Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 205
Filtrar
1.
Sci Adv ; 10(26): eadn5229, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38924414

RESUMO

There is a regional preference around lymph nodes (LNs) for adipose beiging. Here, we show that local LN removal within inguinal white adipose tissue (iWAT) greatly impairs cold-induced beiging, and this impairment can be restored by injecting M2 macrophages or macrophage-derived C-C motif chemokine (CCL22) into iWAT. CCL22 injection into iWAT effectively promotes iWAT beiging, while blocking CCL22 with antibodies can prevent it. Mechanistically, the CCL22 receptor, C-C motif chemokine receptor 4 (CCR4), within eosinophils and its downstream focal adhesion kinase/p65/interleukin-4 signaling are essential for CCL22-mediated beige adipocyte formation. Moreover, CCL22 levels are inversely correlated with body weight and fat mass in mice and humans. Acute elevation of CCL22 levels effectively prevents diet-induced body weight and fat gain by enhancing adipose beiging. Together, our data identify the CCL22-CCR4 axis as an essential mediator for LN-controlled adaptive thermogenesis and highlight its potential to combat obesity and its associated complications.


Assuntos
Tecido Adiposo Branco , Quimiocina CCL22 , Metabolismo Energético , Linfonodos , Macrófagos , Termogênese , Quimiocina CCL22/metabolismo , Animais , Macrófagos/metabolismo , Camundongos , Humanos , Linfonodos/metabolismo , Tecido Adiposo Branco/metabolismo , Masculino , Receptores CCR4/metabolismo , Obesidade/metabolismo , Transdução de Sinais , Camundongos Endogâmicos C57BL , Eosinófilos/metabolismo , Feminino , Adipócitos Bege/metabolismo
2.
Cell Mol Biol (Noisy-le-grand) ; 70(6): 54-60, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38836681

RESUMO

Long non-coding RNA (lncRNA) LINC00472 has a close connection with the development of tumors. The aim was to explore the role of LINC00472 on NSCLC cell biological function in vivo and its potential mechanisms. The mRNA levels of LncRNA 00472 and microRNA-23a-3p, were determined by RT-qPCR. Cell Counting Kit-8, cell scratches and western blot assays were used to analyze the proliferation, migration and level of apoptosis-associated proteins. Luciferase reporter assay validates the binding between LINC00472/CCL22 and miR-23a-3p. LINC00472 and CCL22 were lowly expressed in NSCLC tissues and cells, while miR-23a-3p expression was upregulated. LINC00472 overexpression significantly depressed NSCLC cell cellular behavior, whereas promoting cell death. MiR-23a-3p could reverse these above-mentioned biological behavior changes caused by LINC00472 overexpression. Additionally, LINC00472 increased CCL22 expression through sponging miR-23a-3p. Knocking down CCL22 antagonized the inhibitory effect of LINC00472 on NSCLC cell survival. LINC00472 may reduce the cellular growth, and accelerate death of NSCLC through increasing CCL22 expression by targeting miR-23a-3p.


Assuntos
Apoptose , Carcinoma Pulmonar de Células não Pequenas , Movimento Celular , Proliferação de Células , Quimiocina CCL22 , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares , MicroRNAs , RNA Longo não Codificante , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Proliferação de Células/genética , Linhagem Celular Tumoral , Quimiocina CCL22/genética , Quimiocina CCL22/metabolismo , Apoptose/genética , Movimento Celular/genética , Progressão da Doença , Masculino , Feminino , Animais
3.
Stem Cell Res ; 75: 103302, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38217994

RESUMO

CCL22 is a macrophage-derived immunosuppressive chemokine that recruits regulatory T cells through the CCL22:CCR4 axis, playing an important role in homeostatic and inflammatory responses. A CCL22-overexpressing human induced pluripotent stem cell line (CNNDi001-A-2) was generated by lentiviral transduction to further study the function of CCL22. The cell line was confirmed to have normal proliferation and pluripotency and could be further differentiated into islet cells for cell replacement therapy in diabetes.


Assuntos
Células-Tronco Pluripotentes Induzidas , Ilhotas Pancreáticas , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Quimiocina CCL22/genética , Quimiocina CCL22/metabolismo , Linhagem Celular , Linfócitos T Reguladores/metabolismo
4.
Cancer Gene Ther ; 31(1): 28-42, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37990062

RESUMO

Double-stranded DNA (dsDNA) in the cytoplasm of eukaryotic cells is abnormal and typically indicates the presence of pathogens or mislocalized self-DNA. Multiple sensors detect cytosolic dsDNA and trigger robust immune responses via activation of type I interferons. Several cancer immunotherapy treatments also activate cytosolic nucleic acid sensing pathways, including oncolytic viruses, nucleic acid-based cancer vaccines, and pharmacological agonists. We report here that cytosolic dsDNA introduced into malignant cells can robustly upregulate expression of CCL22, a chemokine responsible for the recruitment of regulatory T cells (Tregs). Tregs in the tumor microenvironment are thought to repress anti-tumor immune responses and contribute to tumor immune evasion. Surprisingly, we found that CCL22 upregulation by dsDNA was mediated primarily by interferon regulatory factor 3 (IRF3), a key transcription factor that activates type I interferons. This finding was unexpected given previous reports that type I interferon alpha (IFN-α) inhibits CCL22 and that IRF3 is associated with strong anti-tumor immune responses, not Treg recruitment. We also found that CCL22 upregulation by dsDNA occurred concurrently with type I interferon beta (IFN-ß) upregulation. IRF3 is one of two transcription factors downstream of the STimulator of INterferon Genes (STING), a hub adaptor protein through which multiple dsDNA sensors transmit their signals. The other transcription factor downstream of STING, NF-κB, has been reported to regulate CCL22 expression in other contexts, and NF-κB has also been associated with multiple pro-tumor functions, including Treg recruitment. However, we found that NF-κB in the context of activation by cytosolic dsDNA contributed minimally to CCL22 upregulation compared with IRF3. Lastly, we observed that two strains of the same cell line differed profoundly in their capacity to upregulate CCL22 and IFN-ß in response to dsDNA, despite apparent STING activation in both cell lines. This finding suggests that during tumor evolution, cells can acquire, or lose, the ability to upregulate CCL22. This study adds to our understanding of factors that may modulate immune activation in response to cytosolic DNA and has implications for immunotherapy strategies that activate DNA sensing pathways in cancer cells.


Assuntos
Interferon Tipo I , NF-kappa B , Humanos , NF-kappa B/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , DNA , Linhagem Celular , Interferon Tipo I/metabolismo , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/metabolismo , Quimiocina CCL22/metabolismo
5.
Molecules ; 28(8)2023 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-37110740

RESUMO

The main pathogenic factor in atopic dermatitis (AD) is Th2 inflammation, and levels of serum CCL17 and CCL22 are related to severity in AD patients. Fulvic acid (FA) is a kind of natural humic acid with anti-inflammatory, antibacterial, and immunomodulatory effects. Our experiments demonstrated the therapeutic effect of FA on AD mice and revealed some potential mechanisms. FA was shown to reduce TARC/CCL17 and MDC/CCL22 expression in HaCaT cells stimulated by TNF-α and IFN-γ. The inhibitors showed that FA inhibits CCL17 and CCL22 production by deactivating the p38 MAPK and JNK pathways. After 2,4-dinitrochlorobenzene (DNCB) induction in mice with atopic dermatitis, FA effectively reduced the symptoms and serum levels of CCL17 and CCL22. In conclusion, topical FA attenuated AD via downregulation of CCL17 and CCL22, via inhibition of P38 MAPK and JNK phosphorylation, and FA is a potential therapeutic agent for AD.


Assuntos
Dermatite Atópica , Animais , Camundongos , Dermatite Atópica/induzido quimicamente , Dermatite Atópica/tratamento farmacológico , Queratinócitos , NF-kappa B/metabolismo , Quimiocina CCL22/metabolismo , Quimiocina CCL22/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Dinitroclorobenzeno/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Quimiocina CCL17/metabolismo , Quimiocina CCL17/farmacologia , Quimiocina CCL17/uso terapêutico
6.
J Cancer Res Clin Oncol ; 149(9): 6613-6623, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36792811

RESUMO

PURPOSE: An increasing infiltration of FoxP3-positive T-regs is associated with a higher grade of cervical intraepithelial neoplasia. The T-reg-recruiting chemokine CCL22 is expressed in various tumour entities. Aim of our study was to investigate the role of CCL22 in the progression and regression of cervical intraepithelial neoplasias, especially in patients with intermediate cervical intraepithelial neoplasias (CIN II). Furthermore, our aim was to characterize the CCL22-producing cells and explore the role of innate immunity in the process of cells recruitment. METHODS: CCL22 expression was analyzed immunohistochemically in 169 patient samples. The immunoreactive score as well as the median numbers of positive cells were calculated in each slide and correlated with the histological CIN grade and FoxP3 expression. Additionally, CD68/CCL22 as well as CD68/PPARγ and CD68/FoxP3 expression were examined by double immunofluorescence. Statistical analysis was performed by SPSS 26. RESULTS: A significantly higher expression of epithelial CCL22 in CIN II with progression in comparison to CIN II with regression (p = 0.006) could be detected. CCL22 was correlated with FoxP3 (Spearman's Rho: 0.308; p < 0.01). In 88%, CCL22-positive cells were positive for CD68, and 71% of CD68-positive macrophages expressed PPARγ. Colocalization of CD68 and FoxP3 was detected in 12%. CONCLUSION: We could demonstrate that increased expression of CCL22, mainly produced by macrophages, correlates with elevated potential of malignancy. CCL22 expression could act as a predictor for regression and progression in cervical intraepithelial neoplasia, and it may help in the decision process regarding surgical treatment versus watchful waiting strategy in order to prevent conisation-associated risks. Furthermore, our findings support the potential of CCL22-producing cells as a target for immune therapy in cervical cancer patients.


Assuntos
Displasia do Colo do Útero , Neoplasias do Colo do Útero , Feminino , Humanos , Quimiocina CCL22/metabolismo , PPAR gama , Displasia do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/patologia , Fatores de Transcrição Forkhead/metabolismo
7.
Mar Drugs ; 20(9)2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36135752

RESUMO

Polysiphonia morrowii is a well-known red alga that has promising pharmacological characteristics. The current study evaluates the protective effect of 3-bromo-4,5-dihydroxybenzaldehyde (BDB) isolated from P. morrowii on tumor necrosis factor (TNF)-α/interferon (IFN)-γ-stimulated inflammation and skin barrier deterioration in HaCaT keratinocytes. The anti-inflammatory effect of BDB in TNF-α/IFN-γ-stimulated HaCaT keratinocytes is evaluated by investigating nuclear factor kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) pathways, inflammatory cytokines, and chemokines. Further, the interaction between BDB and the skin barrier functions in stimulated HaCaT keratinocytes is investigated. The findings of the study reveal that BDB dose-dependently increases cell viability while decreasing intracellular reactive oxygen species (ROS) production. BDB downregulates the expression of inflammatory cytokines, interleukin (IL)-6, -8, -13, IFN-γ, TNF-α, and chemokines, Eotaxin, macrophage-derived chemokine (MDC), regulated on activation, normal T cells expressed and secreted (RANTES), and thymus and activation-regulated chemokine (TARC) by modulating the MAPK and NF-κB signaling pathways in TNF-α/IFN-γ-stimulated HaCaT keratinocytes. Furthermore, BDB increases the production of skin hydration proteins and tight junction proteins in stimulated HaCaT keratinocytes by preserving skin moisturization and tight junction stability. These findings imply that BDB exhibits a protective ability against inflammation and deterioration of skin barrier via suppressing the expression of inflammatory signaling in TNF-α/IFN-γ-stimulated HaCaT keratinocytes.


Assuntos
Benzaldeídos , Queratinócitos , Rodófitas , Anti-Inflamatórios/metabolismo , Anti-Inflamatórios/farmacologia , Benzaldeídos/farmacologia , Quimiocina CCL17/metabolismo , Quimiocina CCL22/metabolismo , Quimiocina CCL5/metabolismo , Quimiocinas/metabolismo , Citocinas/metabolismo , Humanos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Interferon gama/metabolismo , Interleucinas/metabolismo , Queratinócitos/efeitos dos fármacos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Rodófitas/química , Fator de Transcrição STAT1/metabolismo , Proteínas de Junções Íntimas/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
8.
Cell Mol Immunol ; 19(9): 1054-1066, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35962191

RESUMO

Tumor cell dependence on activated oncogenes is considered a therapeutic target, but protumorigenic microenvironment-mediated cellular addiction to specific oncogenic signaling molecules remains to be further defined. Here, we showed that tumor-associated macrophages (TAMs) produced an abundance of C-C motif chemokine 22 (CCL22), whose expression in the tumor stroma was positively associated with the level of intratumoral phospho-focal adhesion kinase (pFAK Tyr397), tumor metastasis and reduced patient survival. Functionally, CCL22-stimulated hyperactivation of FAK was correlated with increased malignant progression of cancer cells. CCL22-induced addiction to FAK was demonstrated by the persistent suppression of tumor progression upon FAK-specific inhibition. Mechanistically, we identified that diacylglycerol kinase α (DGKα) acted as a signaling adaptor to link the CCL22 receptor C-C motif chemokine receptor 4 (CCR4) and FAK and promoted CCL22-induced activation of the FAK/AKT pathway. CCL22/CCR4 signaling activated the intracellular Ca2+/phospholipase C-γ1 (PLC-γ1) axis to stimulate the phosphorylation of DGKα at a tyrosine residue (Tyr335) and promoted the translocation of DGKα to the plasma membrane to assemble the DGKα/FAK signalosome, which critically contributed to regulating sensitivity to FAK inhibitors in cancer cells. The identification of TAM-driven intratumoral FAK addiction provides opportunities for utilizing the tumor-promoting microenvironment to achieve striking anticancer effects.


Assuntos
Quimiocina CCL22 , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Quinase 1 de Adesão Focal , Linhagem Celular Tumoral , Quimiocina CCL22/metabolismo , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/metabolismo , Carcinoma de Células Escamosas do Esôfago/patologia , Quinase 1 de Adesão Focal/metabolismo , Humanos , Fosforilação , Transdução de Sinais , Microambiente Tumoral , Macrófagos Associados a Tumor
9.
Br J Cancer ; 127(6): 1026-1033, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35750747

RESUMO

BACKGROUND: Macrophages are an important component of the tumour immune microenvironment (TME) and can promote tumour growth and metastasis. Macrophage-secreted chemokine-ligand-23 (CCL23) induces ovarian cancer cell migration via chemokine-receptor 1 (CCR1). However, the effect of CCL23 on other immune cells in the TME is unknown. METHODS: CCL23 levels were measured by ELISA. The expression of surface markers in exhaustion assays was quantified by flow cytometry. Signalling pathways were identified by phosphokinase array and validated by western blot. RESULTS: Ascites from patients with high-grade serous ovarian cancer (HGSC) contain high levels of CCL23. Similarly, significantly higher CCL23 levels were found in plasma from HGSC patients compared to healthy individuals. RNA-seq analysis of ovarian cancer tissues from TCGA showed that expression of CCL23 correlated with the presence of macrophages. In tissues with high levels of CCL23 and macrophage content, the fraction of CD8 + T cells expressing exhaustion markers CTLA-4 and PD-1 were significantly higher compared to low-level CCL23 tissues. In vitro, CCL23 induced upregulation of immune checkpoint proteins on CD8 + T cells, including CTLA-4, TIGIT, TIM-3 and LAG-3 via phosphorylation of GSK3ß in CD8 + T cells. CONCLUSIONS: Our data suggest that CCL23 produced by macrophages contributes to the immune-suppressive TME in ovarian cancer by inducing an exhausted T-cell phenotype.


Assuntos
Quimiocinas CC/metabolismo , Macrófagos/metabolismo , Neoplasias Ovarianas , Microambiente Tumoral , Antígeno CTLA-4 , Carcinoma Epitelial do Ovário/metabolismo , Quimiocina CCL22/metabolismo , Feminino , Humanos , Ligantes , Neoplasias Ovarianas/metabolismo
10.
PLoS One ; 17(2): e0263997, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35176085

RESUMO

Long noncoding RNA (LncRNA) is a new type of regulatory RNA. LncRNA HOX antisense intergenic RNA (HOTAIR), as an oncogene in non-small cell lung cancer (NSCLC), is one of the key determinants of tumor progression. However, its possible molecular mechanism and the immunomodulatory pathway involved in NSCLC are still unclear. This study aims to explore whether HOTAIR promotes proliferation, migration and invasion of the NSCLC cells by inhibiting the expression of C-C Motif Chemokine Ligand 22 (CCL22). We collected 30 clinical samples of cancer and adjacent normal tissues from the patients with NSCLC, using real-time quantitative polymerase chain reaction (RT-qPCR) to detect the LncRNA HOTAIR and CCL22 mRNA expression in tissues. Immunohistochemistry was used to detect the protein expression of CCL22 in cancer and adjacent normal tissues. Cell experiments were conducted to verify that LncRNA HOTAIR regulates the expression of CCL22 and participates in the progress of NSCLC. The antisense oligonucleotide (ASO) probe interfering with LncRNA HOTAIR and the interference fragment of CCL22 (si-CCL22) were constructed. A549 cells were co-transfected with ASO-HOTAIR and si-CCL22. We used RT-qPCR to detect the expression of LncRNA HOTAIR and CCL22 mRNA in the cells, enzyme-linked immunosorbent assay (ELISA) used to detect the CCL22 protein level in the cell supernatant. 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay was applied to detect cell proliferation, the Flow cytometry to detect cell apoptosis. Finally, the Transwell test was utilized to detect cell migration and invasion. In conclusion, this study suggests that HOTAIR may promote proliferation, migration and invasion of the NSCLC cells by inhibiting CCL22 expression, which may play a key role in NSCLC cell immunity.


Assuntos
Biomarcadores Tumorais/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Movimento Celular , Proliferação de Células , Quimiocina CCL22/metabolismo , Regulação Neoplásica da Expressão Gênica , RNA Longo não Codificante/genética , Apoptose , Biomarcadores Tumorais/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Quimiocina CCL22/genética , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Invasividade Neoplásica , Prognóstico , Células Tumorais Cultivadas
11.
Int J Mol Sci ; 23(3)2022 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-35163802

RESUMO

There are several open questions to be answered regarding the pathophysiology of the development of preeclampsia (PE). Numerous factors are involved in its genesis, such as defective placentation, vascular impairment, and an altered immune response. The activation of the adaptive and innate immune system represents an immunologic, particularity during PE. Proinflammatory cytokines are predominantly produced, whereas immune regulatory and immune suppressive factors are diminished in PE. In the present study, we focused on the recruitment of regulatory T cells (Tregs) which are key players in processes mediating immune tolerance. To identify Tregs in the decidua, an immunohistochemical staining of FoxP3 of 32 PE and 34 control placentas was performed. A clearly reduced number of FoxP3-positive cells in the decidua of preeclamptic women could be shown in our analysis (p = 0.036). Furthermore, CCL22, a well-known Treg chemoattractant, was immunohistochemically evaluated. Interestingly, CCL22 expression was increased at the maternal-fetal interface in PE-affected pregnancies (psyncytiotrophoblast = 0.035, pdecidua = 0.004). Therefore, the hypothesis that Tregs undergo apoptosis at the materno-fetal interface during PE was generated, and verified by FoxP3/TUNEL (TdT-mediated dUTP-biotin nick end labeling) staining. Galectin-2 (Gal-2), a member of the family of carbohydrate-binding proteins, which is known to be downregulated during PE, seems to play a pivotal role in T cell apoptosis. By performing a cell culture experiment with isolated Tregs, we could identify Gal-2 as a factor that seems to prevent the apoptosis of Tregs. Our findings point to a cascade of apoptosis of Tregs at the materno-fetal interface during PE. Gal-2 might be a potential therapeutic target in PE to regulate immune tolerance.


Assuntos
Decídua/imunologia , Regulação para Baixo , Galectina 2/metabolismo , Pré-Eclâmpsia/metabolismo , Linfócitos T Reguladores/citologia , Adolescente , Adulto , Apoptose , Estudos de Casos e Controles , Células Cultivadas , Quimiocina CCL22/metabolismo , Feminino , Fatores de Transcrição Forkhead/metabolismo , Humanos , Idade Materna , Gravidez , Linfócitos T Reguladores/metabolismo , Regulação para Cima , Adulto Jovem
12.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35046040

RESUMO

Inflammatory pain, such as hypersensitivity resulting from surgical tissue injury, occurs as a result of interactions between the immune and nervous systems with the orchestrated recruitment and activation of tissue-resident and circulating immune cells to the site of injury. Our previous studies identified a central role for Ly6Clow myeloid cells in the pathogenesis of postoperative pain. We now show that the chemokines CCL17 and CCL22, with their cognate receptor CCR4, are key mediators of this response. Both chemokines are up-regulated early after tissue injury by skin-resident dendritic and Langerhans cells to act on peripheral sensory neurons that express CCR4. CCL22, and to a lesser extent CCL17, elicit acute mechanical and thermal hypersensitivity when administered subcutaneously; this response abrogated by pharmacological blockade or genetic silencing of CCR4. Electrophysiological assessment of dissociated sensory neurons from naïve and postoperative mice showed that CCL22 was able to directly activate neurons and enhance their excitability after injury. These responses were blocked using C 021 and small interfering RNA (siRNA)-targeting CCR4. Finally, our data show that acute postoperative pain is significantly reduced in mice lacking CCR4, wild-type animals treated with CCR4 antagonist/siRNA, as well as transgenic mice depleted of dendritic cells. Together, these results suggest an essential role for the peripheral CCL17/22:CCR4 axis in the genesis of inflammatory pain via direct communication between skin-resident dendritic cells and sensory neurons, opening therapeutic avenues for its control.


Assuntos
Células de Langerhans/metabolismo , Dor Pós-Operatória/etiologia , Dor Pós-Operatória/metabolismo , Receptores CCR4/metabolismo , Células Receptoras Sensoriais/metabolismo , Potenciais de Ação , Animais , Biomarcadores , Quimiocina CCL17/genética , Quimiocina CCL17/metabolismo , Quimiocina CCL22/genética , Quimiocina CCL22/metabolismo , Modelos Animais de Doenças , Suscetibilidade a Doenças , Perfilação da Expressão Gênica , Células de Langerhans/imunologia , Camundongos , Dor Pós-Operatória/diagnóstico , Transdução de Sinais
13.
Anticancer Drugs ; 33(2): 149-157, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34657098

RESUMO

Recently, cytokine-induced killer (CIK) cells have been shown to possess effective cytotoxic activity against some tumor cells both in vitro and in clinical research. Furthermore, dendritic cell-activated CIK (DC-CIK) cells display significantly increased antitumor activity compared to unstimulated CIK cells. Study findings indicate DC cells can secrete chemokine C-C motif ligand 17 (CCL17) and chemokine C-C motif ligand 22 (CCL22) with a common receptor molecule, C-C chemokine receptor type-4(CCR4). CCL17 and CCL22 levels were measured by ELISA from CIK cell culture supernatants and the expression of CCR4 on CIK and DC-CIK cells was analyzed by flow cytometry. Through Migration and Killing assays, further analyzed the effects of the altered expression levels of CCR4 on the chemotactic ability and the tumor-killing efficiency of CIK cells. We found markedly increased CCL17 and CCL22 in supernatants of DC-CIK co-cultures. Similarly, the expression of CCR4 was also increased on CIK cells in these co-cultures. Further, the stimulation of CCL17 and CCL22 increased expression of the CCR4 and enhanced the migratory capacity and antitumor efficacy of CIK cells. Simultaneously, similar effects had achieved by transfecting the CCR4 gene into CIK cells. DC cells may promote the expression of CCR4 on CIK cells by secreting CCL17 and CCL22, thereby promoting infiltration of DC-CIK cells into the tumor microenvironment, and exerting stronger antitumor activity than CIK cells.


Assuntos
Quimiocina CCL17/metabolismo , Quimiocina CCL22/metabolismo , Células Matadoras Induzidas por Citocinas/metabolismo , Receptores CCR4/biossíntese , Movimento Celular/fisiologia , Células Dendríticas , Humanos , Ligantes
14.
Bioengineered ; 12(2): 11277-11287, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34874224

RESUMO

A great many microRNAs (miRNAs) have been reported to play different roles in human cancers, including gastric cancer (GC). However, the specific character of miR-23a-3p in GC has not been elucidated. This study was to explore the function of miR-23a-3p in GC. The results manifested that miR-23a-3p was down-regulated in GC and patients with reduced miR-23a-3p had poor prognosis. Functional experiments assured that elevated miR-23a-3p refrained GC proliferation, invasion, migration, PIK3/Akt phosphorylation and apoptosis, while knockdown miR-23a-3p accelerated the growth of GC. Double luciferase report experiments manifested that miR-23a-3p targeted CCL22 expression. Functional rescue experiments affirmed that the repression of elevated miR-23a-3p on GC was reversed by simultaneous augmented CCL22. In vivo, elevated miR-23a-3p restrained the volume and tumor of GC and reduced the expression of CCL22 and phosphorylated PIK3/Akt, while knockdown miR-23a-3p motivated tumor growth. In conclusion, the results of this study indicate that miR-23a-3p plays a repressive role in GC, and affects the progression of GC via down-regulating CCL22 and blocking PI3K/AKT signal transduction pathway, which may offer a new molecular target for clinical treatment of GC.


Assuntos
Quimiocina CCL22/metabolismo , MicroRNAs/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Neoplasias Gástricas/genética , Animais , Sequência de Bases , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Progressão da Doença , Regulação para Baixo/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , MicroRNAs/genética , Pessoa de Meia-Idade , Metástase Neoplásica , Prognóstico , Transdução de Sinais/genética
15.
mBio ; 12(6): e0159121, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34781732

RESUMO

Toxoplasma gondii is an intracellular protozoan pathogen of humans that can cross the placenta and result in adverse pregnancy outcomes and long-term birth defects. The mechanisms used by T. gondii to cross the placenta are unknown, but complex interactions with the host immune response are likely to play a role in dictating infection outcomes during pregnancy. Prior work showed that T. gondii infection dramatically and specifically increases the secretion of the immunomodulatory chemokine CCL22 in human placental cells during infection. Given the important role of this chemokine during pregnancy, we hypothesized that CCL22 induction was driven by a specific T. gondii-secreted effector. Using a combination of bioinformatics and molecular genetics, we have now identified T. gondii GRA28 as the gene product required for CCL22 induction. GRA28 is secreted into the host cell, where it localizes to the nucleus, and deletion of the GRA28 gene results in reduced CCL22 placental cells as well as a human monocyte cell line. The impact of GRA28 on CCL22 production is also conserved in mouse immune and placental cells both in vitro and in vivo. Moreover, parasites lacking GRA28 are impaired in their ability to disseminate throughout the animal, suggesting a link between CCL22 induction and the ability of the parasite to cause disease. Overall, these data demonstrate a clear function for GRA28 in altering the immunomodulatory landscape during infection of both placental and peripheral immune cells and show a clear impact of this immunomodulation on infection outcome. IMPORTANCE Toxoplasma gondii is a globally ubiquitous pathogen that can cause severe disease in HIV/AIDS patients and can also cross the placenta and infect the developing fetus. We have found that placental and immune cells infected with T. gondii secrete significant amounts of a chemokine (called CCL22) that is critical for immune tolerance during pregnancy. In order to better understand whether this is a response by the host or a process that is driven by the parasite, we have identified a T. gondii gene that is absolutely required to induce CCL22 production in human cells, indicating that CCL22 production is a process driven almost entirely by the parasite rather than the host. Consistent with its role in immune tolerance, we also found that T. gondii parasites lacking this gene are less able to proliferate and disseminate throughout the host. Taken together, these data illustrate a direct relationship between CCL22 levels in the infected host and a key parasite effector and provide an interesting example of how T. gondii can directly modulate host signaling pathways in order to facilitate its growth and dissemination.


Assuntos
Quimiocina CCL22/metabolismo , Placenta/parasitologia , Complicações Parasitárias na Gravidez/metabolismo , Proteínas de Protozoários/metabolismo , Toxoplasma/metabolismo , Toxoplasmose/metabolismo , Animais , Quimiocina CCL22/genética , Feminino , Interações Hospedeiro-Parasita , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Placenta/metabolismo , Gravidez , Complicações Parasitárias na Gravidez/genética , Complicações Parasitárias na Gravidez/parasitologia , Proteínas de Protozoários/genética , Toxoplasma/genética , Toxoplasmose/genética , Toxoplasmose/parasitologia
16.
PLoS Negl Trop Dis ; 15(6): e0009448, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34106920

RESUMO

BACKGROUND: In Mali, cutaneous leishmaniasis (CL) and filariasis are co-endemic. Previous studies in animal models of infection have shown that sand fly saliva enhance infectivity of Leishmania parasites in naïve hosts while saliva-specific adaptive immune responses may protect against cutaneous and visceral leishmaniasis. In contrast, the human immune response to Phlebotomus duboscqi (Pd) saliva, the principal sand fly vector in Mali, was found to be dichotomously polarized with some individuals having a Th1-dominated response and others having a Th2-biased response. We hypothesized that co-infection with filarial parasites may be an underlying factor that modulates the immune response to Pd saliva in endemic regions. METHODOLOGY/PRINCIPAL FINDINGS: To understand which cell types may be responsible for polarizing human responses to sand fly saliva, we investigated the effect of salivary glands (SG) of Pd on human monocytes. To this end, elutriated monocytes were cultured in vitro, alone, or with SG, microfilariae antigen (MF ag) of Brugia malayi, or LPS, a positive control. The mRNA expression of genes involved in inflammatory or regulatory responses was then measured as were cytokines and chemokines associated with these responses. Monocytes of individuals who were not exposed to sand fly bites (mainly North American controls) significantly upregulated the production of IL-6 and CCL4; cytokines that enhance leishmania parasite establishment, in response to SG from Pd or other vector species. This selective inflammatory response was lost in individuals that were exposed to sand fly bites which was not changed by co-infection with filarial parasites. Furthermore, infection with filarial parasites resulted in upregulation of CCL22, a type-2 associated chemokine, both at the mRNA levels and by its observed effect on the frequency of recruited monocytes. CONCLUSIONS/SIGNIFICANCE: Together, our data suggest that SG or recombinant salivary proteins from Pd alter human monocyte function by upregulating selective inflammatory cytokines.


Assuntos
Brugia Malayi/imunologia , Proteínas de Insetos/imunologia , Monócitos/parasitologia , Phlebotomus/imunologia , Saliva/imunologia , Imunidade Adaptativa , Animais , Células Cultivadas , Quimiocina CCL22/genética , Quimiocina CCL22/metabolismo , Coinfecção , Doenças Endêmicas , Filariose/complicações , Filariose/imunologia , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/imunologia , Imunidade Celular , Leishmaniose Cutânea/complicações , Leishmaniose Cutânea/imunologia , Lipopolissacarídeos/toxicidade , Mali , Monócitos/fisiologia , RNA Mensageiro , Proteínas Recombinantes , Glândulas Salivares , Linfócitos T Auxiliares-Indutores
17.
Nature ; 592(7852): 133-137, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33597749

RESUMO

Antibody affinity maturation depends on positive selection in germinal centres (GCs) of rare B cell clones that acquire higher-affinity B cell receptors via somatic hypermutation, present more antigen to follicular helper T (TFH) cells and, consequently, receive more contact-dependent T cell help1. As these GC B cells and TFH cells do not maintain long-lasting contacts in the chaotic GC environment2-4, it is unclear how sufficient T cell help is cumulatively focused onto those rare clones. Here we show that, upon stimulation of CD40, GC B cells upregulate the chemokine CCL22 and to a lesser extent CCL17. By engaging the chemokine receptor CCR4 on TFH cells, CCL22 and CCL17 can attract multiple helper cells from a distance, thus increasing the chance of productive help. During a GC response, B cells that acquire higher antigen-binding affinities express higher levels of CCL22, which in turn 'highlight' these high-affinity GC B cells. Acute increase or blockade of TFH cells helps to rapidly increase or decrease CCL22 expression by GC B cells, respectively. Therefore, a chemokine-based intercellular reaction circuit links the amount of T cell help that individual B cells have received recently to their subsequent ability to attract more help. When CCL22 and CCL17 are ablated in B cells, GCs form but B cells are not affinity-matured efficiently. When competing with wild-type B cells in the same reaction, B cells lacking CCL22 and CCL17 receive less T cell help to maintain GC participation or develop into bone-marrow plasma cells. By uncovering a chemokine-mediated mechanism that highlights affinity-improved B cells for preferential help from TFH cells, our study reveals a principle of spatiotemporal orchestration of GC positive selection.


Assuntos
Quimiocina CCL22/metabolismo , Centro Germinativo/citologia , Centro Germinativo/imunologia , Animais , Linfócitos B/citologia , Linfócitos B/imunologia , Células Cultivadas , Quimiocina CCL17/deficiência , Quimiocina CCL17/genética , Quimiocina CCL22/deficiência , Quimiocina CCL22/genética , Feminino , Humanos , Masculino , Camundongos , Tonsila Palatina/citologia , Receptores CCR4/deficiência , Receptores CCR4/genética , Linfócitos T Auxiliares-Indutores/citologia , Linfócitos T Auxiliares-Indutores/imunologia , Regulação para Cima
18.
J Leukoc Biol ; 109(2): 373-376, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32480426

RESUMO

Atypical chemokine receptors (ACKRs) have emerged as important regulators or scavengers of homeostatic and inflammatory chemokines. Among these atypical receptors, ACKR4 is reported to bind the homeostatic chemokines CCL19, CCL21, CCL25 and CXCL13. In a recent study by Matti et al., the authors show that ACKR4 is also a receptor for CCL20, previously established to bind to CCR6 only. They provide convincing evidence that, just as for its other chemokine ligands, ACKR4 rapidly internalizes CCL20 both in vitro and in vivo. Independently of this discovery, we undertook a screening program aiming at reassessing the activity of the 43 human chemokines toward ACKR4 using a highly sensitive ß-arrestin recruitment assay. This systematic analysis confirmed CCL20 as a new agonist ligand for ACKR4 in addition to CCL19, CCL21, and CCL25. Furthermore, CCL22, which plays an important role in both homeostasis and inflammatory responses, and is known as a ligand for CCR4 and ACKR2 was found to also act as a potent partial agonist of ACKR4. In contrast, agonist activity of CXCL13 toward ACKR4 was disproved. This independent wide-range systematic study confirms the pairing of CCL20 with ACKR4 newly discovered by Matti and co-authors, and further refines the spectrum of chemokines activating ACKR4.


Assuntos
Quimiocina CCL20/metabolismo , Quimiocina CCL22/metabolismo , Quimiocina CXCL13/metabolismo , Receptores CCR/agonistas , Receptores CCR/metabolismo , Sequência de Aminoácidos , Quimiocina CCL22/química , Humanos , Ligantes , Filogenia , Ligação Proteica , beta-Arrestinas/metabolismo
19.
Am J Respir Cell Mol Biol ; 64(3): 344-356, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33264064

RESUMO

The interplay of type-2 inflammation and antiviral immunity underpins asthma exacerbation pathogenesis. Virus infection induces type-2 inflammation-promoting chemokines CCL17 and CCL22 in asthma; however, mechanisms regulating induction are poorly understood. By using a human rhinovirus (RV) challenge model in human airway epithelial cells in vitro and mice in vivo, we assessed mechanisms regulating CCL17 and CCL22 expression. Subjects with mild to moderate asthma and healthy volunteers were experimentally infected with RV and airway CCL17 and CCL22 protein quantified. In vitro airway epithelial cell- and mouse-RV infection models were then used to define STAT6- and NF-κB-mediated regulation of CCL17 and CCL22 expression. Following RV infection, CCL17 and CCL22 expression was higher in asthma, which differentially correlated with clinical and immunological parameters. Air-liquid interface-differentiated primary epithelial cells from donors with asthma also expressed higher levels of RV-induced CCL22. RV infection boosted type-2 cytokine-induced STAT6 activation. In epithelial cells, type-2 cytokines and STAT6 activation had differential effects on chemokine expression, increasing CCL17 and suppressing CCL22, whereas NF-κB promoted expression of both chemokines. In mice, RV infection activated pulmonary STAT6, which was required for CCL17 but not CCL22 expression. STAT6-knockout mice infected with RV expressed increased levels of NF-κB-regulated chemokines, which was associated with rapid viral clearance. Therefore, RV-induced upregulation of CCL17 and CCL22 was mediated by NF-κB activation, whereas expression was differentially regulated by STAT6. Together, these findings suggest that therapeutic targeting of type-2 STAT6 activation alone will not block all inflammatory pathways during RV infection in asthma.


Assuntos
Asma/patologia , Asma/virologia , Quimiocina CCL17/metabolismo , Quimiocina CCL22/metabolismo , Progressão da Doença , Rhinovirus/fisiologia , Fator de Transcrição STAT6/metabolismo , Células A549 , Adolescente , Adulto , Animais , Biomarcadores/metabolismo , Quimiocinas/metabolismo , Células Epiteliais/metabolismo , Feminino , Humanos , Cinética , Pulmão/patologia , Pulmão/virologia , Masculino , Camundongos Endogâmicos BALB C , Pessoa de Meia-Idade , NF-kappa B/metabolismo , Doadores de Tecidos , Adulto Jovem
20.
Gut Microbes ; 12(1): 1-14, 2020 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-33016202

RESUMO

Administration of probiotics has been linked to immune regulation and changes in gut microbiota composition, with effects on atopic dermatitis (AD). In this study, we investigated amelioration of the symptoms of AD using Lactobacillus paracasei KBL382 isolated from the feces of healthy Koreans. Mice with Dermatophagoides farinae extract (DFE)-induced AD were fed 1 × 109 CFU d-1 of L. paracasei KBL382 for 4 weeks. Oral administration of L. paracasei KBL382 significantly reduced AD-associated skin lesions, epidermal thickening, serum levels of immunoglobulin E, and immune cell infiltration. L. paracasei KBL382-treated mice showed decreased production of T helper (Th)1-, Th2-, and Th17-type cytokines, including thymic stromal lymphopoietin, thymus, and activation-regulated chemokine, and macrophage-derived chemokine, and increased production of the anti-inflammatory cytokine IL-10 and transforming growth factor-ß in skin tissue. Intake of L. paracasei KBL382 also increased the proportion of CD4+ CD25+ Foxp3+ regulatory T cells in mesenteric lymph nodes. In addition, administration of L. paracasei KBL382 dramatically changed the composition of gut microbiota in AD mice. Administration of KBL382 significantly ameliorates AD-like symptoms by regulating the immune response and altering the composition of gut microbiota.


Assuntos
Dermatite Atópica/terapia , Microbioma Gastrointestinal , Imunomodulação , Lacticaseibacillus paracasei , Probióticos , Animais , Quimiocina CCL17/metabolismo , Quimiocina CCL22/metabolismo , Citocinas/metabolismo , Dermatite Atópica/imunologia , Dermatite Atópica/microbiologia , Eosinófilos/imunologia , Imunoglobulina E/sangue , Imunoglobulina E/imunologia , Linfonodos/imunologia , Masculino , Mastócitos/imunologia , Camundongos , Pele/imunologia , Pele/metabolismo , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T Reguladores/imunologia , Linfopoietina do Estroma do Timo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...