Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
Front Immunol ; 14: 1295163, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38283363

RESUMO

Introduction: The healing of tendon-bone injuries is very difficult, often resulting in poor biomechanical performance and unsatisfactory functional recovery. The tendon-bone insertion has a complex four distinct layers structure, and previous studies have often focused on promoting the regeneration of the fibrocartilage layer, neglecting the role of its bone end repair in tendon-bone healing. This study focuses on the role of treadmill training in promoting bone regeneration at the tendon-bone insertion and its related mechanisms. Methods: After establishing the tendon-bone insertion injury model, the effect of treadmill training on tendon-bone healing was verified by Micro CT and HE staining; then the effect of CX3CL1 on osteoclast differentiation was verified by TRAP staining and cell culture; and finally the functional recovery of the mice was verified by biomechanical testing and behavioral test. Results: Treadmill training suppresses the secretion of CX3CL1 and inhibits the differentiation of local osteoclasts after tendon-bone injury, ultimately reducing osteolysis and promoting tendon bone healing. Discussion: Our research has found the interaction between treadmill training and the CX3CL1-C3CR1 axis, providing a certain theoretical basis for rehabilitation training.


Assuntos
Reabsorção Óssea , Quimiocina CX3CL1 , Condicionamento Físico Animal , Traumatismos dos Tendões , Animais , Camundongos , Reabsorção Óssea/prevenção & controle , Fibrocartilagem/fisiologia , Osteoclastos , Tendões , Cicatrização , Quimiocina CX3CL1/fisiologia
2.
Mol Biol Rep ; 47(5): 3593-3603, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32350744

RESUMO

Owing to the role of fractalkine in regulating cellular apoptosis/proliferation, we investigated fractalkine effects on apoptosis/proliferation signaling of granulosa cells in polycystic ovarian syndrome (PCOS) patients through in vitro and in vivo experiments. In vivo, granulosa cells were collected from 40 women undergoing oocyte retrieval (20 controls and 20 PCOS). The expression levels of fractalkine, BAX, Bcl2, Bcl2-XL, Bad, and TNF-α were assessed using RT-PCR. In vitro, we determined the effect of different doses of fractalkine on the expression of the above mentioned genes in GCs of both groups. We found that the expression levels of fractalkine and Bcl-2 were significantly lower in the GCs of PCOS patients compared to the control group (p < 0.05). In contrast, the expression levels of TNF-α and BAX were higher in the patient's group than in the control group. The results suggested that expression levels of fractalkine were negatively and positively correlated with the number of oocytes and fertilized oocytes respectively. Moreover, fractalkine could dose-dependently increase fractalkine and decrease BAD, BAX, Bcl-xl, and TNF-α expressions in the control GCs. In contrast, GCs collected from PCOS patients revealed an increase in expression of BAD, BAX, and Bcl-xl following fractalkine treatment. Our findings indicated that insufficient expression of fractalkine in PCOS patients is related with elevated apoptotic and inflammatory markers and reduced anti-apoptotic genes in the GCs.


Assuntos
Quimiocina CX3CL1/metabolismo , Síndrome do Ovário Policístico/fisiopatologia , Adulto , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Quimiocina CX3CL1/genética , Quimiocina CX3CL1/fisiologia , Feminino , Fertilização in vitro/métodos , Expressão Gênica/genética , Regulação da Expressão Gênica/genética , Células da Granulosa/efeitos dos fármacos , Células da Granulosa/metabolismo , Células da Granulosa/fisiologia , Humanos , Recuperação de Oócitos , Oócitos/metabolismo , Síndrome do Ovário Policístico/genética , Síndrome do Ovário Policístico/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
3.
J Zhejiang Univ Sci B ; 21(2): 166-171, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32115913

RESUMO

Patients with diabetic peripheral neuropathy experience debilitating pain that significantly affects their quality of life (Abbott et al., 2011), by causing sleeping disorders, anxiety, and depression (Dermanovic Dobrota et al., 2014). The primary clinical manifestation of painful diabetic neuropathy (PDN) is mechanical hypersensitivity, also known as mechanical allodynia (MA) (Callaghan et al., 2012). MA's underlying mechanism remains poorly understood, and so far, based on symptomatic treatment, it has no effective therapy (Moore et al., 2014).


Assuntos
Receptor 1 de Quimiocina CX3C/fisiologia , Diabetes Mellitus Tipo 1/complicações , Neuropatias Diabéticas/etiologia , Hiperalgesia/etiologia , Medula Espinal/fisiologia , Estreptozocina/farmacologia , Animais , Receptor 1 de Quimiocina CX3C/antagonistas & inibidores , Quimiocina CX3CL1/fisiologia , Diabetes Mellitus Experimental/complicações , Camundongos , Camundongos Endogâmicos C57BL
4.
J Invest Dermatol ; 140(10): 1951-1961.e6, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32179066

RESUMO

We previously revealed the crucial roles of a chemokine, CX3CL1, and its receptor, CX3CR1, in skin wound healing. Although repeated wounds frequently develop into skin cancer, the roles of CX3CL1 in skin carcinogenesis remain elusive. Here, we proved that CX3CL1 protein expression and CX3CR1+ macrophages were observed in human skin cancer tissues. Similarly, we observed the enhancement of CX3CL1 expression and the abundant accumulation of CX3CR1+ tumor-associated macrophages with M2-like phenotypes in the skin carcinogenesis process induced by the combined treatment with 7,12-dimethylbenz[a]anthracene and 12-O-tetradecanoylphorbol-13-acetate. In this mouse skin carcinogenesis process, CX3CR1+ tumor-associated macrophages exhibited M2-like phenotypes with the expression of Wnt3a and angiogenic molecules including VEGF and matrix metalloproteinase 9. Compared with wild-type mice, CX3CR1-deficient mice showed fewer numbers of skin tumors with a lower incidence. Concomitantly, M2-macrophage numbers and neovascularization were reduced with the depressed expression of angiogenic factors and Wnt3a. Thus, the CX3CL1-CX3CR1 axis can crucially contribute to skin carcinogenesis by regulating the accumulation and functions of tumor-associated macrophages. Thus, this axis can be a good target for preventing and/or treating skin cancers.


Assuntos
Receptor 1 de Quimiocina CX3C/fisiologia , Quimiocina CX3CL1/fisiologia , Neoplasias Cutâneas/etiologia , Macrófagos Associados a Tumor/fisiologia , 9,10-Dimetil-1,2-benzantraceno/toxicidade , Animais , Movimento Celular , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Acetato de Tetradecanoilforbol/toxicidade , Proteína Wnt3A/análise
5.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-1010523

RESUMO

Patients with diabetic peripheral neuropathy experience debilitating pain that significantly affects their quality of life (Abbott et al., 2011), by causing sleeping disorders, anxiety, and depression (Dermanovic Dobrota et al., 2014). The primary clinical manifestation of painful diabetic neuropathy (PDN) is mechanical hypersensitivity, also known as mechanical allodynia (MA) (Callaghan et al., 2012). MA's underlying mechanism remains poorly understood, and so far, based on symptomatic treatment, it has no effective therapy (Moore et al., 2014).


Assuntos
Animais , Camundongos , Receptor 1 de Quimiocina CX3C/fisiologia , Quimiocina CX3CL1/fisiologia , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Tipo 1/complicações , Neuropatias Diabéticas/etiologia , Hiperalgesia/etiologia , Camundongos Endogâmicos C57BL , Medula Espinal/fisiologia , Estreptozocina/farmacologia
6.
Infect Immun ; 87(8)2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31182619

RESUMO

Toxoplasma gondii, a common neurotropic parasite, is increasingly being linked to neuropsychiatric disorders, including schizophrenia, Alzheimer's disease, and Parkinson's disease. However, the pathogenic mechanisms underlying these associations are not clear. Toxoplasma can reside in the brain for extensive periods in the form of tissue cysts, and this process requires a continuous immune response to prevent the parasite's reactivation. Because neuroinflammation may promote the onset and progression of neurodegenerative diseases, we investigated neurodegeneration-associated pathological changes in a mouse model of chronic Toxoplasma infection. Under conditions of high-grade chronic infection, we documented the presence of neurodegeneration in specific regions of the prefrontal cortex, namely, the anterior cingulate cortex (ACC) and somatomotor cortex (SC). Neurodegeneration occurred in both glutamatergic and GABAergic neurons. Neurons that showed signs of degeneration expressed high levels of CX3CL1, were marked by profoundly upregulated complement proteins (e.g., C1q and C3), and were surrounded by activated microglia. Our findings suggest that chronic Toxoplasma infection leads to cortical neurodegeneration and results in CX3CL1, complement, and microglial interactions, which are known to mediate the phagocytic clearance of degenerating neurons. Our study provides a mechanistic explanation for the link between Toxoplasma infection and psychiatric disorders.


Assuntos
Encéfalo/parasitologia , Ativação do Complemento/fisiologia , Microglia/fisiologia , Doenças Neurodegenerativas/etiologia , Toxoplasmose/complicações , Animais , Quimiocina CX3CL1/fisiologia , Doença Crônica , Modelos Animais de Doenças , Feminino , Camundongos , Ácido gama-Aminobutírico/fisiologia
7.
Nat Neurosci ; 22(7): 1075-1088, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31209379

RESUMO

Microglia rapidly respond to changes in neural activity and inflammation to regulate synaptic connectivity. The extracellular signals, particularly neuron-derived molecules, that drive these microglial functions at synapses remain a key open question. Here we show that whisker lesioning, known to dampen cortical activity, induces microglia-mediated synapse elimination. This synapse elimination is dependent on signaling by CX3CR1, the receptor for microglial fractalkine (also known as CXCL1), but not complement receptor 3. Furthermore, mice deficient in CX3CL1 have profound defects in synapse elimination. Single-cell RNA sequencing revealed that Cx3cl1 is derived from cortical neurons, and ADAM10, a metalloprotease that cleaves CX3CL1 into a secreted form, is upregulated specifically in layer IV neurons and in microglia following whisker lesioning. Finally, inhibition of ADAM10 phenocopies Cx3cr1-/- and Cx3cl1-/- synapse elimination defects. Together, these results identify neuron-to-microglia signaling necessary for cortical synaptic remodeling and reveal that context-dependent immune mechanisms are utilized to remodel synapses in the mammalian brain.


Assuntos
Proteína ADAM10/fisiologia , Secretases da Proteína Precursora do Amiloide/fisiologia , Receptor 1 de Quimiocina CX3C/fisiologia , Quimiocina CX3CL1/fisiologia , Proteínas de Membrana/fisiologia , Microglia/fisiologia , Córtex Sensório-Motor/fisiopatologia , Tato/fisiologia , Vibrissas/lesões , Proteína ADAM10/antagonistas & inibidores , Proteína ADAM10/genética , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Secretases da Proteína Precursora do Amiloide/genética , Animais , Receptor 1 de Quimiocina CX3C/deficiência , Receptor 1 de Quimiocina CX3C/genética , Contagem de Células , Feminino , Regulação da Expressão Gênica , Masculino , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Técnicas Analíticas Microfluídicas , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Córtex Sensório-Motor/metabolismo , Córtex Sensório-Motor/patologia , Transdução de Sinais/fisiologia , Análise de Célula Única , Transcriptoma , Vibrissas/fisiologia
8.
Brain Res Bull ; 146: 12-21, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30496784

RESUMO

Fractalkine (CX3C chemokine ligand 1, CX3CL1) is an essential chemokine, for regulating adhesion and chemotaxis through binding to CX3CR1, which plays a critical role in the crosstalk between glial cells and neurons by direct or indirect ways in the central nervous system (CNS). Fractalkine/CX3CR1 axis regulates microglial activation and function, neuronal survival and synaptic function by controlling the release of inflammatory cytokines and synaptic plasticity in the course of the neurological disease. The multiple functions of fractalkine/CX3CR1 make it exert neuroprotective or neurotoxic effects, which determines the pathogenesis. However, the role of fractalkine/CX3CR1 in the CNS remains controversial. Whether it can be used as a therapeutic target for neurological diseases needs to be further investigated. In this review, we summarize the studies highlighting fractalkine/CX3CR1-mediated effects and discuss the potential neurotoxic and neuroprotective actions of fractalkine/CX3CR1 in brain injury for providing useful insights into the potential applications of fractalkine/CX3CR1 in neurological diseases.


Assuntos
Receptor 1 de Quimiocina CX3C/metabolismo , Quimiocina CX3CL1/metabolismo , Doenças do Sistema Nervoso/fisiopatologia , Animais , Receptor 1 de Quimiocina CX3C/fisiologia , Sistema Nervoso Central/metabolismo , Quimiocina CX3CL1/fisiologia , Humanos , Inflamação/metabolismo , Microglia/metabolismo , Doenças do Sistema Nervoso/metabolismo , Neuroglia/metabolismo , Plasticidade Neuronal/fisiologia , Neurônios/metabolismo , Fármacos Neuroprotetores/metabolismo
9.
Med Sci Monit ; 24: 8804-8811, 2018 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-30517088

RESUMO

BACKGROUND Fractalkine is widely expressed throughout the brain and spinal cord, where it can exert effects on pain enhancement and hyperalgesia by activating microglia through CX3C chemokine receptor 1 (CX3CR1), which triggers the release of several pro-inflammatory cytokines in the spinal cord. Fractalkine has also been shown to increase cytosolic calcium ([Ca2+]i) in microglia. MATERIAL AND METHODS Based on the characteristics of CX3CR1, a G protein-coupled receptor, we explored the role of inositol 1,4,5-trisphosphate (IP3) signaling in fractalkine-induced inflammatory response in BV-2 cells in vitro. The effect and the underlying mechanism induced by fractalkine in the brain were observed using a mouse model with intracerebroventricular (i.c.v.) injection of exogenous fractalkine. RESULTS [Ca2+]i was significantly increased and IL-1ß and TNF-α levels were higher in the fractalkine-treated cell groups than in the farctalkine+ 2-APB groups. We found that i.c.v. injection of fractalkine significantly increased p-p38MAPK, IL-1ß, and TNF-α expression in the brain, while i.c.v. injection of a fractalkine-neutralizing antibody (anti-CX3CR1), trisphosphate receptor (IP3R) antagonist (2-APB), or p38MAPK inhibitor (SB203580) prior to fractalkine addition yielded an effective and reliable anti-allodynia effect, following the reduction of p-p38MAPK, IL-1ß, and TNF-α expression. CONCLUSIONS Our results suggest that fractalkine leads to hyperalgesia, and the underlying mechanism may be associated with IP3/p38MAPK-mediated calcium signaling and its phlogogenic properties.


Assuntos
Receptor 1 de Quimiocina CX3C/efeitos dos fármacos , Quimiocina CX3CL1/fisiologia , Hiperalgesia/metabolismo , Animais , Cálcio/metabolismo , Sinalização do Cálcio , Linhagem Celular , Quimiocina CX3CL1/metabolismo , China , Injeções Espinhais , Inositol 1,4,5-Trifosfato/metabolismo , Interleucina-1beta/metabolismo , Ativação de Macrófagos , Camundongos , Microglia/metabolismo , Proteína Quinase 14 Ativada por Mitógeno/metabolismo , Dor/tratamento farmacológico , Receptores de Quimiocinas , Transdução de Sinais/efeitos dos fármacos , Medula Espinal/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
10.
J Neurosci ; 38(32): 7058-7071, 2018 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-29959236

RESUMO

T cells continuously sample CNS-derived antigens in the periphery, yet it is unknown how they sample and respond to CNS antigens derived from distinct brain areas. We expressed ovalbumin (OVA) neoepitopes in regionally distinct CNS areas (Cnp-OVA and Nes-OVA mice) to test peripheral antigen sampling by OVA-specific T cells under homeostatic and neuroinflammatory conditions. We show that antigen sampling in the periphery is independent of regional origin of CNS antigens in both male and female mice. However, experimental autoimmune encephalomyelitis (EAE) is differentially influenced in Cnp-OVA and Nes-OVA female mice. Although there is the same frequency of CD45high CD11b+ CD11c+ CX3CL1+ myeloid cell-T-cell clusters in neoepitope-expressing areas, EAE is inhibited in Nes-OVA female mice and accelerated in CNP-OVA female mice. Accumulation of OVA-specific T cells and their immunomodulatory effects on EAE are CX3C chemokine receptor 1 (CX3CR1) dependent. These data show that despite similar levels of peripheral antigen sampling, CNS antigen-specific T cells differentially influence neuroinflammatory disease depending on the location of cognate antigens and the presence of CX3CL1/CX3CR1 signaling.SIGNIFICANCE STATEMENT Our data show that peripheral T cells similarly recognize neoepitopes independent of their origin within the CNS under homeostatic conditions. Contrastingly, during ongoing autoimmune neuroinflammation, neoepitope-specific T cells differentially influence clinical score and pathology based on the CNS regional location of the neoepitopes in a CX3CR1-dependent manner. Altogether, we propose a novel mechanism for how T cells respond to regionally distinct CNS derived antigens and contribute to CNS autoimmune pathology.


Assuntos
Receptor 1 de Quimiocina CX3C/fisiologia , Sistema Nervoso Central/imunologia , Encefalomielite Autoimune Experimental/imunologia , Glicoproteína Mielina-Oligodendrócito/imunologia , Células-Tronco Neurais/imunologia , Neuroimunomodulação/fisiologia , Oligodendroglia/imunologia , Subpopulações de Linfócitos T/imunologia , 2',3'-Nucleotídeo Cíclico Fosfodiesterases/genética , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Quimiocina CX3CL1/fisiologia , Feminino , Genes Sintéticos , Camundongos , Camundongos Transgênicos , Glicoproteína Mielina-Oligodendrócito/genética , Nestina/genética , Especificidade de Órgãos , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/imunologia , Regiões Promotoras Genéticas , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia
11.
J Neuropathol Exp Neurol ; 77(8): 736-746, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29939299

RESUMO

Age is the most prominent risk factor for the development of postoperative cognitive dysfunction. The present study investigated the role of CX3CL1-CX3CR1 signaling in age-related differences in surgery-induced cognitive deficits and neuroinflammation. Adult and aged male Sprague-Dawley rats were subjected to partial hepatectomy or partial hepatectomy with intracerebroventricular infusion of CX3CL1. On postoperative days 3, 7, and 14, the rats were subjected to an open field test and the Morris water maze test. Hippocampal interleukin-1ß, CX3CL1, CX3CR1, brain derived neurotrophic factor (BDNF), ionized calcium-binding adapter molecule 1 (Iba-1), and Arginase-1 (Arg1) levels were measured. Age exacerbated cognitive impairment and increased neuroinflammation following surgery. Surgery-induced decreases in CX3CL1 and CX3CR1 proteins were accompanied by increased microglial activation, as indicated by increased Iba-1 expression. Corresponding decline in Arg1 and BDNF levels were observed. Treatment with CX3CL1 decreased proinflammatory cytokines expression, increased BDNF and Arg1 levels in the brain, and enhanced behavioral recovery. The surgery-induced decreases in CX3CL1 and CX3CR1 expression exacerbated postoperative cognitive deficits and exaggerated neuroinflammatory responses in this rodent model. Treatment with CX3CL1 attenuated these effects, at least partly by inhibiting microglial activation, decreasing the associated production of proinflammatory cytokines, and enhancing BDNF expression.


Assuntos
Envelhecimento/metabolismo , Encéfalo/metabolismo , Receptor 1 de Quimiocina CX3C/fisiologia , Quimiocina CX3CL1/fisiologia , Disfunção Cognitiva/metabolismo , Hepatectomia/efeitos adversos , Envelhecimento/patologia , Animais , Encéfalo/patologia , Disfunção Cognitiva/patologia , Hepatectomia/tendências , Fígado/metabolismo , Fígado/cirurgia , Masculino , Aprendizagem em Labirinto/fisiologia , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/fisiologia
12.
Thromb Haemost ; 118(3): 562-571, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29433150

RESUMO

Mechanisms linking deep vein thrombosis (DVT) and subclinical atherosclerosis and risk of cardiovascular events are poorly understood. The aim of this study was to investigate the potential impact of CX3CR1/CX3CL1 axis in DVT-associated endothelial dysfunction. The study included 22 patients (age: 37.5 ± 8.2 years) with a history of idiopathic DVT and without known cardiovascular risk factors and 23 aged-matched control subjects (age: 34 ± 7.8 years). Flow cytometry was used to evaluate peripheral markers of platelet activation, leukocyte immunophenotypes and CX3CR1/CX3CL1 expression in both groups. A flow chamber assay was employed to measure leukocyte arrest under dynamic conditions. Platelet activation and the percentage of circulating CX3CR1-expressing platelets, CX3CR1-expressing platelet-bound monocytes and CD8+ lymphocytes were higher in patients with DVT than in controls. Additionally, patients with DVT had increased plasma levels of CX3CL1, soluble P-selectin and platelet factor 4/CXCL4. Interestingly, this correlated with enhanced platelet-leukocyte interaction and leukocyte adhesion to TNFα-stimulated arterial endothelial cells, which was partly dependent on endothelial CX3CL1 upregulation and increased CX3CR1 expression on platelets, monocytes and lymphocytes. In conclusion, increased CX3CR1 expression on circulating platelets may constitute a prognostic marker for long-term adverse cardiovascular events in patients with DVT. Blockade of CX3CL1/CX3CR1 axis may represent a new therapeutic strategy for the prevention of cardiovascular comorbidities associated with DVT.


Assuntos
Receptor 1 de Quimiocina CX3C/fisiologia , Quimiocina CX3CL1/fisiologia , Endotélio Vascular/metabolismo , Leucócitos/citologia , Adesividade Plaquetária , Trombose Venosa/metabolismo , Adolescente , Adulto , Estudos de Casos e Controles , Comorbidade , Células Endoteliais/citologia , Feminino , Células Endoteliais da Veia Umbilical Humana , Humanos , Imunofenotipagem , Inflamação , Linfócitos/metabolismo , Masculino , Microscopia de Fluorescência , Pessoa de Meia-Idade , Monócitos/metabolismo , Ativação Plaquetária , Fatores de Risco , Fator de Necrose Tumoral alfa/metabolismo , Adulto Jovem
13.
Oncogene ; 36(21): 3025-3036, 2017 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-27941884

RESUMO

Epithelial ovarian carcinoma is the most common cause of death from gynecologic cancers largely due to advanced, relapsed and chemotherapy-resistant peritoneal metastasis, which is refractory to the currently used treatment approaches. Mechanisms supporting advanced and relapsed peritoneal metastasis are largely unknown, precluding development of more effective targeted therapies. In this study, we investigated the function of a potentially targetable fractalkine axis in the formation and the development of advanced and relapsed peritoneal metastasis and its impact on patients' outcomes. Our mouse model studies support a role for the fractalkine receptor (CX3CR1) in the initiation of peritoneal adhesion important for recolonization of relapsed peritoneal metastasis. We show that downregulation of CX3CR1 results in reduction of metastatic burden at several peritoneal sites commonly colonized by advanced and relapsed metastatic ovarian carcinoma. We show that the chemokine fractalkine (CX3CL1), an activating ligand of CX3CR1, regulates organ-specific peritoneal colonization. High expression of CX3CR1 correlates with significantly shorter survival, specifically in post-menopausal patients with advanced and terminal stages of the disease. Taken together, our studies support a key regulatory role for the fractalkine axis in advanced and relapsed peritoneal metastasis in epithelial ovarian carcinoma.


Assuntos
Quimiocina CX3CL1/fisiologia , Neoplasias Epiteliais e Glandulares/patologia , Neoplasias Ovarianas/patologia , Neoplasias Peritoneais/secundário , Receptores de Quimiocinas/fisiologia , Animais , Receptor 1 de Quimiocina CX3C , Carcinoma Epitelial do Ovário , Linhagem Celular Tumoral , Quimiocina CX3CL1/genética , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Invasividade Neoplásica , Metástase Neoplásica , Neoplasias Epiteliais e Glandulares/genética , Neoplasias Epiteliais e Glandulares/mortalidade , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/mortalidade , Neoplasias Peritoneais/genética , Neoplasias Peritoneais/mortalidade , Neoplasias Peritoneais/patologia , Receptores de Quimiocinas/genética , Transdução de Sinais/genética , Análise de Sobrevida
14.
J Neurochem ; 141(4): 520-531, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27973687

RESUMO

Chronic pain is a distressing condition, which is experienced even when the painful stimulus, whether surgery or disease related, has subsided. Current treatments for chronic pain show limited efficacy and come with a host of undesirable side-effects, and thus there is a need for new, more effective therapies to be developed. The mechanisms underlying chronic pain are not fully understood at present, although pre-clinical models have facilitated the progress of this understanding considerably in the last decade. The mechanisms underlying chronic pain were initially thought to be neurocentric. However, we now appreciate that non-neuronal cells play a significant role in nociceptive signalling through their communication with neurons. One of the major signalling pathways, which mediates neuron/non-neuronal communication, is chemokine signalling. In this review, we discuss selected chemokines that have been reported to play a pivotal role in the mechanisms underlying chronic pain in a variety of pre-clinical models. Approaches that target each of the chemokines discussed in this review come with their advantages and disadvantages; however, the inhibition of chemokine actions is emerging as an innovative therapeutic strategy, which is now reaching the clinic, with the chemokine Fractalkine and its CX3 CR1 receptor leading the way. This article is part of the special article series "Pain".


Assuntos
Quimiocinas/efeitos dos fármacos , Dor Crônica/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Animais , Quimiocina CX3CL1/genética , Quimiocina CX3CL1/metabolismo , Quimiocina CX3CL1/fisiologia , Humanos
16.
Med Sci (Paris) ; 32(3): 260-6, 2016 Mar.
Artigo em Francês | MEDLINE | ID: mdl-27011244

RESUMO

Allergic asthma and atopic dermatitis are diseases mainly resulting from the activation of Th2 cells, that produce cytokines favouring IgE production and eosinophilia but also of Th1 cells, that contribute to inflammation chronicity. Lymphocyte recruitment and retention of Th cells in target organs are 2 key events for asthma and atopic dermatitis pathogenesis. While lymphocyte migration is regulated by chemokines and lipid mediators such as leukotrienes and prostaglandins, factors involved in lymphocyte retention and survival within inflammatory tissues remain poorly understood. Recent works show that, in allergic diseases, there is an increased expression of fractalkine/CX3CL1 and its unique receptor CX3CR1 and that this chemokine does not act as chemoattractant. In allergic asthma, CX3CR1 expression regulates Th2 and Th1 cell survival in the inflammatory lung, while, in atopic dermatitis, it regulate Th2 and Th1 cell retention into the inflammatory site. Use of peptides blocking fractalkine binding to its receptor is currently tested in the treatment of asthma and atopic dermatitis.


Assuntos
Quimiocina CX3CL1/fisiologia , Hipersensibilidade/genética , Receptores de Quimiocinas/fisiologia , Animais , Receptor 1 de Quimiocina CX3C , Movimento Celular/genética , Sobrevivência Celular/genética , Regulação da Expressão Gênica , Humanos , Hipersensibilidade/imunologia , Distribuição Tecidual
17.
Oncol Rep ; 35(2): 1153-62, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26718770

RESUMO

Epithelial-to-mesenchymal transition (EMT) endows cancer cells with enhanced invasive and metastatic potential during cancer progression. Fractalkine, also known as chemokine (C-X3-C motif) ligand 1 (CX3CL1), the only member recognized so far that belongs to the CX3C chemokine subfamily, was reported to participate in the molecular events that regulate cell adhesion, migration and survival of human prostate cancer cells. However, the relationship between CX3CL1 and EMT remains unknown. We treated DU145 and PC-3 cells with CX3CL1 under hypoxic conditions. The migration and invasion abilities of DU145 and PC-3 cells were detected by Transwell assays. Induction of EMT was verified by morphological changes in the DU145 and PC-3 cells and analysis of protein expression of EMT markers such as E-cadherin and vimentin. To identify the involved signaling pathway in CX3CL1-induced EMT, activation of epidermal growth factor receptor (EGFR) was measured using western blot analysis, and Slug expression was detected with or without an EGFR inhibitor prior to CX3CL1 treatment. Concentrations of soluble and total TGF-α in the CX3CL­treated DU145 cells were detected by ELISA. Additionally, we determined the involvement of the TACE/TGF-α/EGFR pathway in CX3CL1­induced EMT using RNA interference and specific inhibitors. CX3CL1 increased the migration and invasiveness of the DU145 and PC-3 cells, and resulted in characteristic alterations of EMT. Our results demonstrated that TACE/TGF-α/EGFR pathway activation and subsequent upregulation of Slug expression were responsible for CX3CL1­induced EMT, and contributed to the migration and inva-sion of prostate cancer cells. Inhibition of TACE/TGF-α/EGFR signaling reversed EMT and led to reduced migration and invasion abilities of the prostate cancer cells. We provide initial evidence that CX3CL1 exposure resulted in EMT occurrence and enhancement of cell migration and invasion through a mechanism involving activation of TACE/TGF-α/EGFR signaling. These findings revealed that CX3CL1 may serve as a new target for the treatment of prostate cancer.


Assuntos
Proteínas ADAM/fisiologia , Adenocarcinoma/patologia , Quimiocina CX3CL1/fisiologia , Transição Epitelial-Mesenquimal/fisiologia , Receptores ErbB/fisiologia , Proteínas de Neoplasias/fisiologia , Neoplasias da Próstata/patologia , Transdução de Sinais/fisiologia , Fator de Crescimento Transformador alfa/fisiologia , Proteínas ADAM/genética , Proteína ADAM17 , Adenocarcinoma/metabolismo , Hipóxia Celular , Linhagem Celular Tumoral , Movimento Celular , Humanos , Masculino , Invasividade Neoplásica , Metástase Neoplásica , Neoplasias da Próstata/metabolismo , Interferência de RNA , RNA Interferente Pequeno/genética , Fatores de Transcrição da Família Snail , Fatores de Transcrição/biossíntese , Fatores de Transcrição/genética , Regulação para Cima
18.
Ophthalmic Res ; 55(3): 126-34, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26670885

RESUMO

PURPOSE: Conflicting data were reported with respect to the retinal phenotype of mice with dual perturbation of the CCL2 and CX3CR1 genes. We report the generation and retinal phenotype of mice with a reverse CCR2/CX3CL1 gene deficiency as a suggested model for age-related macular degeneration (AMD). METHODS: Crossing of single-deficient mice generated CCR2/CX3CL1 DKO mice. DKO mice were compared with age-matched C57BL6J mice. Evaluation included color fundus photographs, electroretinography (ERG), histology and morphometric analysis. Immunohistochemistry for CD11b in retinal cross-sections and retinal pigment epithelium (RPE)-choroid flat mounts was performed to assess microglia and macrophage recruitment. RESULTS: A minority of DKO mice showed yellowish subretinal deposits at 10 months. ERG recordings showed reduced cone sensitivity in young, but not older DKO mice. Compared to wild-type mice, DKO mice exhibited 11% reduction in the number of outer nuclear layer nuclei. Old DKO mice had an increased number of CD11b-positive cells across the retina, and on RPE-choroid flat mounts. CONCLUSIONS: In the absence of the rd8 allele, deficiency of CCR2 and CX3CL1 in mice leads to a mild form of retinal degeneration which is associated with the recruitment of macrophages, particularly to the subretinal space. This model enables to assess consequences of perturbed chemokine signaling, but it does not recapitulate cardinal AMD features.


Assuntos
Quimiocina CX3CL1/fisiologia , Receptores CCR2/fisiologia , Retina/fisiopatologia , Degeneração Retiniana/fisiopatologia , Animais , Quimiocina CX3CL1/deficiência , Quimiocina CX3CL1/genética , Cruzamentos Genéticos , Modelos Animais de Doenças , Eletrorretinografia , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia , Fenótipo , Receptores CCR2/deficiência , Receptores CCR2/genética , Retina/patologia , Degeneração Retiniana/genética , Degeneração Retiniana/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/fisiopatologia
19.
J Neurosci ; 35(45): 15050-61, 2015 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-26558776

RESUMO

Macrophages are recruited into the cochlea in response to injury caused by acoustic trauma or ototoxicity, but the nature of the interaction between macrophages and the sensory structures of the inner ear remains unclear. The present study examined the role of fractalkine signaling in regulating the injury-evoked behavior of macrophages following the selective ablation of cochlear hair cells. We used a novel transgenic mouse model in which the human diphtheria toxin receptor (huDTR) is selectively expressed under the control of Pou4f3, a hair cell-specific transcription factor. Administration of diphtheria toxin (DT) to these mice resulted in nearly complete ablation of cochlear hair cells, with no evident pathology among supporting cells, spiral ganglion neurons, or cells of the cochlear lateral wall. Hair cell death led to an increase in macrophages associated with the sensory epithelium of the cochlea. Their numbers peaked at 14 days after DT and then declined at later survival times. Increased macrophages were also observed within the spiral ganglion, but their numbers remained elevated for (at least) 56 d after DT. To investigate the role of fractalkine signaling in macrophage recruitment, we crossed huDTR mice to a mouse line that lacks expression of the fractalkine receptor (CX3CR1). Disruption of fractalkine signaling reduced macrophage recruitment into both the sensory epithelium and spiral ganglion and also resulted in diminished survival of spiral ganglion neurons after hair cell death. Our results suggest a fractalkine-mediated interaction between macrophages and the neurons of the cochlea. SIGNIFICANCE STATEMENT: It is known that damage to the inner ear leads to recruitment of inflammatory cells (macrophages), but the chemical signals that initiate this recruitment and the functions of macrophages in the damaged ear are unclear. Here we show that fractalkine signaling regulates macrophage recruitment into the cochlea and also promotes the survival of cochlear afferents after selective hair cell lesion. Because these afferent neurons carry sound information from the cochlea to the auditory brainstem, their survival is a key determinant of the success of cochlear prosthetics. Our data suggest that fractalkine signaling in the cochlea is neuroprotective, and reveal a previously uncharacterized interaction between cells of the cochlea and the innate immune system.


Assuntos
Quimiocina CX3CL1/fisiologia , Células Ciliadas Auditivas/fisiologia , Macrófagos/fisiologia , Transdução de Sinais/fisiologia , Gânglio Espiral da Cóclea/citologia , Gânglio Espiral da Cóclea/fisiologia , Animais , Sobrevivência Celular/fisiologia , Cóclea/citologia , Cóclea/fisiologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Camundongos Transgênicos
20.
Mol Med Rep ; 12(6): 7907-14, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26496926

RESUMO

Hypoxia is a common phenomenon in prostate cancer, which leads to cell proliferation and tumor growth. Fractalkine (FKN) is a membrane­bound chemokine, which is implicated in the progression of human prostate cancer and skeletal metastasis. However, the association between FKN and hypoxia­induced prostate cancer cell proliferation remains to be elucidated. The present study demonstrated that hypoxia induced the expression and secretion of FKN in the DU145 prostate cancer cell line. Furthermore, inhibiting the activity of FKN with the anti­FKN FKN­specific antibody markedly inhibited hypoxia­induced DU145 cell proliferation. Under normoxic conditions, DU145 cell proliferation markedly increased following exogenous administration of human recombinant FKN protein, and the increase was significantly alleviated by anti­FKN, indicating the importance of FKN in DU145 cell proliferation. In addition, subsequent determination of cell cycle distribution and expression levels of two core cell cycle regulators, cyclin E and cyclin­dependent kinase (CDK)2, suggested that FKN promoted the G1/S phase transition by upregulating the expression levels of cyclin E and CDK2. The results of the present study demonstrated that hypoxia led to the upregulation of the secretion and expression of FKN, which enhanced cell proliferation by promoting cell cycle progression in the prostate cancer cells. These findings provide evidence of a novel function for FKN, and suggest that FKN may serve as a potential target for treating androgen­independent prostate cancer.


Assuntos
Proliferação de Células/genética , Quimiocina CX3CL1/fisiologia , Neoplasias da Próstata/patologia , Regulação para Cima , Hipóxia Celular , Linhagem Celular Tumoral , Quimiocina CX3CL1/genética , Quimiocina CX3CL1/metabolismo , Ciclina E/metabolismo , Quinase 2 Dependente de Ciclina/metabolismo , Pontos de Checagem da Fase G1 do Ciclo Celular , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...