Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 507
Filtrar
1.
Comput Biol Med ; 177: 108683, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38838555

RESUMO

G-Quadruplex DNA (GQ-DNA) is one of the most important non-canonical nucleic acid structures. GQ-DNA forming sequences are present in different crucial genomic regions and are abundant in promoter regions of several oncogenes. Therefore, GQ-DNA is an important target for anticancer drugs and hence binding interactions between GQ-DNA and small molecule ligands are of great importance. Since GQ-DNA is a highly polymorphic structure, it is important to identify ligand molecules which preferentially target a particular quadruplex sequence. In this present study, we have used a FDA approved drug called imatinib mesylate (ligand) which is a selective tyrosine kinase inhibitor, successfully used for the treatment of chronic myelogenous leukaemia, gastrointestinal stromal tumours. Different spectroscopic techniques as well as molecular docking investigations and molecular simulations have been used to explore the interaction between imatinib mesylate with VEGF GQ DNA structures along with duplex DNA, C-Myc, H-Telo GQ DNA. We found that imatinib mesylate shows preferential interaction towards VEGF GQ DNA compared to C-Myc, H-Telo GQ and duplex DNA. Imatinib mesylate seems to be an efficient ligand for VEGF GQ DNA, suggesting that it might be used to regulate the expression of genes in cancerous cells.


Assuntos
Antineoplásicos , Quadruplex G , Mesilato de Imatinib , Simulação de Acoplamento Molecular , Fator A de Crescimento do Endotélio Vascular , Mesilato de Imatinib/uso terapêutico , Mesilato de Imatinib/química , Mesilato de Imatinib/farmacologia , Quadruplex G/efeitos dos fármacos , Humanos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/química , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/genética , DNA/química , DNA/metabolismo
2.
Eur J Med Chem ; 274: 116536, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38805936

RESUMO

G-quadruplexes (G4s) are commonly formed in the G-rich strand of telomeric DNA. Ligands targeting telomeric G4 induce DNA damage and telomere dysfunction, which makes them potential antitumor drugs. New telomeric G4 ligands with drug-likeness are still needed to be exploited, especially with their antitumor mechanisms thoroughly discussed. In this study, a novel series of quinoxaline analogs were rationally designed and synthesized. Among them, R1 was the most promising ligand for its cytotoxic effects on tumor cells and stabilizing ability with telomeric G4. Cellular assays illustrated that R1 stabilized G4 and induced R-loop accumulation in the telomeric regions, subsequently triggering DNA damage responses, cell cycle arrest in G2/M phase, apoptosis and antiproliferation. Moreover, R1 evoked immunogenic cell death (ICD) in tumor cells, which promoted the maturation of bone marrow derived dendritic cells (BMDCs). In breast cancer mouse model, R1 exhibited a significant decrease in tumor burden through the immunomodulatory effects, including the increase of CD4+ and CD8+ T cells in tumors and cytokine levels in sera. Our research provides a new idea that targeting telomeric G4 induces DNA damage responses, causing antitumor effects both in vitro and in vivo, partially due to the enhancement of immunomodulation.


Assuntos
Antineoplásicos , Proliferação de Células , Quadruplex G , Quinoxalinas , Telômero , Quadruplex G/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Quinoxalinas/química , Quinoxalinas/farmacologia , Quinoxalinas/síntese química , Animais , Humanos , Telômero/efeitos dos fármacos , Ligantes , Camundongos , Proliferação de Células/efeitos dos fármacos , Estrutura Molecular , Ensaios de Seleção de Medicamentos Antitumorais , Relação Estrutura-Atividade , Relação Dose-Resposta a Droga , Feminino , Imunomodulação/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Camundongos Endogâmicos BALB C , Dano ao DNA/efeitos dos fármacos
3.
Bioorg Chem ; 148: 107475, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38772293

RESUMO

The applications of antisense oligonucleotides (ASOs) in rare or common diseases treatment have garnered great attention in recent years. Nevertheless, challenges associated with stability and bioavailability still persist, hampering the efficiency of ASOs. This work presents an ASO prodrug with parallel G-quadruplex assembly and lysosome escape capabilities for oncotherapy. Our findings revealed that the end-assembled quadruplex structure effectively shielded the ASO from enzymatic degradation. Meanwhile, the conjugation of maleimide within the quadruplex enhanced cellular uptake, potentially offering an alternative cell entry mechanism that circumvents lysosome involvement. Notably, an optimized molecule, Mal2-G4-ASO, exhibited remarkable therapeutic effects both in vitro and in vivo. This work presents a promising avenue for enhancing the activity of nucleic acid drugs in oncotherapy and potentially other disease contexts.


Assuntos
Quadruplex G , Lisossomos , Oligonucleotídeos Antissenso , Pró-Fármacos , Pró-Fármacos/química , Pró-Fármacos/farmacologia , Pró-Fármacos/síntese química , Quadruplex G/efeitos dos fármacos , Humanos , Oligonucleotídeos Antissenso/química , Oligonucleotídeos Antissenso/farmacologia , Oligonucleotídeos Antissenso/síntese química , Lisossomos/metabolismo , Animais , Estrutura Molecular , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Camundongos , Ensaios de Seleção de Medicamentos Antitumorais , Relação Dose-Resposta a Droga , Proliferação de Células/efeitos dos fármacos , Relação Estrutura-Atividade , Linhagem Celular Tumoral , Camundongos Nus , Camundongos Endogâmicos BALB C
4.
J Biomed Sci ; 31(1): 50, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38741159

RESUMO

BACKGROUND: G-quadruplex DNA (G4) is a non-canonical structure forming in guanine-rich regions, which play a vital role in cancer biology and are now being acknowledged in both nuclear and mitochondrial (mt) genome. However, the impact of G4-based targeted therapy on both nuclear and mt genome, affecting mt function and its underlying mechanisms remain largely unexplored. METHODS: The mechanisms of action and therapeutic effects of a G4-binding platinum(II) complex, Pt-ttpy, on mitochondria were conducted through a comprehensive approaches with in vitro and in vivo models, including ICP-MS for platinum measurement, PCR-based genetic analysis, western blotting (WB), confocal microscope for mt morphology study, extracellular flux analyzer, JC1 and Annexin V apoptosis assay, flow cytometry and high content microscope screening with single-cell quantification of both ROS and mt specific ROS, as well as click-chemistry for IF study of mt translation. Decipher Pt-ttpy effects on nuclear-encoded mt related genes expression were undertaken via RNA-seq, Chip-seq and CUT-RUN assays. RESULTS: Pt-ttpy, shows a highest accumulation in the mitochondria of A2780 cancer cells as compared with two other platinum(II) complexes with no/weak G4-binding properties, Pt-tpy and cisplatin. Pt-ttpy induces mtDNA deletion, copy reduction and transcription inhibition, hindering mt protein translation. Functional analysis reveals potent mt dysfunction without reactive oxygen species (ROS) induction. Mechanistic study provided first evidence that most of mt ribosome genes are highly enriched in G4 structures in their promoter regions, notably, Pt-ttpy impairs most nuclear-encoded mt ribosome genes' transcription through dampening the recruiting of transcription initiation and elongation factors of NELFB and TAF1 to their promoter with G4-enriched sequences. In vivo studies show Pt-ttpy's efficient anti-tumor effects, disrupting mt genome function with fewer side effects than cisplatin. CONCLUSION: This study underscores Pt-ttpy as a G4-binding platinum(II) complex, effectively targeting cancer mitochondria through dual action on mt and nuclear G4-enriched genomes without inducing ROS, offering promise for safer and effective platinum-based G4-targeted cancer therapy.


Assuntos
Quadruplex G , Mitocôndrias , Quadruplex G/efeitos dos fármacos , Humanos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Linhagem Celular Tumoral , Genoma Mitocondrial , Antineoplásicos/farmacologia , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Platina/farmacologia , Animais
5.
J Med Chem ; 67(9): 7006-7032, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38668707

RESUMO

G-quadruplexes are noncanonical four-stranded DNA secondary structures. MYC is a master oncogene and the G-quadruplex formed in the MYC promoter functions as a transcriptional silencer and can be stabilized by small molecules. We have previously revealed a novel mechanism of action for indenoisoquinoline anticancer drugs, dual-downregulation of MYC and inhibition of topoisomerase I. Herein, we report the design and synthesis of novel 7-aza-8,9-methylenedioxyindenoisoquinolines based on desirable substituents and π-π stacking interactions. These compounds stabilize the MYC promoter G-quadruplex, significantly lower MYC levels in cancer cells, and inhibit topoisomerase I. MYC targeting was demonstrated by differential activities in Raji vs CA-46 cells and cytotoxicity in MYC-dependent cell lines. Cytotoxicities in the NCI-60 panel of human cancer cell lines were investigated. Favorable pharmacokinetics were established, and in vivo anticancer activities were demonstrated in xenograft mouse models. Furthermore, favorable brain penetration, brain pharmacokinetics, and anticancer activity in an orthotopic glioblastoma mouse model were demonstrated.


Assuntos
Antineoplásicos , Desenho de Fármacos , Quadruplex G , Isoquinolinas , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-myc , Inibidores da Topoisomerase I , Quadruplex G/efeitos dos fármacos , Humanos , Animais , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/farmacocinética , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Isoquinolinas/farmacologia , Isoquinolinas/química , Isoquinolinas/farmacocinética , Isoquinolinas/síntese química , Camundongos , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Inibidores da Topoisomerase I/farmacologia , Inibidores da Topoisomerase I/síntese química , Inibidores da Topoisomerase I/farmacocinética , Inibidores da Topoisomerase I/química , Inibidores da Topoisomerase I/uso terapêutico , Relação Estrutura-Atividade , DNA Topoisomerases Tipo I/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Int J Biol Macromol ; 269(Pt 1): 131806, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38670179

RESUMO

Acinetobacter baumannii is a notorious pathogen that commonly thrives in hospital environments and is responsible for numerous nosocomial infections in humans. The burgeoning multi-drug resistance leaves relatively minimal options for treating the bacterial infection, posing a significant problem and prompting the identification of new approaches for tackling the same. This motivated us to focus on non-canonical nucleic acid structures, mainly G-quadruplexes, as drug targets. G-quadruplexes have recently been gaining attention due to their involvement in multiple bacterial and viral pathogenesis. Herein, we sought to explore conserved putative G-quadruplex motifs in A. baumannii. In silico analysis revealed the presence of eight conserved motifs in genes involved in bacterial survival and pathogenesis. The biophysical and biomolecular analysis confirmed stable G-quadruplex formation by the motifs and showed a high binding affinity with the well-reported G-quadruplex binding ligand, BRACO-19. BRACO-19 exposure also decreased the growth of bacteria and downregulated the expression of G-quadruplex-harboring genes. The biofilm-forming ability of the bacteria was also affected by BRACO-19 addition. Taking all these observations into account, we have shown here for the first time the potential of G-quadruplex structures as a promising drug target in Acinetobacter baumannii, for addressing the challenges posed by this infamous pathogen.


Assuntos
Acinetobacter baumannii , Quadruplex G , Acinetobacter baumannii/genética , Acinetobacter baumannii/efeitos dos fármacos , Quadruplex G/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Antibacterianos/farmacologia , Antibacterianos/química , Humanos , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos
7.
J Med Chem ; 67(8): 6292-6312, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38624086

RESUMO

Mitochondria are important drug targets for anticancer and other disease therapies. Certain human mitochondrial DNA sequences capable of forming G-quadruplex structures (G4s) are emerging drug targets of small molecules. Despite some mitochondria-selective ligands being reported for drug delivery against cancers, the ligand design is mostly limited to the triphenylphosphonium scaffold. The ligand designed with lipophilic small-sized scaffolds bearing multipositive charges targeting the unique feature of high mitochondrial membrane potential (MMP) is lacking and most mitochondria-selective ligands are not G4-targeting. Herein, we report a new small-sized dicationic lipophilic ligand to target MMP and mitochondrial DNA G4s to enhance drug delivery for anticancer. The ligand showed marked alteration of mitochondrial gene expression and substantial induction of ROS production, mitochondrial dysfunction, DNA damage, cellular senescence, and apoptosis. The ligand also exhibited high anticancer activity against HCT116 cancer cells (IC50, 3.4 µM) and high antitumor efficacy in the HCT116 tumor xenograft mouse model (∼70% tumor weight reduction).


Assuntos
Antineoplásicos , Neoplasias Colorretais , Quadruplex G , Mitocôndrias , Humanos , Quadruplex G/efeitos dos fármacos , Ligantes , Animais , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Antineoplásicos/uso terapêutico , Camundongos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Apoptose/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Camundongos Nus , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Bibliotecas de Moléculas Pequenas/síntese química , Ensaios Antitumorais Modelo de Xenoenxerto , Células HCT116 , DNA Mitocondrial/metabolismo
8.
Eur J Med Chem ; 271: 116406, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38688064

RESUMO

NRAS mutation is the second most common oncogenic factor in cutaneous melanoma. Inhibiting NRAS translation by stabilizing the G-quadruplex (G4) structure with small molecules seems to be a potential strategy for cancer therapy due to the NRAS protein's lack of a druggable pocket. To enhance the effects of previously reported G4 stabilizers quindoline derivatives, we designed and synthesized a novel series of quindoline derivatives with fork-shaped side chains by introducing (alkylamino)alkoxy side chains. Panels of experimental results showed that introducing a fork-shaped (alkylamino)alkoxy side chain could enhance the stabilizing abilities of the ligands against NRAS RNA G-quadruplexes and their anti-melanoma activities. One of them, 10b, exhibited good antitumor activity in the NRAS-mutant melanoma xenograft mouse model, showing the therapeutic potential of this kind of compounds.


Assuntos
Antineoplásicos , Desenho de Fármacos , Quadruplex G , GTP Fosfo-Hidrolases , Proteínas de Membrana , Quadruplex G/efeitos dos fármacos , Humanos , Animais , GTP Fosfo-Hidrolases/metabolismo , Camundongos , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Relação Estrutura-Atividade , Estrutura Molecular , Melanoma/tratamento farmacológico , Melanoma/patologia , Relação Dose-Resposta a Droga , Proliferação de Células/efeitos dos fármacos , Indóis/farmacologia , Indóis/química , Indóis/síntese química , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , RNA/metabolismo , RNA/química , Biossíntese de Proteínas/efeitos dos fármacos , Alcaloides , Quinolinas
9.
J Biol Chem ; 299(9): 105151, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37567479

RESUMO

Hepatitis B virus (HBV) is a hepatotropic DNA virus that has a very compact genome. Due to this genomic density, several distinct mechanisms are used to facilitate the viral life cycle. Recently, accumulating evidence show that G-quadruplex (G4) in different viruses play essential regulatory roles in key steps of the viral life cycle. Although G4 structures in the HBV genome have been reported, their function in HBV replication remains elusive. In this study, we treated an HBV replication-competent cell line and HBV-infected cells with the G4 structure stabilizer pyridostatin (PDS) and evaluated different HBV replication markers to better understand the role played by the G4. In both models, we found PDS had no effect on viral precore RNA (pcRNA) or pre-genomic RNA (pgRNA), but treatment did increase HBeAg/HBc ELISA reads and intracellular levels of viral core/capsid protein (HBc) in a dose-dependent manner, suggesting post-transcriptional regulation. To further dissect the mechanism of G4 involvement, we used in vitro-synthesized HBV pcRNA and pgRNA. Interestingly, we found PDS treatment only enhanced HBc expression from pgRNA but not HBeAg expression from pcRNA. Our bioinformatic analysis and CD spectroscopy revealed that pgRNA harbors a conserved G4 structure. Finally, we introduced point mutations in pgRNA to disrupt its G4 structure and observed the resulting mutant failed to respond to PDS treatment and decreased HBc level in in vitro translation assay. Taken together, our data demonstrate that HBV pgRNA contains a G4 structure that plays a vital role in the regulation of viral mRNA translation.


Assuntos
Quadruplex G , Vírus da Hepatite B , Hepatite B , Humanos , Proteínas do Capsídeo/química , Proteínas do Capsídeo/metabolismo , Hepatite B/virologia , Antígenos E da Hepatite B/metabolismo , Vírus da Hepatite B/genética , Vírus da Hepatite B/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , Proteínas do Core Viral/química , Proteínas do Core Viral/metabolismo , Replicação Viral/genética , Linhagem Celular , Quadruplex G/efeitos dos fármacos , Biossíntese de Proteínas/efeitos dos fármacos , Biossíntese de Proteínas/genética , Mutação , Aminoquinolinas/farmacologia
10.
J Med Virol ; 95(5): e28783, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37212309

RESUMO

Monkeypox virus (MPXV) is a double-stranded DNA virus from the family Poxviridae, which is endemic in West and Central Africa. Various human outbreaks occurred in the 1980s, resulting from a cessation of smallpox vaccination. Recently, MPXV cases have reemerged in non-endemic nations, and the 2022 outbreak has been declared a public health emergency. Treatment optionsare limited, and many countries lack the infrastructure to provide symptomatic treatments. The development of cost-effective antivirals could ease severe health outcomes. G-quadruplexes have been a target of interest in treating viral infections with different chemicals. In the present work, a genomic-scale mapping of different MPXV isolates highlighted two conserved putative quadruplex-forming sequences MPXV-exclusive in 590 isolates. Subsequently, we assessed the G-quadruplex formation using circular dichroism spectroscopy and solution small-angle X-ray scattering. Furthermore, biochemical assays indicated the ability of MPXV quadruplexes to be recognized by two specific G4-binding partners-Thioflavin T and DHX36. Additionally, our work also suggests that a quadruplex binding small-molecule with previously reported antiviral activity, TMPyP4, interacts with MPXV G-quadruplexes with nanomolar affinity in the presence and absence of DHX36. Finally, cell biology experiments suggests that TMPyP4 treatment substantially reduced gene expression of MPXV proteins. In summary, our work provides insights into the G-quadruplexes from the MPXV genome that can be further exploited to develop therapeutics.


Assuntos
Quadruplex G , Monkeypox virus , Mpox , Monkeypox virus/genética , Quadruplex G/efeitos dos fármacos , Mpox/virologia , Genoma Viral , Espalhamento a Baixo Ângulo , Difração de Raios X , Antivirais/farmacologia , Porfirinas/farmacologia , Inibidores Enzimáticos/farmacologia
11.
Nucleic Acids Res ; 51(9): 4112-4125, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-36971129

RESUMO

The importance of non-canonical DNA structures such as G-quadruplexes (G4) and intercalating-motifs (iMs) in the fine regulation of a variety of cellular processes has been recently demonstrated. As the crucial roles of these structures are being unravelled, it is becoming more and more important to develop tools that allow targeting these structures with the highest possible specificity. While targeting methodologies have been reported for G4s, this is not the case for iMs, as evidenced by the limited number of specific ligands able to bind the latter and the total absence of selective alkylating agents for their covalent targeting. Furthermore, strategies for the sequence-specific covalent targeting of G4s and iMs have not been reported thus far. Herein, we describe a simple methodology to achieve sequence-specific covalent targeting of G4 and iM DNA structures based on the combination of (i) a peptide nucleic acid (PNA) recognizing a specific sequence of interest, (ii) a pro-reactive moiety enabling a controlled alkylation reaction, and (iii) a G4 or iM ligand orienting the alkylating warhead to the reactive residues. This multi-component system allows for the targeting of specific G4 or iM sequences of interest in the presence of competing DNA sequences and under biologically relevant conditions.


Assuntos
Alquilantes , Alquilação , Cor , DNA , Quadruplex G , Luz , Alquilantes/química , Alquilantes/efeitos da radiação , Alquilação/efeitos dos fármacos , Alquilação/efeitos da radiação , DNA/química , DNA/efeitos dos fármacos , Quadruplex G/efeitos dos fármacos , Ligantes
12.
Bioorg Med Chem Lett ; 79: 129085, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36423824

RESUMO

With the emergence of new viruses in the human population and the fast mutation rates of existing viruses, new antiviral targets and compounds are needed. Most existing antiviral drugs are active against proteins of a handful of viruses. Most of these proteins in the end affect viral nucleic acid processing, but direct nucleic acid targeting is less represented due to the difficulty of selectively acting at the nucleic acid of interest. Recently, nucleic acids have been shown to fold in structures alternative to the classic double helix and Watson and Crick base-pairing. Among these non-canonical structures, G-quadruplexes (G4s) have attracted interest because of their key biological roles that are being discovered. Molecules able to selectively target G4s have been developed and since G4s have been investigated as targets in several human pathologies, including viral infections. Here, after briefly introducing viruses, G4s and the G4-binding molecules with antiviral properties, we comment on the mechanisms at the base of the antiviral activity reported for G4-binding molecules. Understanding how G4-ligands act in infected cells will possibly help designing and developing next-generation antiviral drugs.


Assuntos
Antivirais , Quadruplex G , Humanos , Antivirais/farmacologia , Quadruplex G/efeitos dos fármacos , Ácidos Nucleicos/efeitos dos fármacos , Ácidos Nucleicos/metabolismo
13.
Molecules ; 26(23)2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34885920

RESUMO

Ginsenoside compound K (CK) is one of the major metabolites of the bioactive ingredients in Panax ginseng, which presents excellent bioactivity and regulates the expression of important proteins. In this work, the effects of CK on G-quadruplexes (G4s) were quantitatively analyzed in the presence and absence of their complementary sequences. CK was demonstrated to facilitate the formation of G4s, and increase the quantity of G4s in the competition with duplex. Thermodynamic experiments suggested that the electrostatic interactions were important for G4 stabilization by CK. CK was further found to regulate the transcription of G4-containing templates, reduce full-length transcripts, and decrease the transcription efficiency. Our results provide new evidence for the pharmacological study of ginsenosides at the gene level.


Assuntos
Quadruplex G/efeitos dos fármacos , Ginsenosídeos/farmacologia , Linhagem Celular , Ginsenosídeos/química , Humanos , Modelos Moleculares , Panax/química , Termodinâmica , Transcrição Gênica/efeitos dos fármacos
14.
Biochemistry ; 60(48): 3707-3713, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34757721

RESUMO

G-quadruplex (G4) ligand-induced DNA damage has been involved in many physiological functions of cells. Herein, cationic porphyrin (TMPyP4)-mediated DNA oxidation damage was investigated aiming at mitochondrial G4 DNA (mt9438) and its structural analogue of the thrombin-binding aptamer (TBA). TMPyP4 is found to stabilize TBA G4 but destabilize mt9438. For two resulting DNA-TMPyP4 assemblies, the distinct light-induced singlet oxygen (1O2) generation and the subsequent DNA damage were found. For mt9438-TMPyP4, a slower 1O2-induced DNA damage takes place and results in the formation of DNA aggregation. In contrast, 1O2 tends to promote DNA unfolding in a relatively faster rate for TBA-TMPyP4. Despite of such distinct DNA damage behavior, UV resonance Raman spectra reveal that for both mt9438-TMPyP4 and TBA-TMPyP4 the DNA damage commonly stems from the guanine-specific oxidation. Our results clearly indicate that the ligand-mediated DNA damage is strongly dependent on the initial interplay between DNA and the ligand.


Assuntos
Aptâmeros de Nucleotídeos/química , Quadruplex G/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Porfirinas/química , Aptâmeros de Nucleotídeos/genética , Cátions/química , Cátions/farmacologia , Dano ao DNA/efeitos dos fármacos , Ligantes , Porfirinas/genética , Porfirinas/farmacologia
15.
Viruses ; 13(11)2021 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-34835025

RESUMO

Pseudorabies virus (PRV) is the causative agent of Aujeszky's disease, which still causes large economic losses for the swine industry. Therefore, it is urgent to find a new strategy to prevent and control PRV infection. Previous studies have proven that guanine (G)-rich DNA or RNA sequences in some other viruses' genomes have the potential to form G-quadruplex (G4), which serve as promising antivirus targets. In this study, we identified two novel G4-forming sequences, OriL-A and OriL-S, which are located at the upstream origin of replication (OriL) in the PRV genome and conserved across 32 PRV strains. Circular dichroism (CD) spectroscopy and a gel electrophoresis assay showed that the two G-rich sequences can fold into parallel G4 structures in vitro. Moreover, fluorescence resonance energy transfer (FRET) melting and a Taq polymerase stop assay indicated that the G4 ligand PhenDC3 has the capacity to bind and stabilize the G4. Notably, the treatment of PRV-infected cells with G4-stabilizer PhenDC3 significantly inhibited PRV DNA replication in host cells but did not affect PRV's attachment and entry. These results not only expand our knowledge about the G4 characteristics in the PRV genome but also suggest that G4 may serve as an innovative therapeutic target against PRV.


Assuntos
Antivirais/farmacologia , Quadruplex G , Herpesvirus Suídeo 1/genética , Origem de Replicação/genética , Animais , Antivirais/química , Linhagem Celular , Replicação do DNA/efeitos dos fármacos , DNA Viral/biossíntese , DNA Viral/química , DNA Viral/efeitos dos fármacos , Compostos de Anéis Fundidos/química , Compostos de Anéis Fundidos/farmacologia , Quadruplex G/efeitos dos fármacos , Genoma Viral/efeitos dos fármacos , Genoma Viral/genética , Herpesvirus Suídeo 1/efeitos dos fármacos , Herpesvirus Suídeo 1/fisiologia , Origem de Replicação/efeitos dos fármacos , Suínos , Replicação Viral/efeitos dos fármacos
16.
Int J Mol Sci ; 22(19)2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34638655

RESUMO

DNA G-quadruplex (G4) structures, either within gene promoter sequences or at telomeres, have been extensively investigated as potential small-molecule therapeutic targets. However, although G4s forming at the telomeric DNA have been extensively investigated as anticancer targets, few studies focus on the telomeric repeat-containing RNA (TERRA), transcribed from telomeres, as potential pharmacological targets. Here, a virtual screening approach to identify a library of drug-like putative TERRA G4 binders, in tandem with circular dichroism melting assay to study their TERRA G4-stabilizing properties, led to the identification of a new hit compound. The affinity of this compound for TERRA RNA and some DNA G4s was analyzed through several biophysical techniques and its biological activity investigated in terms of antiproliferative effect, DNA damage response (DDR) activation, and TERRA RNA expression in high vs. low TERRA-expressing human cancer cells. The selected hit showed good affinity for TERRA G4 and no binding to double-stranded DNA. In addition, biological assays showed that this compound is endowed with a preferential cytotoxic effect on high TERRA-expressing cells, where it induces a DDR at telomeres, probably by displacing TERRA from telomeres. Our studies demonstrate that the identification of TERRA G4-targeting drugs with potential pharmacological effects is achievable, shedding light on new perspectives aimed at discovering new anticancer agents targeting these G4 structures.


Assuntos
RNA/genética , Telômero/genética , Antineoplásicos/farmacologia , Sítios de Ligação/efeitos dos fármacos , Sítios de Ligação/genética , DNA/genética , Dano ao DNA/efeitos dos fármacos , Dano ao DNA/genética , Quadruplex G/efeitos dos fármacos , Humanos , Ligantes , Neoplasias/tratamento farmacológico , Neoplasias/genética , Relação Estrutura-Atividade , Telômero/efeitos dos fármacos
17.
Biomolecules ; 11(10)2021 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-34680037

RESUMO

The evidence that telomerase is overexpressed in almost 90% of human cancers justifies the proposal of this enzyme as a potential target for anticancer drug design. The inhibition of telomerase by quadruplex stabilizing ligands is being considered a useful approach in anticancer drug design proposals. Several aromatic ligands, including porphyrins, were exploited for telomerase inhibition by adduct formation with G-Quadruplex (GQ). 5,10,15,20-Tetrakis(N-methyl-4-pyridinium)porphyrin (H2TMPyP) is one of the most studied porphyrins in this field, and although reported as presenting high affinity to GQ, its poor selectivity for GQ over duplex structures is recognized. To increase the desired selectivity, porphyrin modifications either at the peripheral positions or at the inner core through the coordination with different metals have been handled. Herein, studies involving the interactions of TMPyP and analogs with different DNA sequences able to form GQ and duplex structures using different experimental conditions and approaches are reviewed. Some considerations concerning the structural diversity and recognition modes of G-quadruplexes will be presented first to facilitate the comprehension of the studies reviewed. Additionally, considering the diversity of experimental conditions reported, we decided to complement this review with a screening where the behavior of H2TMPyP and of some of the reviewed metal complexes were evaluated under the same experimental conditions and using the same DNA sequences. In this comparison under unified conditions, we also evaluated, for the first time, the behavior of the AgII complex of H2TMPyP. In general, all derivatives showed good affinity for GQ DNA structures with binding constants in the range of 106-107 M-1 and ligand-GQ stoichiometric ratios of 3:1 and 4:1. A promising pattern of selectivity was also identified for the new AgII derivative.


Assuntos
Acenaftenos/uso terapêutico , Neoplasias/tratamento farmacológico , Porfirinas/uso terapêutico , Telomerase/antagonistas & inibidores , Acenaftenos/química , Antineoplásicos/uso terapêutico , Sítios de Ligação/efeitos dos fármacos , Quadruplex G/efeitos dos fármacos , Humanos , Ligantes , Porfirinas/química , Telomerase/genética
18.
Molecules ; 26(20)2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34684745

RESUMO

The non-coding RNAs (ncRNA) are RNA transcripts with different sizes, structures and biological functions that do not encode functional proteins. RNA G-quadruplexes (rG4s) have been found in small and long ncRNAs. The existence of an equilibrium between rG4 and stem-loop structures in ncRNAs and its effect on biological processes remains unexplored. For example, deviation from the stem-loop leads to deregulated mature miRNA levels, demonstrating that miRNA biogenesis can be modulated by ions or small molecules. In light of this, we report several examples of rG4s in certain types of ncRNAs, and the implications of G4 stabilization using small molecules, also known as G4 ligands, in the regulation of gene expression, miRNA biogenesis, and miRNA-mRNA interactions. Until now, different G4 ligands scaffolds were synthesized for these targets. The regulatory role of the above-mentioned rG4s in ncRNAs can be used as novel therapeutic approaches for adjusting miRNA levels.


Assuntos
Quadruplex G/efeitos dos fármacos , RNA não Traduzido/química , Humanos , Sequências Repetidas Invertidas/genética , Sequências Repetidas Invertidas/fisiologia , Ligantes , MicroRNAs/genética , RNA Mensageiro/genética , RNA não Traduzido/metabolismo
19.
Eur J Pharmacol ; 912: 174586, 2021 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-34710368

RESUMO

Herein, a derivate from tanshinone IIA, 1,6,6-trimethyl-11-phenyl-7,8,9,10-tetrahydro-6H-furo[2',3':1,2]phenanthro[3,4-d]imidazole (TA25), has been synthesized and investigated as potential inhibitor against the proliferation, migration and invasion of lung cancer cells. MTT assay and cell colony formation assay results showed that TA25 exhibits acceptable inhibitory effect against the proliferation of lung cancer A549 cells, and the value of IC50 was about 17.9 µM. This result was further confirmed by the inhibition of TA25 against the growth of xenograft lung cancer cells on zebrafish bearing tumor (A549 lung cancer cells). The results of wound-healing assay and FITC-gelatin invasion assay displayed that TA25 could inhibit the migration and invasion of lung cancer A549 cells. Moreover, the studies on the binding properties of TA25 interact with c-myc G-quadruplex DNA suggested that TA25 can bind in the G-quarter plane formed from G7, G11, G16 and G20 with c-myc G-quadruplex DNA through π-π stacking. Further study of the potential anti-cancer mechanism indicated that TA25 can induce S-phase arrest in lung cancer A549 cells, and this phenomenon resulted from the promotion of the production of reactive oxygen species and DNA damage in A549 cells under the action of TA25. Further research revealed that TA25 could inhibit the PI3K/Akt/mTOR signal pathway and increase the expression of p53 protein. Overall, TA25 can be developed into a promising inhibitor against the proliferation, migration and invasion of lung cancer cells and has potential clinical application in the near future.


Assuntos
Abietanos/farmacologia , Antineoplásicos/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Fase S/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Abietanos/química , Abietanos/uso terapêutico , Abietanos/toxicidade , Animais , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Antineoplásicos/toxicidade , Sítios de Ligação/efeitos dos fármacos , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Modelos Animais de Doenças , Quadruplex G/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Modelos Moleculares , Proteínas Proto-Oncogênicas c-myc/química , Proteínas Proto-Oncogênicas c-myc/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Peixe-Zebra
20.
Life Sci ; 287: 120095, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34715135

RESUMO

AIMS: This study aimed to evaluate the ability of compound 13d to induce autophagy and to promote apoptosis of tumor cells and its interaction mechanism. MATERIALS AND METHODS: Using CCK-8 assay, transwell assay, fluorescence resonance energy transfer melting analysis (FRET), transmission electron microscopy, flow cytometry assay, immunofluorescence assay, Western blot analysis, and wound healing assay. KEY FINDINGS: The results indicated that compound 13d could induce autophagy and apoptosis of gastric cancer cells. Moreover, the findings of CCK-8 assay, colony formation, migration and invasion assay, and wound healing assay revealed that compound 13d would effectively inhibit cell proliferation, migration, and invasion. Its IC50 value is about 2.4 µM against gastric cancer cells, which is similar to positive drug­platinum. 13d specific induction of telomere G-quadruplex formation was proved in extracellular FRET melting assay, and indirectly affected telomerase activity. G-quadruplex formation promoted cell apoptosis and autophagy. Upon incorporating the autophagy inhibitors 3-MA and HCQ, the expression of the autophagy marker protein LC3 was then checked, suggesting that the compound 13d influences the autophagy flux. Furthermore, knocking down the autophagy-related gene Atg5 to reduce the level of autophagy enhances the anti-tumor activity and increases apoptotic cells' proportion. Mechanistic experiments have shown that blocking the Akt/m-TOR signal pathway plays a crucial role in autophagy and G-quadruplex induced telomere dysfunction. DNA damage is the leading cause of autophagy. Compound 13d combined with autophagy inhibitor can inhibit tumor cells more effectively. SIGNIFICANCE: Our findings demonstrate that compound 13d as a telomeric G-quadruplex ligand induces Telomere dysfunction, DNA damage response, autophagy, and apoptosis in gastric cancer cells by blocking the Akt/m-TOR signaling pathway.


Assuntos
Autofagia/efeitos dos fármacos , Citoproteção/efeitos dos fármacos , Quadruplex G/efeitos dos fármacos , Fenantrolinas/administração & dosagem , Neoplasias Gástricas , Telômero/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Autofagia/fisiologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/fisiologia , Quelantes/administração & dosagem , Citoproteção/fisiologia , Relação Dose-Resposta a Droga , Sistemas de Liberação de Medicamentos/métodos , Humanos , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/metabolismo , Telômero/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...