Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
3.
J Lipid Res ; 20(8): 941-5, 1979 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-533829

RESUMO

In subjects fed a cholesterol-free diet there are three possible sources of intestinal lymph cholesterol: a) mucosal synthesis; b) absorption of endogenous (biliary) cholesterol; and c) transudation of plasma lipoproteins into the lacteals of the intestinal wall. To test these possibilities, the extent of transudation was measured by means of [3H]beta-sitosterol administered intravenously as a marker. Absorption of biliary cholesterol was reduced by oral administration of beta-sitosterol (9 g/day), and mucosal synthesis of cholesterol was evaluated by comparisons of plasma/lymph [14C]cholesterol specific activity ratios after intravenous administration of a single dose of labeled cholesterol. Studies were carried out on six patients with filarial chyluria. In five patients fed a cholesterol-free diet the results indicated that lymph cholesterol was largely derived by transudation of plasma lipoproteins into the lacteals from the intestinal blood supply, without contribution from de novo mucosal synthesis or from absorption of endogenous cholesterol. The intestinal lymph of one patient fed cholesterol (2 g/day) contained cholesterol originating mostly from plasma transudation and from dietary absorption, with little contribution from absorbed endogenous cholesterol. In all experiments the larger part of the cholesterol transported away from the intestine in the lymph was carried in chylomicrons, even though it had its origin in plasma lipoproteins.


Assuntos
Colesterol/metabolismo , Quilo , Filariose/metabolismo , Linfa/metabolismo , Urina , Adolescente , Adulto , Colesterol na Dieta , Quilomícrons/urina , Dieta , Feminino , Filariose/complicações , Humanos , Lipoproteínas/urina , Masculino , Pessoa de Meia-Idade
4.
J Clin Invest ; 64(1): 233-42, 1979 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-221544

RESUMO

To explore the role of the human intestine as a source of apolipoproteins, we have studied intestinal lipoproteins and apoprotein secretion in two subjects with chyluria (mesenteric lymphatic-urinary fistulae). After oral corn oil, apolipoprotein A-I (apoA-I) and apolipoprotein A-II (apoA-II) output in urine increased in parallel to urinary triglyceride. One subject, on two occasions, after 40 g of corn oil, excreted 8.4 and 8.6 g of triglyceride together with 196 and 199 mg apoA-I and on one occasion, 56 mg apoA-II. The other subject, after 40 g corn oil, excreted 0.3 g triglyceride and 17.5 mg apoA-I, and, after 100 g of corn oil, excreted 44.8 mg apoA-I and 5.8 mg apoA-II. 14.5+/-2.1% of apoA-I and 17.7+/-4.3% of apoA-II in chylous urine was in the d < 1.006 fraction (chylomicrons and very low density lipoprotein). Calculations based on the amount of apoA-I and apoA-II excreted on triglyceride-rich lipoproteins revealed that for these lipid loads, intestinal secretion could account for 50 and 33% of the calculated daily synthetic rate of apoA-I and apoA-II, respectively. Similarly, subject 2 excreted 48-70% and 14% of the calculated daily synthetic rate of apoA-I and apoA-II, respectively. Chylous urine contained chylomicrons, very low density lipoproteins and high density lipoproteins, all of which contained apoA-I. Chylomicrons and very low density lipoproteins contained a previously unreported human apoprotein of 46,000 mol wt. We have called this apoprotein apoA-IV because of the similarity of its molecular weight and amino acid composition to rat apoA-IV. In sodium dodecyl sulfate gels, chylomicron apoproteins consisted of apoB 3.4+/-0.7%, apoA-IV 10.0+/-3.3%, apoE 4.4+/-0.3%, apoA-I 15.0+/-1.8%, and apoC and apoA-II 43.3+/-11.3%. Very low density lipoprotein contained more apoB and apoA-IV and less apoC than chylomicrons. Ouchterlony immunodiffusion of chylomicron apoproteins revealed the presence of apoC-I, apoC-II, and apoC-III. In contrast, plasma chylomicrons isolated during a nonchyluric phase revealed a markedly altered chylomicron apoprotein pattern when compared with urinary chylomicrons. The major apoproteins in plasma chylomicrons were apoB, apoE, and the C peptides: no apoA-I or apoA-IV were present in sodium dodecyl sulfate gels indicating that major changes in chylomicron apoproteins occur during chylomicron metabolism. When incubated in vitro with plasma, urinary chylomicrons lost apoA-I and apoA-IV and gained apoE and apoC. Loss of apoA-I and apoA-IV was dependent upon the concentration of high density lipoproteins in the incubation mixture. These studies demonstrate that the human intestine secretes significant amounts of apoA-I and apoA-II during lipid absorption. Subsequent transfer of apoproteins from triglyceride-rich lipoproteins to other plasma lipoproteins may represent a mechanism whereby the intestine contributes to plasma apoprotein levels.


Assuntos
Apolipoproteínas/metabolismo , Quilo , Intestino Delgado/metabolismo , Lipoproteínas/metabolismo , Adulto , Apolipoproteínas/urina , Quilomícrons/sangue , Quilomícrons/metabolismo , Quilomícrons/urina , Eletroforese em Gel de Poliacrilamida , Feminino , Humanos , Lipoproteínas/sangue , Lipoproteínas/urina , Lipoproteínas HDL/urina , Lipoproteínas VLDL/urina , Masculino , Pessoa de Meia-Idade , Triglicerídeos/urina , Urina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...