, alveolar wall thickness and total lung injury scores were significantly higher in the IR-HRS group than in the control group (p = 0.009 and p = 0.004, respectively). A statistically significant decrease was observed in neutrophil infiltration/aggregation and total lung injury scores in the IR-HRS group compared to those in the IR group (p = 0.023 and p = 0.022, respectively). CONCLUSION: HRS at a dose of 20 mg/kg, administered intraperitoneally 30 min before ischemia in rats, reduced lipid peroxidation and oxidative stress, while also reducing IR damage in lung histopathology. We believe that HRS administered to rats prior to IR exerts a lung-protective effect.


Assuntos
Hidrogênio , Pulmão , Malondialdeído , Músculo Esquelético , Ratos Wistar , Traumatismo por Reperfusão , Solução Salina , Animais , Traumatismo por Reperfusão/patologia , Traumatismo por Reperfusão/tratamento farmacológico , Masculino , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/patologia , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/metabolismo , Ratos , Pulmão/patologia , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/irrigação sanguínea , Solução Salina/farmacologia , Solução Salina/química , Solução Salina/administração & dosagem , Hidrogênio/farmacologia , Hidrogênio/administração & dosagem , Malondialdeído/metabolismo , Lesão Pulmonar/patologia , Lesão Pulmonar/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...