Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Int J Biol Macromol ; 265(Pt 2): 131018, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38518928

RESUMO

As a "silent threat," Alzheimer's disease (AD) is quickly rising to the top of the list of costly and troublesome diseases facing humanity. It is growing to be one of the most troublesome and expensive conditions, with annual health care costs higher than those of cancer and comparable to those of cardiovascular disorders. One of the main pathogenic characteristics of AD is the deficiency of the neurotransmitter acetylcholine (ACh) which plays a vital role in memory, learning, and attention. Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) play a crucial role in hydrolyzing ACh. Consequently, a frequent therapy approach for AD is the suppression of AChE and BChE to improve cholinergic neurotransmission and reduce cognitive symptoms. The accumulation of amyloid plaques (Aß) is a primary factor contributing to neurodegenerative diseases, particularly AD. Glycogen synthase kinase-3ß (GSK3-ß) is regarded as a pivotal player in the pathophysiology of AD since dysregulation of this kinase affects all major hallmarks of the disease, such as tau phosphorylation, Aß aggregation, memory, neurogenesis, and synaptic function. One of the most challenging and risky issues in modern medicinal chemistry is the urgent and ongoing need for the study and development of effective therapeutic candidates for the treatment of AD. A significant class of heterocyclic molecules that can target the complex and multifactorial pathogenesis of AD are fused thiophene derivatives. The goal of the current review is to demonstrate the advancements made in fused thiophene derivatives' anti-AD activity. It also covers their mechanisms of action and studies of the structure-activity relationships in addition to the compilation of significant synthetic routes for fused thiophene derivatives with anti-AD potential. This review is intended to stimulate new ideas in the search for more rationale designs of derivatives based on fused thiophene, hoping to be more potent in treating AD.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/patologia , Butirilcolinesterase , Acetilcolinesterase , Quinase 3 da Glicogênio Sintase/uso terapêutico , Monoaminoxidase , Acetilcolina , Peptídeos beta-Amiloides , Glicogênio Sintase Quinase 3 beta
2.
Int J Biol Macromol ; 265(Pt 1): 130962, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38503370

RESUMO

Combining a Sodium-Glucose-Cotransporter-2-inhibitor (SGLT2i) with metformin is recommended for managing hyperglycemia in patients with type 2 diabetes (T2D) who have cardio-renal complications. Our study aimed to investigate the metabolic effects of SGLT2i and metformin, both individually and synergistically. We treated leptin receptor-deficient (db/db) mice with these drugs for two weeks and conducted metabolite profiling, identifying 861 metabolites across kidney, liver, muscle, fat, and plasma. Using linear regression and mixed-effects models, we identified two SGLT2i-specific metabolites, X-12465 and 3-hydroxybutyric acid (3HBA), a ketone body, across all examined tissues. The levels of 3HBA were significantly higher under SGLT2i monotherapy compared to controls and were attenuated when combined with metformin. We observed similar modulatory effects on metabolites involved in protein catabolism (e.g., branched-chain amino acids) and gluconeogenesis. Moreover, combination therapy significantly raised pipecolate levels, which may enhance mTOR1 activity, while modulating GSK3, a common target of SGLT2i and 3HBA inhibition. The combination therapy also led to significant reductions in body weight and lactate levels, contrasted with monotherapies. Our findings advocate for the combined approach to better manage muscle loss, and the risks of DKA and lactic acidosis, presenting a more effective strategy for T2D treatment.


Assuntos
Diabetes Mellitus Tipo 2 , Metformina , Inibidores do Transportador 2 de Sódio-Glicose , Camundongos , Animais , Humanos , Metformina/farmacologia , Metformina/uso terapêutico , Ácido 3-Hidroxibutírico , Ácido Láctico/uso terapêutico , Quinase 3 da Glicogênio Sintase/uso terapêutico , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico
3.
Int J Dev Biol ; 67(3): 101-108, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37937413

RESUMO

Valproic acid (VPA), a neuroprotective agent and inhibitor of GSK3-ß, along with human Adipose-Derived Stem Cells (hADSCs) have been proposed to be potential therapeutic agents for neurodegenerative disorders. In the present study, we have assessed the effects of VPA alone or in combination with hADSCs on oligodendrocyte differentiation, remyelination, and functional recovery in a mouse model of Multiple Sclerosis (MS). These MS-model mice were randomly divided into cuprizone, sham, VPA, hADSC, and VPA/hADSC groups, with 10 mice considered a control group (healthy mice). The hanging wire test was used to measure motor behavior. To estimate the level of myelination, we performed toluidine blue staining and immunofluorescent staining for OLIG2 and MOG-positive cells. Real-time PCR was used to evaluate the expression of ß-catenin, human and mouse Mbp, Mog, and Olig2 genes. Remyelination and motor function improved in mice receiving VPA, hADSCs, and especially VPA/hADSCs compared to the Cup and Sham groups (P < 0.01). Additionally, the number of MOG and OLIG2 positive cells significantly increased in the VPA/hADSCs group compared to the Cup and Sham groups (P < 0.01). The expression of ß-catenin, myelin and the other oligodendrocyte-specific genes was significantly higher in the VPA recipient groups. Valproic acid can enhance the differentiation of stem cells into oligodendrocytes, making it a potential candidate for MS treatment.


Assuntos
Esclerose Múltipla , Remielinização , Humanos , Camundongos , Animais , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/metabolismo , Ácido Valproico/farmacologia , beta Catenina , Quinase 3 da Glicogênio Sintase/farmacologia , Quinase 3 da Glicogênio Sintase/uso terapêutico , Diferenciação Celular , Oligodendroglia/metabolismo , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
4.
Int J Biol Macromol ; 253(Pt 7): 127375, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37839597

RESUMO

The intricate molecular pathways governing cancer development and progression have spurred intensive investigations into novel therapeutic targets. Glycogen Synthase Kinase-3 (GSK3), a complex serine/threonine kinase, has emerged as a key player with intricate roles in various cellular processes, including cell proliferation, differentiation, apoptosis, and metabolism. Harnessing GSK3 inhibitors as potential candidates for cancer therapy has garnered significant interest due to their ability to modulate key signalling pathways that drive oncogenesis. The review encompasses a thorough examination of the molecular mechanisms underlying GSK3's involvement in cancer progression, shedding light on its interaction with critical pathways such as Wnt/ß-catenin, PI3K/AKT, and NF-κB. Through these interactions, GSK3 exerts influence over tumour growth, invasion, angiogenesis, and metastasis, rendering it an attractive target for therapeutic intervention. The discussion includes preclinical and clinical studies, showcasing the inhibitors efficacy across a spectrum of cancer types, including pancreatic, ovarian, lung, and other malignancies. Insights from recent studies highlight the potential synergistic effects of combining GSK3 inhibitors with conventional chemotherapeutic agents or targeted therapies, opening avenues for innovative combinatorial approaches. This review provides a comprehensive overview of the current state of research surrounding GSK3 inhibitors as promising agents for cancer treatment.


Assuntos
Quinase 3 da Glicogênio Sintase , Neoplasias , Humanos , Quinase 3 da Glicogênio Sintase/metabolismo , Quinase 3 da Glicogênio Sintase/uso terapêutico , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , NF-kappa B/metabolismo
5.
World J Gastroenterol ; 29(28): 4416-4432, 2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37576707

RESUMO

BACKGROUND: The association between diabetes mellitus (DM) and the increased risk and progression of cholangiocarcinoma (CCA) has been reported with unclear underlying mechanisms. Previous studies showed that γ-aminobutyric acid (GABA) B2 receptor (GABBR2) was upregulated in CCA cells cultured in high glucose (HG) conditions. Roles of GABA receptors in CCA progression have also been studied, but their association with DM and hyperglycemia in CCA remains unclarified. AIM: To investigate the effects of hyperglycemia on GABBR2 expression and the potential use of GABBR2 as a CCA therapeutic target. METHODS: CCA cells, KKU-055 and KKU-213A, were cultured in Dulbecco Modified Eagle's Medium supplemented with 5.6 mmol/L (normal glucose, NG) or 25 mmol/L (HG) glucose and assigned as NG and HG cells, respectively. GABBR2 expression in NG and HG cells was investigated using real-time quantitative polymerase chain reaction and western blot. Expression and localization of GABBR2 in CCA cells were determined using immunocytofluorescence. GABBR2 expression in tumor tissues from CCA patients with and without DM was studied using immunohistochemistry, and the correlations of GABBR2 with the clinicopathological characteristics of patients were analyzed using univariate analysis. Effects of baclofen, a GABA-B receptor agonist, on CCA cell proliferation and clonogenicity were tested using the MTT and clonogenic assays. Phospho-kinases arrays were used to screen the affected signaling pathways after baclofen treatment, and the candidate signaling molecules were validated using the public transcriptomic data and western blot. RESULTS: GABBR2 expression in CCA cells was induced by HG in a dose- and time-dependent manner. CCA tissues from patients with DM and hyperglycemia also showed a significantly higher GABBR2 expression compared with tumor tissues from those with euglycemia (P < 0.01). High GABBR2 expression was significantly associated with a poorer non-papillary histological subtype but with smaller sizes of CCA tumors (P < 0.05). HG cells of both tested CCA cell lines were more sensitive to baclofen treatment. Baclofen significantly suppressed the proliferation and clonogenicity of CCA cells in both NG and HG conditions (P < 0.05). Phospho-kinase arrays suggested glycogen synthase kinase 3 (GSK3), ß-catenin, and the signal transducer and activator of transcription 3 (STAT3) as candidate signaling molecules under the regulation of GABBR2, which were verified in NG and HG cells of the individual CCA cell lines. Cyclin D1 and c-Myc, the common downstream targets of GSK3/ß-catenin and STAT3 involving cell proliferation, were accordingly downregulated after baclofen treatment. CONCLUSION: GABBR2 is upregulated by HG and holds a promising role as a therapeutic target for CCA regardless of the glucose condition.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Diabetes Mellitus , Hiperglicemia , Humanos , beta Catenina/metabolismo , Quinase 3 da Glicogênio Sintase/farmacologia , Quinase 3 da Glicogênio Sintase/uso terapêutico , Baclofeno/farmacologia , Baclofeno/uso terapêutico , Colangiocarcinoma/tratamento farmacológico , Colangiocarcinoma/patologia , Proliferação de Células , Ductos Biliares Intra-Hepáticos/patologia , Neoplasias dos Ductos Biliares/patologia , Glucose/farmacologia , Glucose/uso terapêutico , Linhagem Celular Tumoral
6.
Biomed Chromatogr ; 37(8): e5649, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37052116

RESUMO

Alzheimer's disease (AD), as a chronic and frequent neurodegenerative disease in the elderly population, has caused a huge economic burden to society, family, and other aspects. (E)-N-(4-(((2-amino-5-phenylpyridin-3-yl) imino) methyl) pyridine-2-yl) cyclopropanecarboxamide (PIMPC), a new glycogen synthase kinase-3 (GSK-3) inhibitor, has been designed and synthesized as a potential anti-AD compound with antioxidant and metal chelating properties. In this study, we established an HPLC method for the determination of PIMPC, which has high accuracy, good sensitivity, and repeatability. This method determined the PIMPC content in rat plasma at different time points after intragastric administration to understand the pharmacokinetics (PK) process of PIMPC in rats. In addition, we preliminarily evaluated the effect of PIMPC on the liver and kidney in rats at pharmacodynamic doses. In conclusion, we have established a quantitative analysis method for PIMPC with excellent performance. And the PK process of PIMPC in rats, which was characterized by fast absorption, rapid distribution, and rapid elimination, conformed to the characteristics of the two-compartment model. In addition, long-term administration of PIMPC at therapeutic doses would not affect liver and kidney function. These studies have a certain reference for the development and research of PIMPC as a potential anti-AD drug.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Idoso , Ratos , Humanos , Animais , Quinase 3 da Glicogênio Sintase/uso terapêutico
7.
J Neurovirol ; 29(2): 156-166, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36790601

RESUMO

HIV-associated neurocognitive disorders (HAND) persist in the era of antiretroviral therapy (ART). Thus, ART does not completely halt or reverse the pathological processes behind HAND. Adjuvant mitigating treatments are, therefore, prudent. Lithium treatment is known to promote neuronal brain-derived neurotrophic factors (BDNF). Lithium is also an inhibitor of glycogen synthase kinase-3 beta (GSK-3-ß). We analyzed biomarkers obtained from participants in a randomized placebo-controlled trial of lithium in ART-treated individuals with moderate or severe HAND. We assayed markers at baseline and 24 weeks across several pathways hypothesized to be affected by HIV, inflammation, or degeneration. Investigated biomarkers included dopamine, BDNF, neurofilament light chain, and CD8 + lymphocyte activation (CD38 + HLADR +). Alzheimer's Disease (AD) biomarkers included soluble amyloid precursor protein alpha and beta (sAPPα/ß), Aß38, 40, 42, and ten other biomarkers validated as predictors of mild cognitive impairment and progression in previous studies. These include apolipoprotein C3, pre-albumin, α1-acid glycoprotein, α1-antitrypsin, PEDF, CC4, ICAM-1, RANTES, clusterin, and cystatin c. We recruited 61 participants (placebo = 31; lithium = 30). The age baseline mean was 40 (± 8.35) years and the median CD4 + T-cell count was 498 (IQR: 389-651) cells/µL. Biomarker concentrations between groups did not differ at baseline. However, both groups' blood dopamine levels decreased significantly after 24 weeks (adj. p < 002). No other marker was significantly different between groups, and we concluded that lithium did not confer neuroprotection following 24 weeks of treatment. However, the study was limited in duration and sample size.


Assuntos
Infecções por HIV , HIV , Humanos , Adulto , Pessoa de Meia-Idade , Lítio/uso terapêutico , Fator Neurotrófico Derivado do Encéfalo , Dopamina , Quinase 3 da Glicogênio Sintase/uso terapêutico , Infecções por HIV/complicações , Infecções por HIV/tratamento farmacológico , Infecções por HIV/psicologia , Biomarcadores
8.
Horm Mol Biol Clin Investig ; 44(2): 159-180, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36591918

RESUMO

OBJECTIVES: There is evidence that mitochondrial dysfunction mediated by hyperglycemia increases the incidence of diabetes and age-related insulin resistance. Thus, maintaining mitochondrial integrity may provide alternative therapeutic approach in diabetes treatment. This study aimed to evaluate the effect of Bambusa vulgaris leaf extract on mitochondrial biogenesis in the pancreas of diabetic rats. METHODS: 11 weeks old male rats (n=30) were purchased, and sorted into the following groups: control, diabetic control, diabetes + metformin (100 mg/kg), diabetes + Aq. B. vulgaris (100 mg/kg), diabetes + Aq. B. vulgaris (200 mg/kg), and diabetes + Aq. B. vulgaris (300 mg/kg). Diabetes was induced in the rats by a single dose of 65 mg/kg streptozotocin (STZ). The mRNA expression of genes related to mitochondria biogenesis (pgc-1α, Nrf2, GSK3ß, AMPK and SIRT2) and genes of Nrf2-Keap1-ARE signaling pathway were determined by reverse transcriptase polymerase chain reaction. Molecular docking studies including lock and key docking and prime MM-GBSA were incorporated to identify the lead chemical compounds in Bambusa vulgari. RESULTS: The results showed that B. vulgaris leaf extract promotes mitochondrial biogenesis via altering the mRNA expression of mitochondrial master regulator pgc-1α, other upstream genes, and the Nrf2-Keap1-ARE antioxidant pathway. Through molecular docking results, cryptochlorogenic acid, hesperidin, orientin, vitexin, scopolin, and neochlorogenic were found as the crucial chemicals in B. vulgaris with the most modulating effect on PGC-1α, AMPK, and GSK3. CONCLUSIONS: This study thus suggests that B. vulgaris leaf extract restores the integrity of mitochondria in diabetic rats.


Assuntos
Bambusa , Diabetes Mellitus Experimental , Ratos , Masculino , Animais , Bambusa/genética , Bambusa/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/genética , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Quinases Ativadas por AMP/farmacologia , Quinase 3 da Glicogênio Sintase/metabolismo , Quinase 3 da Glicogênio Sintase/farmacologia , Quinase 3 da Glicogênio Sintase/uso terapêutico , Simulação de Acoplamento Molecular , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/farmacologia , Fator 2 Relacionado a NF-E2/uso terapêutico , Mitocôndrias/metabolismo , DNA Mitocondrial , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , RNA Mensageiro/metabolismo
9.
Nutr Health ; 29(3): 403-413, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36377316

RESUMO

Alzheimer's disease (AD) is characterized by the presence of two types of protein deposits in the brain, amyloid plaques and neurofibrillary tangles. The first one are dense deposits of beta amyloid protein, the second one are dense deposits of the protein tau. These proteins are present in all of our brains, but in AD they act unusually, leading to neuronal degeneration. This review will provide an overview of the AD, including the role of amyloid beta and tau, and mechanisms that lead to the formation of plaques and tangles. The review will also cover the existing researches that have focused on the inhibition of amyloid beta formation, cholinesterase, tau hyperphosphorylation, the pathogenic mechanisms of apoE4, and GSK-3 as a solution that could be used to slow or prevent the disease.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/prevenção & controle , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/uso terapêutico , Quinase 3 da Glicogênio Sintase/metabolismo , Quinase 3 da Glicogênio Sintase/uso terapêutico , Proteínas tau/metabolismo , Proteínas tau/uso terapêutico , Emaranhados Neurofibrilares/metabolismo , Emaranhados Neurofibrilares/patologia
10.
Chin J Integr Med ; 29(5): 413-423, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36474082

RESUMO

OBJECTIVE: To explore the specific pharmacological molecular mechanisms of Kai Xin San (KXS) on treating Alzheimer's disease (AD) based on network pharmacology and experimental validation. METHODS: The chemical compounds of KXS and their corresponding targets were screened using the Encyclopedia of Traditional Chinese Medicine (ETCM) database. AD-related target proteins were obtained from MalaCards database and DisGeNET databases. Key compounds and targets were identified from the compound-target-disease network and protein-protein interaction (PPI) network analysis. Functional enrichment analysis predicted the potential key signaling pathways involved in the treatment of AD with KXS. The binding affinities between key ingredients and targets were further verified using molecular docking. Finally, the predicted key signaling pathway was validated experimentally. Positioning navigation and space search experiments were conducted to evaluate the cognitive improvement effect of KXS on AD rats. Western blot was used to further examine and investigate the expression of the key target proteins related to the predicted pathway. RESULTS: In total, 38 active compounds and 469 corresponding targets of KXS were screened, and 264 target proteins associated with AD were identified. The compound-target-disease and PPI networks identified key active ingredients and protein targets. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis suggested a potential effect of KXS in the treatment of AD via the amyloid beta (A ß)-glycogen synthase kinase-3 beta (GSK3 ß)-Tau pathway. Molecular docking revealed a high binding affinity between the key ingredients and targets. In vivo, KXS treatment significantly improved cognitive deficits in AD rats induced by Aß1-42, decreased the levels of Aß, p-GSK3ß, p-Tau and cyclin-dependent kinase 5, and increased the expressions of protein phosphatase 1 alpha (PP1A) and PP2A (P<0.05 or P<0.01). CONCLUSION: KXS exerted neuroprotective effects by regulating the Aß -GSK3ß-Tau signaling pathway, which provides novel insights into the therapeutic mechanism of KXS and a feasible pharmacological strategy for the treatment of AD.


Assuntos
Doença de Alzheimer , Medicamentos de Ervas Chinesas , Ratos , Animais , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides , Glicogênio Sintase Quinase 3 beta , Farmacologia em Rede , Simulação de Acoplamento Molecular , Quinase 3 da Glicogênio Sintase/uso terapêutico , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico
11.
Anticancer Res ; 43(1): 359-367, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36585169

RESUMO

BACKGROUND/AIM: Prostate cancer (PCa) is one of the most common malignancies in adult men. LQB-118 is a pterocarpanquinone with antitumor activity toward prostate cancer cells. It inhibits cell proliferation by down-regulating cyclins D1 and B1 and up-regulating p21. However, the effects of LQB-118 on PCa cell migration are still unclear. Herein, the LQB-118 effects on PCa metastatic cell migration/invasion and its mechanism of action were evaluated. MATERIALS AND METHODS: PC3 cells were treated with LQB-118 or Paclitaxel (PTX), and cell migration (wound healing and Boyden chamber assays) and invasion (matrigel assay) were determined. The LQB-118 mechanisms were evaluated by αVßIII protein expression (flow cytometry), protein phosphorylation (Western blot), and mRNA expression (qPCR). RESULTS: LQB-118 impaired PCa cell migration and invasion, down-regulated Akt phosphorylation, and also reduced GSK3ß phosphorylation, through a FAK-independent pathway. Also, it was observed that LQB-118 controlled the invasiveness behavior by reducing matrix metalloproteinase-9 (MMP-9) and up-regulating reversion-inducing cysteine rich protein with Kazal motifs (Reck) mRNA levels. Interestingly, LQB-118 increased integrin αvßIII expression, but this effect was not related to its activation, since the cell adhesion ability was reduced after LQB-118 treatment. CONCLUSION: These data highlight novel LQB-118 mechanisms in prostate cancer cells. LQB-118 acts as a negative regulator of the Akt/GSK3 signaling pathway and can modulate PCa cell proliferation, death, and migration/invasion. The results also support the use of LQB-118 for the treatment of metastatic PCa, alone or combined with another chemotherapeutic agent, due to its demonstrated pleiotropic activities.


Assuntos
Metaloproteinase 9 da Matriz , Neoplasias da Próstata , Humanos , Masculino , Linhagem Celular Tumoral/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Expressão Gênica , Quinase 3 da Glicogênio Sintase/genética , Quinase 3 da Glicogênio Sintase/farmacologia , Quinase 3 da Glicogênio Sintase/uso terapêutico , Glicogênio Sintase Quinase 3 beta/efeitos dos fármacos , Glicogênio Sintase Quinase 3 beta/metabolismo , Proteínas Ligadas por GPI/efeitos dos fármacos , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Metaloproteinase 9 da Matriz/efeitos dos fármacos , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Invasividade Neoplásica , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Proteínas Proto-Oncogênicas c-akt/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro
12.
ESC Heart Fail ; 10(1): 453-464, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36303443

RESUMO

AIMS: Inhibitors of SGLT2 (SGLT2i) have shown a positive impact in patients with chronic heart failure and reduced ejection fraction (HFrEF). Nonetheless, the direct effects of SGLT2i on cardiac cells and how their association with main drugs used for HFrEF affect the behaviour and signalling pathways of myocardial fibroblasts are still unknown. We aimed to determine the effects of dapagliflozin alone and in combination with sacubitril/valsartan (LCZ696) or spironolactone on the function of myocardial fibroblasts of patients with heart failure and reduced ejection fraction (HFrEF). METHODS AND RESULTS: Myocardial fibroblasts isolated from HFrEF patients (n = 5) were treated with dapagliflozin alone (1 nM-1 µM) or combined with LCZ696 (100 nM) or spironolactone (100 nM). The migratory rate was determined by wound-healing scratch assay. Expression of heart failure (HF) markers and signalling pathways activation were analysed with multiplexed protein array. Commercially available cardiac fibroblasts from healthy donors were used as Control (n = 4). Fibroblasts from HFrEF show higher migratory rate compared with control (P = 0.0036), and increased expression of HF markers [fold-change (Log2): COL1A1-1.3; IL-1b-1.9; IL-6-1.7; FN1-2.9 (P < 0.05)]. Dapagliflozin slowed the migration rate of HFrEF fibroblasts in a dose-dependent manner and markedly decreased the expression of IL-1ß, IL-6, MMP3, MMP9, GAL3, and FN1. SGLT2i had no effect on control fibroblasts. These effects were associated with decreased phosphorylation of AKT/GSK3 and PYK2 kinases and the signal transducer and activator of transcription (STAT). A combination of dapagliflozin + LCZ696 further decreased fibroblast migration, although it did not have a significant effect on the regulation of signalling pathways and the expression of biomarkers induced by SGLT2 inhibition alone. In contrast, the combination of dapagliflozin + spironolactone did not change the migration rate of fibroblast but significantly altered SGLT2i responses on MMP9, GAL3, and IL-1b expression, in association with increased phosphorylation of the kinases AKT/GSK3 and ERK1/2. CONCLUSIONS: SGLT2i, LCZ696, and spironolactone modulate the function of isolated myocardial fibroblasts from HFrEF patients through the activation of different signalling pathways. The combination of SGLT2i + LCZ696 shows an additive effect on migration, while spironolactone modifies the signalling pathways activated by SGLT2i and its beneficial effects of biomarkers of heart failure.


Assuntos
Insuficiência Cardíaca , Humanos , Espironolactona/farmacologia , Metaloproteinase 9 da Matriz/farmacologia , Metaloproteinase 9 da Matriz/uso terapêutico , Transportador 2 de Glucose-Sódio/farmacologia , Transportador 2 de Glucose-Sódio/uso terapêutico , Volume Sistólico , Quinase 3 da Glicogênio Sintase/farmacologia , Quinase 3 da Glicogênio Sintase/uso terapêutico , Interleucina-6 , Proteínas Proto-Oncogênicas c-akt/farmacologia , Proteínas Proto-Oncogênicas c-akt/uso terapêutico , Valsartana/uso terapêutico , Fibroblastos , Biomarcadores
13.
Ageing Res Rev ; 83: 101787, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36368649

RESUMO

The amyloid precursor protein (APP), presenilin 1 (PS1), amyloid beta (Aß), and GSK3 are the effectors, which are significantly associated with progression of Alzheimer's Disease (AD) and its symptoms. A significant protein, acetylcholinesterase (AChE) becomes dysfunctional as a result of cholinergic neuronal loss in AD pathology. However, certain associated peptides potentiate the release of primary neuropathological hallmarks, i.e., senile plaque and neurofibrillary tangles (NFTs), by modulating the alpha 7 acetylcholinesterase receptor (α7nAChR). The AChE variants, T30 and T14 have also been found to be elevated in AD patients and mimic the toxic actions of pathological events in patients. The manuscript discusses the significance of AChE inhibitors in AD therapeutics, by indicating the disastrous role of molecular alterations and elevation of AChE, accompanied with the downstream effects instigated by the peptide, supported by clinical evidence and investigations. The cyclized variant of AChE peptide, NBP14 has been identified as a novel candidate that reverses the harmful effects of T30, T14 and Aß, mainly calcium influx, cell viability and AChE release. The review aims to grab the attention of neuro-researchers towards the significance of triggering effectors in propagating AD and role of AChE in regulating them, which can potentially ace the development of reliable therapeutic candidates, similar to NBP14, to mitigate neurodegeneration.


Assuntos
Acetilcolinesterase , Doença de Alzheimer , Humanos , Acetilcolinesterase/metabolismo , Acetilcolinesterase/uso terapêutico , Peptídeos beta-Amiloides/metabolismo , Doença de Alzheimer/metabolismo , Quinase 3 da Glicogênio Sintase/uso terapêutico , Emaranhados Neurofibrilares/patologia , Placa Amiloide/patologia , Precursor de Proteína beta-Amiloide/metabolismo
14.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-982289

RESUMO

OBJECTIVE@#To explore the specific pharmacological molecular mechanisms of Kai Xin San (KXS) on treating Alzheimer's disease (AD) based on network pharmacology and experimental validation.@*METHODS@#The chemical compounds of KXS and their corresponding targets were screened using the Encyclopedia of Traditional Chinese Medicine (ETCM) database. AD-related target proteins were obtained from MalaCards database and DisGeNET databases. Key compounds and targets were identified from the compound-target-disease network and protein-protein interaction (PPI) network analysis. Functional enrichment analysis predicted the potential key signaling pathways involved in the treatment of AD with KXS. The binding affinities between key ingredients and targets were further verified using molecular docking. Finally, the predicted key signaling pathway was validated experimentally. Positioning navigation and space search experiments were conducted to evaluate the cognitive improvement effect of KXS on AD rats. Western blot was used to further examine and investigate the expression of the key target proteins related to the predicted pathway.@*RESULTS@#In total, 38 active compounds and 469 corresponding targets of KXS were screened, and 264 target proteins associated with AD were identified. The compound-target-disease and PPI networks identified key active ingredients and protein targets. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis suggested a potential effect of KXS in the treatment of AD via the amyloid beta (A β)-glycogen synthase kinase-3 beta (GSK3 β)-Tau pathway. Molecular docking revealed a high binding affinity between the key ingredients and targets. In vivo, KXS treatment significantly improved cognitive deficits in AD rats induced by Aβ1-42, decreased the levels of Aβ, p-GSK3β, p-Tau and cyclin-dependent kinase 5, and increased the expressions of protein phosphatase 1 alpha (PP1A) and PP2A (P<0.05 or P<0.01).@*CONCLUSION@#KXS exerted neuroprotective effects by regulating the Aβ -GSK3β-Tau signaling pathway, which provides novel insights into the therapeutic mechanism of KXS and a feasible pharmacological strategy for the treatment of AD.


Assuntos
Ratos , Animais , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides , Glicogênio Sintase Quinase 3 beta , Farmacologia em Rede , Simulação de Acoplamento Molecular , Quinase 3 da Glicogênio Sintase/uso terapêutico , Medicamentos de Ervas Chinesas/uso terapêutico
15.
Drug Des Devel Ther ; 16: 3929-3946, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36411860

RESUMO

Purpose: Long-term glucocorticoid- usage can lead to glucocorticoid-induced osteoporosis (GIOP). The study focused on the preventative effects of a novel active vitamin D3 analog, eldecalcitol (ED-71), against GIOP and explored the underlying molecular mechanisms. Methods: Intraperitoneal injection of methylprednisolone (MPED) or dexamethasone (DEX) induced the GIOP model within C57BL/6 mice in vivo. Simultaneously, ED-71 was orally supplemented. Bone histological alterations, microstructure parameters, novel bone formation rates, and osteogenic factor changes were evaluated by hematoxylin-eosin (HE) staining, micro-computed tomography, calcein/tetracycline labeling, and immunohistochemical (IHC) staining. The osteogenic differentiation level and mineralization in pre-osteoblast MC3T3-E1 cells were evaluated in vitro using alkaline phosphatase (ALP) staining, alizarin red (AR) staining, quantitative polymerase chain reaction (qPCR), Western blotting, and immunofluorescence staining. Results: ED-71 partially prevented bone mass reduction and microstructure parameter alterations among GIOP-induced mice. Moreover, ED-71 also promoted new bone formation and osteoblast activity while inhibiting osteoclasts. In vitro, ED-71 promoted osteogenic differentiation and mineralization in DEX-treated MC3T3-E1 cells and boosted the levels of osteogenic-related factors. Additionally, GSK3-ß and ß-catenin expression levels were elevated after ED-71 was added to cells and were accompanied by reduced Notch expression. The Wnt signaling inhibitor XAV939 and Notch overexpression reversed the ED-71 promotional effects toward osteogenic differentiation and mineralization. Conclusion: ED-71 prevented GIOP by enhancing osteogenic differentiation through Notch and Wnt/GSK-3ß/ß-catenin signaling. The results provide a novel translational direction for the clinical application of ED-71 against GIOP.


Assuntos
Osteogênese , Osteoporose , Camundongos , Animais , beta Catenina/metabolismo , Via de Sinalização Wnt , Glucocorticoides/uso terapêutico , Glicogênio Sintase Quinase 3 beta/metabolismo , Microtomografia por Raio-X , Quinase 3 da Glicogênio Sintase/metabolismo , Quinase 3 da Glicogênio Sintase/farmacologia , Quinase 3 da Glicogênio Sintase/uso terapêutico , Camundongos Endogâmicos C57BL , Osteoporose/induzido quimicamente , Osteoporose/tratamento farmacológico , Osteoporose/prevenção & controle , Osteoblastos
16.
Trop Biomed ; 39(3): 384-393, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36214435

RESUMO

Many of the therapeutic effects of plant extracts and bioactive compounds appear related to their immunomodulatory effects and impact on the host immune system. The immune response is desirable to mitigate established infections and, in the case of severe malaria, is a feasible approach to dealing with the overwhelming cytokine response. Glycogen synthase kinase-3 (GSK3), a Ser/Thr kinase that is a central regulator of the cytokine response, is a promising antimalarial drug target. In this review, we discussed our ongoing research projects, which include assessing the antimalarial activities of medicinal plants and their bioactive compounds, immunomodulatory activities mediated by GSK3, and the potential inflammatory pathway involved in malarial infection.


Assuntos
Antimaláricos , Malária , Plantas Medicinais , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Citocinas , Quinase 3 da Glicogênio Sintase/uso terapêutico , Glicogênio Sintase Quinase 3 beta , Malária/tratamento farmacológico , Extratos Vegetais/farmacologia
17.
J Exp Clin Cancer Res ; 41(1): 282, 2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-36151566

RESUMO

BACKGROUND: Adrenocortical cancer (ACC) is a rare and aggressive cancer with dismal 5-year survival due to a lack of effective treatments. We aimed to identify a new effective combination of drugs and investigated their synergistic efficacy in ACC preclinical models. METHODS: A quantitative high-throughput drug screening of 4,991 compounds was performed on two ACC cell lines, SW13 and NCI-H295R, based on antiproliferative effect and caspase-3/7 activity. The top candidate drugs were pairwise combined to identify the most potent combinations. The synergistic efficacy of the selected inhibitors was tested on tumorigenic phenotypes, such as cell proliferation, migration, invasion, spheroid formation, and clonogenicity, with appropriate mechanistic validation by cell cycle and apoptotic assays and protein expression of the involved molecules. We tested the efficacy of the drug combination in mice with luciferase-tagged human ACC xenografts. To study the mRNA expression of target molecules in ACC and their clinical correlations, we analyzed the Gene Expression Omnibus and The Cancer Genome Atlas. RESULTS: We chose the maternal embryonic leucine zipper kinase (MELK) inhibitor (OTS167) and cyclin-dependent kinase (CDK) inhibitor (RGB-286638) because of their potent synergy from the pairwise drug combination matrices derived from the top 30 single drugs. Multiple publicly available databases demonstrated overexpression of MELK, CDK1/2, and partnering cyclins mRNA in ACC, which were independently associated with mortality and other adverse clinical features. The drug combination demonstrated a synergistic antiproliferative effect on ACC cells. Compared to the single-agent treatment groups, the combination treatment increased G2/M arrest, caspase-dependent apoptosis, reduced cyclins A2, B1, B2, and E2 expression, and decreased cell migration and invasion with reduced vimentin. Moreover, the combination effectively decreased Foxhead Box M1, Axin2, glycogen synthase kinase 3-beta, and ß-catenin. A reduction in p-stathmin from the combination treatment destabilized microtubule assembly by tubulin depolymerization. The drug combination treatment in mice with human ACC xenografts resulted in a significantly lower tumor burden than those treated with single-agents and vehicle control groups. CONCLUSIONS: Our preclinical study revealed a novel synergistic combination of OTS167 and RGB-286638 in ACC that effectively targets multiple molecules associated with ACC aggressiveness. A phase Ib/II clinical trial in patients with advanced ACC is therefore warranted.


Assuntos
Neoplasias do Córtex Suprarrenal , Carcinoma Adrenocortical , Neoplasias do Córtex Suprarrenal/tratamento farmacológico , Neoplasias do Córtex Suprarrenal/genética , Neoplasias do Córtex Suprarrenal/metabolismo , Carcinoma Adrenocortical/tratamento farmacológico , Carcinoma Adrenocortical/genética , Carcinoma Adrenocortical/metabolismo , Animais , Apoptose , Caspase 3 , Linhagem Celular Tumoral , Proliferação de Células , Quinases Ciclina-Dependentes , Ciclinas , Pontos de Checagem da Fase G2 do Ciclo Celular , Quinase 3 da Glicogênio Sintase/farmacologia , Quinase 3 da Glicogênio Sintase/uso terapêutico , Humanos , Camundongos , Proteínas Serina-Treonina Quinases , Pirazóis , RNA Mensageiro , Estatmina , Tubulina (Proteína) , Ureia/análogos & derivados , Vimentina , beta Catenina
18.
Inflammopharmacology ; 30(4): 1153-1166, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35802283

RESUMO

Traumatic brain injury (TBI) is an important global health concern that represents a leading cause of death and disability. It occurs due to direct impact or hit on the head caused by factors such as motor vehicles, crushes, and assaults. During the past decade, an abundance of new evidence highlighted the importance of inflammation in the secondary damage response that contributes to neurodegenerative and neurological deficits after TBI. It results in disruption of the blood-brain barrier (BBB) and initiates the release of macrophages, neutrophils, and lymphocytes at the injury site. A growing number of researchers have discovered various signalling pathways associated with the initiation and progression of inflammation. Targeting different signalling pathways (NF-κB, JAK/STAT, MAPKs, PI3K/Akt/mTOR, GSK-3, Nrf2, RhoGTPase, TGF-ß1, and NLRP3) helps in the development of novel anti-inflammatory drugs in the management of TBI. Several synthetic and herbal drugs with both anti-inflammatory and neuroprotective potential showed effective results. This review summarizes different signalling pathways, associated pathologies, inflammatory mediators, pharmacological potential, current status, and challenges with anti-inflammatory drugs.


Assuntos
Lesões Encefálicas Traumáticas , Doenças Neuroinflamatórias , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Lesões Encefálicas Traumáticas/tratamento farmacológico , Modelos Animais de Doenças , Quinase 3 da Glicogênio Sintase/uso terapêutico , Humanos , Inflamação/complicações , Inflamação/tratamento farmacológico , Fosfatidilinositol 3-Quinases
19.
Eur J Clin Pharmacol ; 78(10): 1567-1587, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35881170

RESUMO

BACKGROUND: Alzheimer's disease (AD) is a neurodegenerative disease and the most common cause of dementia. In this umbrella systematic review (SR), we summarized the efficacy of different pharmacological interventions in improving cognitive function in patients with AD. METHODS: A systematic search was performed through the PubMed, Scopus, Embase, and Cochrane databases for SRs of studies assessing the efficacy of pharmacological interventions versus placebo in improving cognitive function in AD or mild cognitive impairment due to AD. The risk of bias (RoB) was assessed using the Risk of Bias in SRs (ROBIS) tool. RESULTS: Out of 1748 articles found through the database survey, 33 SR articles were included. These studies assessed effects of immunotherapy, cholinesterase inhibitors (ChEIs), memantine, statins, lithium, nonsteroidal anti-inflammatory drugs (NSAIDs), antidiabetic agents, Cerebrolysin, RAS-targeting antihypertensive drugs (ARBs and ACEIs), psychostimulants, glycogen synthase kinase 3 (GSK-3) inhibitors, melatonin, and herbal medications on cognitive function in AD patients. There was no notable overall RoB in 18 studies (54.5%), the RoB in 14 studies (42.4%) was high, and in one study (3.0%) it was unclear. CONCLUSIONS: The use of ChEIs, including rivastigmine, galantamine, and donepezil, as well as memantine has demonstrated a positive impact on improving cognitive outcomes of AD patients, but no considerable effects were found for immunotherapies. Melatonin, statins, antihypertensive drugs, antidiabetic agents, Cerebrolysin, psychostimulants, and some herbal drugs such as Danggui-Shaoyao-San and Ginkgo biloba seem to be effective in improving cognitive function of AD patients, but the evidence in this regard is limited.


Assuntos
Doença de Alzheimer , Inibidores de Hidroximetilglutaril-CoA Redutases , Melatonina , Doenças Neurodegenerativas , Doença de Alzheimer/tratamento farmacológico , Antagonistas de Receptores de Angiotensina/uso terapêutico , Inibidores da Enzima Conversora de Angiotensina/uso terapêutico , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios não Esteroides/uso terapêutico , Anti-Hipertensivos/uso terapêutico , Inibidores da Colinesterase/uso terapêutico , Donepezila/uso terapêutico , Galantamina/uso terapêutico , Quinase 3 da Glicogênio Sintase/uso terapêutico , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Hipoglicemiantes/uso terapêutico , Indanos/uso terapêutico , Lítio/uso terapêutico , Melatonina/uso terapêutico , Memantina/uso terapêutico , Doenças Neurodegenerativas/tratamento farmacológico , Rivastigmina , Revisões Sistemáticas como Assunto
20.
Cancer Gene Ther ; 29(11): 1707-1719, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35750753

RESUMO

Chemoresistance is a main obstacle for colorectal cancer treatment. In this study, we evaluated the effects and mechanisms of the WNT/ß-catenin signaling pathway on the chemoresistance of SW480 and SW620 colorectal cancer cells. The activity of ß-catenin was activated/inhibited by the small molecule compound GSK-3 inhibitor 6-bromo-indirubin-3'-oxime and the tankyrase inhibitor XAV939. The downstream target genes of the WNT/ß-catenin signaling pathway were screened using a cDNA microarray and bioinformatics analysis. Apoptosis induced by 5-Fu, cell cycle distribution and expression levels of WNT/ß-catenin/TCF12/caveolin-1 and multidrug resistance proteins were examed by flow cytometry and western blot after ß-catenin activation/inhibition and caveolin-1 overexpression/interference. The effect and mechanism of XAV939 on proliferation and apoptosis induced by 5-Fu in xenograft tumors of nude mice were evaluated by immunohistochemistry and TUNEL staining. 6-Bromo-indirubin-3'-oxime treatment increased ß-catenin expression by regulating GSK-3ß phosphorylation, accompanied by upregulation of TCF12, caveolin-1, P-gp, and MRP2 and downregulation of apoptosis induced by 5-Fu. Conversely, XAV939 treatment decreased ß-catenin expression by upregulating Axin, accompanied by downregulation of TCF12, Caveolin-1, P-gp, and MRP2 and upregulation of apoptosis induced by 5-Fu. The caveolin-1 gene was identified as an important downstream gene of the WNT/ß-catenin signaling pathway. Caveolin-1 overexpression upregulated ß-catenin expression, increased P-gp and MRP2 expression and decreased apoptosis induced by 5-Fu; conversely, caveolin-1 interference caused the opposite effects. In addition, in vivo experiments showed that XAV939 treatment reduced ß-catenin expression, increased apoptosis induced by 5-Fu and repressed xenograft tumor growth. Our findings suggested that inhibition of WNT/ß-catenin/TCF12/caveolin-1 provides a new promising therapeutic strategy for colorectal cancer treatment.


Assuntos
Neoplasias Colorretais , Tanquirases , Camundongos , Animais , Humanos , Tanquirases/genética , Tanquirases/metabolismo , beta Catenina/genética , beta Catenina/metabolismo , Proteína Axina/metabolismo , Proteína Axina/farmacologia , Resistencia a Medicamentos Antineoplásicos , Caveolina 1/genética , Caveolina 1/metabolismo , Caveolina 1/farmacologia , Camundongos Nus , Glicogênio Sintase Quinase 3 beta/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Quinase 3 da Glicogênio Sintase/farmacologia , Quinase 3 da Glicogênio Sintase/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células , Via de Sinalização Wnt , Fluoruracila/farmacologia , Fluoruracila/uso terapêutico , Apoptose , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Oximas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...