Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 872
Filtrar
1.
Int J Biol Sci ; 20(9): 3269-3284, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38993552

RESUMO

Background: Lenvatinib is the most common multitarget receptor tyrosine kinase inhibitor for the treatment of advanced hepatocellular carcinoma (HCC). Acquired resistance to lenvatinib is one of the major factors leading to the failure of HCC treatment, but the underlying mechanism has not been fully characterized. Methods: We established lenvatinib-resistant cell lines, cell-derived xenografts (CDXs) and patient-derived xenografts (PDXs) and obtained lenvatinib-resistant HCC tumor tissues for further study. Results: We found that ubiquitin-specific protease 14 (USP14) was significantly increased in lenvatinib-resistant HCC cells and tumors. Silencing USP14 significantly attenuated lenvatinib resistance in vitro and in vivo. Mechanistically, USP14 directly interacts with and stabilizes calcium- and integrin-binding protein 1 (CIB1) by reversing K48-linked proteolytic ubiquitination at K24, thus facilitating the P21-activated kinase 1 (PAK1)-ERK1/2 signaling axis. Moreover, in vivo adeno-associated virus 9 mediated transduction of CIB1 promoted lenvatinib resistance in PDXs, whereas CIB1 knockdown resensitized the response of PDXs to lenvatinib. Conclusions: These findings provide new insights into the role of CIB1/PAK1-ERK1/2 signaling in lenvatinib resistance in HCC. Targeting CIB1 and its pathways may be a novel pharmaceutical intervention for the treatment of lenvatinib-resistant HCC.


Assuntos
Carcinoma Hepatocelular , Resistencia a Medicamentos Antineoplásicos , Neoplasias Hepáticas , Compostos de Fenilureia , Quinolinas , Ubiquitina Tiolesterase , Quinases Ativadas por p21 , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/tratamento farmacológico , Humanos , Quinolinas/farmacologia , Quinolinas/uso terapêutico , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Ubiquitina Tiolesterase/metabolismo , Ubiquitina Tiolesterase/genética , Compostos de Fenilureia/farmacologia , Compostos de Fenilureia/uso terapêutico , Animais , Quinases Ativadas por p21/metabolismo , Quinases Ativadas por p21/genética , Camundongos , Linhagem Celular Tumoral , Sistema de Sinalização das MAP Quinases , Camundongos Nus , Ubiquitinação
2.
Cell Mol Biol Lett ; 29(1): 95, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956466

RESUMO

BACKGROUND: An increasing number of studies have demonstrated the association of circular RNAs (circRNAs) with the pathological processes of various diseases and their involvement in the onset and progression of multiple cancers. Nevertheless, the functional roles and underlying mechanisms of circRNAs in the autophagy regulation of gastric cancer (GC) have not been fully elucidated. METHODS: We used transmission electron microscopy and the mRFP-GFP-LC3 dual fluorescent autophagy indicator to investigate autophagy regulation. The cell counting kit-8 assay, colony formation assay, 5-ethynyl-2'-deoxyuridine incorporation assay, Transwell assay, and Western blot assay were conducted to confirm circPTPN22's influence on GC progression. Dual luciferase reporter assays validated the binding between circPTPN22 and miR-6788-5p, as well as miR-6788-5p and p21-activated kinase-1 (PAK1). Functional rescue experiments assessed whether circPTPN22 modulates PAK1 expression by competitively binding miR-6788-5p, affecting autophagy and other biological processes in GC cells. We investigated the impact of circPTPN22 on in vivo GC tumors using a nude mouse xenograft model. Bioinformatics tools predicted upstream regulatory transcription factors and binding proteins of circPTPN22, while chromatin immunoprecipitation and ribonucleoprotein immunoprecipitation assays confirmed the binding status. RESULTS: Upregulation of circPTPN22 in GC has been shown to inhibit autophagy and promote cell proliferation, migration, and invasion. Mechanistically, circPTPN22 directly binds to miR-6788-5p, subsequently regulating the expression of PAK1, which activates protein kinase B (Akt) and extracellular signal-regulated kinase (Erk) phosphorylation. This modulation ultimately affects autophagy levels in GC cells. Additionally, runt-related transcription factor 1 (RUNX1) negatively regulates circPTPN22 expression, while RNA-binding proteins such as FUS (fused in sarcoma) and ELAVL1 (recombinant ELAV-like protein 1) positively regulate its expression. Inhibition of the autophagy pathway can increase FUS expression, further upregulating circPTPN22 in GC cells, thereby exacerbating the progression of GC. CONCLUSION: Under the regulation of the transcription factor RUNX1 and RNA-binding proteins FUS and ELAVL1, circPTPN22 activates the phosphorylation of Akt and Erk through the miR-6788-5p/PAK1 axis, thereby modulating autophagy in GC cells. Inhibition of autophagy increases FUS, which in turn upregulates circPTPN22, forming a positive feedback loop that ultimately accelerates the progression of GC.


Assuntos
Autofagia , Movimento Celular , Proliferação de Células , Subunidade alfa 2 de Fator de Ligação ao Core , Proteína Semelhante a ELAV 1 , MicroRNAs , RNA Circular , Proteína FUS de Ligação a RNA , Neoplasias Gástricas , Quinases Ativadas por p21 , Humanos , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Neoplasias Gástricas/metabolismo , RNA Circular/genética , RNA Circular/metabolismo , Autofagia/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Quinases Ativadas por p21/metabolismo , Quinases Ativadas por p21/genética , Proliferação de Células/genética , Proteína FUS de Ligação a RNA/metabolismo , Proteína FUS de Ligação a RNA/genética , Movimento Celular/genética , Linhagem Celular Tumoral , Animais , Proteína Semelhante a ELAV 1/metabolismo , Proteína Semelhante a ELAV 1/genética , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Regulação Neoplásica da Expressão Gênica , Camundongos Nus , Camundongos , Invasividade Neoplásica , Camundongos Endogâmicos BALB C
3.
Nagoya J Med Sci ; 86(2): 216-222, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38962417

RESUMO

Psychiatric disorders are highly inheritable, and most psychiatric disorders exhibit genetic overlap. Recent studies associated the 3q29 recurrent deletion with schizophrenia (SCZ) and autism spectrum disorder (ASD). In this study, we investigated the association of genes in the 3q29 region with SCZ and ASD. TM4SF19 and PAK2 were chosen as candidate genes for this study based on evidence from previous research. We sequenced TM4SF19 and PAK2 in 437 SCZ cases, 187 ASD cases and 524 controls in the Japanese population. Through targeted sequencing, we identified 6 missense variants among the cases (ASD & SCZ), 3 missense variants among controls, and 1 variant common to both cases and controls; however, no loss-of-function variants were identified. Fisher's exact test showed a significant association of variants in TM4SF19 among cases (p=0.0160). These results suggest TM4SF19 variants affect the etiology of SCZ and ASD in the Japanese population. Further research examining 3q29 region genes and their association with SCZ and ASD is thus needed.


Assuntos
Povo Asiático , Transtorno do Espectro Autista , Predisposição Genética para Doença , Esquizofrenia , Humanos , Transtorno do Espectro Autista/genética , Esquizofrenia/genética , Feminino , Masculino , Japão , Povo Asiático/genética , Predisposição Genética para Doença/genética , Quinases Ativadas por p21/genética , Cromossomos Humanos Par 3/genética , Adulto , Mutação de Sentido Incorreto/genética , Estudos de Casos e Controles , Estudos de Associação Genética , População do Leste Asiático
4.
BMC Biol ; 22(1): 139, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38915055

RESUMO

BACKGROUND: The intermediate filament protein vimentin is widely recognized as a molecular marker of epithelial-to-mesenchymal transition. Although vimentin expression is strongly associated with cancer metastatic potential, the exact role of vimentin in cancer metastasis and the underlying mechanism of its pro-metastatic functions remain unclear. RESULTS: This study revealed that vimentin can enhance integrin ß1 surface expression and induce integrin-dependent clustering of cells, shielding them against anoikis cell death. The increased integrin ß1 surface expression in suspended cells was caused by vimentin-mediated protection of the internal integrin ß1 pool against lysosomal degradation. Additionally, cell detachment was found to induce vimentin Ser38 phosphorylation, allowing the translocation of internal integrin ß1 to the plasma membrane. Furthermore, the use of an inhibitor of p21-activated kinase PAK1, one of the kinases responsible for vimentin Ser38 phosphorylation, significantly reduced cancer metastasis in animal models. CONCLUSIONS: These findings suggest that vimentin can act as an integrin buffer, storing internalized integrin ß1 and releasing it when needed. Overall, this study provides insights regarding the strong correlation between vimentin expression and cancer metastasis and a basis for blocking metastasis using this novel therapeutic mechanism.


Assuntos
Anoikis , Integrina beta1 , Vimentina , Vimentina/metabolismo , Vimentina/genética , Integrina beta1/metabolismo , Integrina beta1/genética , Humanos , Animais , Sobrevivência Celular , Camundongos , Linhagem Celular Tumoral , Fosforilação , Quinases Ativadas por p21/metabolismo , Quinases Ativadas por p21/genética
5.
Reprod Biol Endocrinol ; 22(1): 74, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38918809

RESUMO

BACKGROUND: Erectile dysfunction (ED) is a common male sexual dysfunction, with an increasing incidence, and the current treatment is often ineffective. METHODS: Vascular endothelial growth factor (VEGFA) was used to treat bone marrow-derived mesenchymal stem cells (BM-MSCs), and their cell migration rates were determined by Transwell assays. The expression of the von Willebrand Factor (vWF)VE-cadherin, and endothelial nitric oxide synthase(eNOS) endothelial markers was determined by qRT‒PCR and Western blot analyses. The MALAT1-induced differentiation of BM-MCs to ECs via the CDC42/PAK1/paxillin pathway was explored by transfecting VEGFA-induced BM-MSC with si-MALAT1 and overexpressing CDC42 and PAK1. The binding capacity between CDC42, PAK1, and paxillin in VEGFA-treated and non-VEGFA-treated BM-MSCs was examined by protein immunoprecipitation. MiR-206 was overexpressed in VEGFA-induced BM-MSC, and the binding sites of MALAT1, miR-206, and CDC42 were identified using a luciferase assay. Sixty male Sprague‒Dawley rats were divided into six groups (n = 10/group). DMED modelling was demonstrated by APO experiments and was assessed by measuring blood glucose levels. Erectile function was assessed by measuring the intracavernosa pressure (ICP) and mean arterial pressure (MAP). Penile erectile tissue was analysed by qRT‒PCR, Western blot analysis, and immunohistochemical staining. RESULTS: MALAT1 under VEGFA treatment conditions regulates the differentiation of BM-MSCs into ECs by modulating the CDC42/PAK1/paxillin axis. In vitro experiments demonstrated that interference with CDC42 and MALAT1 expression inhibited the differentiation of BM-MSCs to ECs. CDC42 binds to PAK1, and PAK1 binds to paxillin. In addition, CDC42 in the VEGFA group had a greater ability to bind to PAK1, whereas PAK1 in the VEGFA group had a greater ability to bind to paxillin. Overexpression of miR-206 in VEGFA-induced BM-MSCs demonstrated that MALAT1 competes with the CDC42 3'-UTR for binding to miR-206, which in turn is involved in the differentiation of BM-MSCs to ECs. Compared to the DMED model group, the ICP/MAP ratio was significantly greater in the three BM-MSCs treatment groups. CONCLUSIONS: MALAT1 facilitates BM-MSC differentiation into ECs by regulating the miR-206/CDC42/PAK1/paxillin axis to improve ED. The present findings revealed the vital role of MALAT1 in the repair of BM-MSCs for erectile function and provided new mechanistic insights into the BM-MSC-mediated repair of DMED.


Assuntos
Diferenciação Celular , Disfunção Erétil , Células-Tronco Mesenquimais , MicroRNAs , Paxilina , RNA Longo não Codificante , Ratos Sprague-Dawley , Transdução de Sinais , Proteína cdc42 de Ligação ao GTP , Quinases Ativadas por p21 , Masculino , Animais , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Diferenciação Celular/genética , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteína cdc42 de Ligação ao GTP/genética , Ratos , Quinases Ativadas por p21/genética , Quinases Ativadas por p21/metabolismo , Células-Tronco Mesenquimais/metabolismo , Disfunção Erétil/terapia , Disfunção Erétil/genética , Disfunção Erétil/metabolismo , Paxilina/metabolismo , Paxilina/genética , Células Endoteliais/metabolismo , Células Cultivadas , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética
6.
Biochim Biophys Acta Mol Basis Dis ; 1870(6): 167236, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38740225

RESUMO

Pancreatic ductal adenocarcinoma (PDA) is a common malignancy with a 5-year survival <10 %. Immunosuppressive tumor microenvironment (TME) plays a critical role in the progression of PDA. In recent years, programmed death-ligand 1 (PD-L1)/programmed cell death protein-1 (PD-1) blockade has emerged as a potent anti-tumor immunotherapy, while is yet to achieve significant clinical benefits for PDA patients. P21-Activated kinase 1 (PAK1) is highly upregulated in PDA and has been reported to be involved in the regulation of anti-tumor immunity. This study aims to investigate the combined effect of PAK1 inhibition and anti-PD-1 therapy on PDA and the underlying mechanisms. We have shown that PAK1 expression positively correlated with PD-L1 in PDA patients, and that inhibition of PAK1 downregulated PD-L1 expression of PDA cells. More importantly, we have demonstrated that PAK1 competed with PD-L1 in binding to tripartite motif-containing protein 21 (TRIM21), a ubiquitin E3 ligase, resulting in less ubiquitination and degradation of PD-L1. Moreover, PAK1 inhibition promoted CD8+ T cells activation and infiltration. In a murine PDA model, the combination of PAK1 inhibition and anti-PD-1 therapy showed significant anti-tumor effects compared with the control or monotherapy. Our results indicated that the combination of PAK1 inhibition and anti-PD-1 therapy would be a more effective treatment for PDA patients.


Assuntos
Antígeno B7-H1 , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Quinases Ativadas por p21 , Quinases Ativadas por p21/metabolismo , Quinases Ativadas por p21/antagonistas & inibidores , Quinases Ativadas por p21/genética , Humanos , Animais , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/imunologia , Antígeno B7-H1/metabolismo , Antígeno B7-H1/antagonistas & inibidores , Camundongos , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/imunologia , Linhagem Celular Tumoral , Feminino , Masculino , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/metabolismo , Proteólise/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/efeitos dos fármacos , Ubiquitinação/efeitos dos fármacos , Camundongos Endogâmicos C57BL
7.
Tissue Cell ; 88: 102399, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38723330

RESUMO

OBJECTIVE: This study aimed to investigate the expression and functional role of NISCH in skin cutaneous melanoma (SKCM), exploring its association with clinical characteristics and its potential impact on human skin melanoma cell behavior. METHODS: The research assessed differential NISCH expression in SKCM tissues using the GEPIA (Gene Expression Profiling Interactive Analysis) database and validated these findings through immunohistochemical staining of 45 clinical samples. To affirm NISCH expression at the cellular level, three human skin melanoma cell lines (RPMI-7951, A375, MEL-5), and the human normal skin cell line HEMa underwent quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and Western blotting. Transwell experiments evaluated the migration and invasion capabilities of RPMI-7951 and A375 cells post-transduction with NISCH or PAK1 lentiviral activation particles. Additionally, qRT-PCR analysis of epithelial-mesenchymal transition (EMT)-related gene expression (Vimentin, E-cadherin, N-cadherin) was conducted in A375 and RPMI-7951 cells. RESULTS: SKCM tissues exhibited significantly reduced NISCH expression compared to normal tissues. Immunohistochemical analysis revealed predominant nuclear localization of NISCH in melanoma cells, with reduced expression significantly correlating with sex, advanced stage, and lymph node metastasis. Melanoma cell lines displayed lower NISCH expression levels compared to normal skin cells. Functional experiments showcased that NISCH overexpression suppressed p-PAK1/PAK1, while PAK1 upregulation notably increased melanoma cell migration, invasion, and induced EMT. Remarkably, NISCH overexpression counteracted PAK1-induced effects on EMT, migration, and invasion in melanoma cells. CONCLUSION: NISCH may significantly influence the aggressive behavior of SKCM cells via the PAK1 pathway, making it a potential therapeutic target for managing melanoma metastasis.


Assuntos
Movimento Celular , Regulação para Baixo , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Melanoma , Invasividade Neoplásica , Neoplasias Cutâneas , Quinases Ativadas por p21 , Humanos , Quinases Ativadas por p21/metabolismo , Quinases Ativadas por p21/genética , Melanoma/patologia , Melanoma/metabolismo , Melanoma/genética , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/genética , Movimento Celular/genética , Transição Epitelial-Mesenquimal/genética , Linhagem Celular Tumoral , Masculino , Feminino , Pessoa de Meia-Idade , Regulação para Baixo/genética , Melanoma Maligno Cutâneo , Idoso , Proteínas de Neoplasias/metabolismo , Proteínas de Neoplasias/genética , Relevância Clínica
8.
Proc Natl Acad Sci U S A ; 121(20): e2321919121, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38713625

RESUMO

Successful regeneration of missing tissues requires seamless integration of positional information along the body axes. Planarians, which regenerate from almost any injury, use conserved, developmentally important signaling pathways to pattern the body axes. However, the molecular mechanisms which facilitate cross talk between these signaling pathways to integrate positional information remain poorly understood. Here, we report a p21-activated kinase (smed-pak1) which functionally integrates the anterior-posterior (AP) and the medio-lateral (ML) axes. pak1 inhibits WNT/ß-catenin signaling along the AP axis and, functions synergistically with the ß-catenin-independent WNT signaling of the ML axis. Furthermore, this functional integration is dependent on warts and merlin-the components of the Hippo/Yorkie (YKI) pathway. Hippo/YKI pathway is a critical regulator of body size in flies and mice, but our data suggest the pathway regulates body axes patterning in planarians. Our study provides a signaling network integrating positional information which can mediate coordinated growth and patterning during planarian regeneration.


Assuntos
Planárias , Via de Sinalização Wnt , Quinases Ativadas por p21 , Animais , Padronização Corporal/genética , Padronização Corporal/fisiologia , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Quinases Ativadas por p21/metabolismo , Quinases Ativadas por p21/genética , Planárias/fisiologia , Planárias/genética , Planárias/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Regeneração , Transativadores/metabolismo , Transativadores/genética
9.
Sci Rep ; 14(1): 12153, 2024 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-38802496

RESUMO

Hypoxia-inducible factors (HIF) 1 and 2 regulate similar but distinct sets of target genes. Although HIFs are best known for their roles in mediating the hypoxia response accumulating evidence suggests that under certain conditions HIFs, particularly HIF2, may function also under normoxic conditions. Here we report that HIF2α functions under normoxic conditions in kidney epithelial cells to regulate formation of adherens junctions. HIF2α expression was required to induce Dock4/Rac1/Pak1-signaling mediating stability and compaction of E-cadherin at nascent adherens junctions. Impaired adherens junction formation in HIF2α- or Dock4-deficient cells led to aberrant cyst morphogenesis in 3D kidney epithelial cell cultures. Taken together, we show that HIF2α functions in normoxia to regulate epithelial morphogenesis.


Assuntos
Junções Aderentes , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Polaridade Celular , Transdução de Sinais , Proteínas rac1 de Ligação ao GTP , Junções Aderentes/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Proteínas Ativadoras de GTPase/genética , Caderinas/metabolismo , Caderinas/genética , Camundongos , Humanos , Células Epiteliais/metabolismo , Quinases Ativadas por p21/metabolismo , Quinases Ativadas por p21/genética , Linhagem Celular
10.
BMC Med Genomics ; 17(1): 148, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38807162

RESUMO

BACKGROUND: Ovarian cancer is the most common cause of gynecological cancer death. Pak4 has been proved to be tumorigenic in many types of cancers, but its role in ovarian cancer is still not clarified. METHODS: In this study, we used immunohistochemistry to investigate into Pak4 expression in different histological types of ovarian cancer. TIMER, TISCH2, GEPIA, ualcan, KM plotter, GSCA and GeneMANIA were used to identify the prognostic roles and gene regulation networks of Pak4 in ovarian cancer. Immune infiltration levels were investigated using TIMER database. RESULTS: Pak4 was highly expressed in ovarian cancers, regardless of different FIGO stages and histological grades. Single cell sequencing database proved that Pak4 was highly expressed in malignant ovarian cancer cells. Pak4 level was significantly correlated with different histological types of ovarian cancer. Pak4 expression was negatively connected with OS and PFS of ovarian cancer patients. Functions of Pak4 and its interacted genes were mainly involved in protein serine/threonine kinase activity, regulation of actin filament-based process and regulation of cytoskeleton organization. Pak4 level was negatively correlated with immune biomarkers of B cell infiltration (p = 2.39e-05), CD8 + T cell infiltration (p = 1.51e-04), neutrophil (p = 1.74e-06) and dendritic cell (p = 4.41e-08). Close correlation was found between Pak4 expression and T cell exhaustion (p < 0.05). CONCLUSIONS: Our results demonstrated the expression level, gene interaction networks and immune infiltration levels of Pak4 in ovarian cancer. And the results revealed role of Pak4 in tumorigenesis and the possibility to be a potential immunotherapeutic target.


Assuntos
Neoplasias Ovarianas , Quinases Ativadas por p21 , Humanos , Quinases Ativadas por p21/genética , Quinases Ativadas por p21/metabolismo , Feminino , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/imunologia , Regulação Neoplásica da Expressão Gênica , Prognóstico , Carcinogênese/genética , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Redes Reguladoras de Genes
11.
Commun Biol ; 7(1): 530, 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38704457

RESUMO

Cell stiffness is regulated by dynamic interaction between ras-related C3 botulinum toxin substrate 1 (Rac1) and p21 protein-activated kinase 1 (PAK1) proteins, besides other biochemical and molecular regulators. In this study, we investigated how the Placental Growth Factor (PlGF) changes endometrial mechanics by modifying the actin cytoskeleton at the maternal interface. We explored the global effects of PlGF in endometrial stromal cells (EnSCs) using the concerted approach of proteomics, atomic force microscopy (AFM), and electrical impedance spectroscopy (EIS). Proteomic analysis shows PlGF upregulated RhoGTPases activating proteins and extracellular matrix organization-associated proteins in EnSCs. Rac1 and PAK1 transcript levels, activity, and actin polymerization were significantly increased with PlGF treatment. AFM further revealed an increase in cell stiffness with PlGF treatment. The additive effect of PlGF on actin polymerization was suppressed with siRNA-mediated inhibition of Rac1, PAK1, and WAVE2. Interestingly, the increase in cell stiffness by PlGF treatment was pharmacologically reversed with pravastatin, resulting in improved trophoblast cell invasion. Taken together, aberrant PlGF levels in the endometrium can contribute to an altered pre-pregnancy maternal microenvironment and offer a unifying explanation for the pathological changes observed in conditions such as pre-eclampsia (PE).


Assuntos
Endométrio , Fator de Crescimento Placentário , Pré-Eclâmpsia , Transdução de Sinais , Proteínas rac1 de Ligação ao GTP , Feminino , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP/genética , Humanos , Pré-Eclâmpsia/metabolismo , Gravidez , Endométrio/metabolismo , Endométrio/patologia , Fator de Crescimento Placentário/metabolismo , Fator de Crescimento Placentário/genética , Células Estromais/metabolismo , Quinases Ativadas por p21/metabolismo , Quinases Ativadas por p21/genética , Microscopia de Força Atômica
12.
Cell Commun Signal ; 22(1): 287, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38797819

RESUMO

BACKGROUND: Pancreatic ductal adenocarcinoma (PDA) is one of the most lethal types of cancer, and KRAS oncogene occurs in over 90% of cases. P21-activated kinases (PAK), containing six members (PAK1 to 6), function downstream of KRAS. PAK1 and PAK4 play important roles in carcinogenesis, but their combinational effect remains unknown. In this study, we have determined the effect of dual inhibition of PAK1 and PAK4 in PDA progression using knockout (KO) cancer cell lines. METHODS: Murine wild-type (WT) and PAK1KO pancreatic cancer cell lines were isolated from PAK1+/+ and PAK1-/- KPC (LSL-KrasG12D/+; LSL-Trp53 R172H/+; Pdx-1-Cre) mice. KPC PAK4KO and KPC PAK1&4 KO cell lines were generated from KPC WT and KPC PAK1KO cell lines respectively using the CRISPR-CAS9 gene knockout technique. PAK WT and KO cell lines were used in mouse models of pancreatic tumours. Cells and tumour tissue were also used in flow cytometry and proteomic studies. A human PDA tissue microarray was stained by immunohistochemistry. RESULTS: Double knock out of PAK1 and PAK4 caused complete regression of tumour in a syngeneic mouse model. PAK4KO inhibited tumour growth by stimulating a rapid increase of cytotoxic CD8+ T cell infiltration. PAK1KO synergistically with PAK4KO increased cytotoxic CD8+ T cell infiltration and stimulated a sustained infiltration of CD8+ T cells at a later phase to overcome the immune evasion in the PAK4KO tumour. The human PDA tissue microarray study showed the important role of PAK1 and PAK4 in intra-tumoral T-cell function. CONCLUSION: Our results demonstrated that dual inhibition of PAK1 and PAK4 synergistically suppressed PDA progression by stimulating cytotoxic CD8 + T cell response.


Assuntos
Neoplasias Pancreáticas , Quinases Ativadas por p21 , Quinases Ativadas por p21/metabolismo , Quinases Ativadas por p21/genética , Quinases Ativadas por p21/antagonistas & inibidores , Animais , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/genética , Camundongos , Linhagem Celular Tumoral , Humanos , Proliferação de Células , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/imunologia , Carcinoma Ductal Pancreático/genética , Camundongos Knockout
13.
J Parkinsons Dis ; 14(3): 495-506, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38640169

RESUMO

Background: Parkinson's disease is a progressive neurodegenerative disorder mainly distinguished by sporadic etiology, although a genetic component is also well established. Variants in the LRRK2 gene are associated with both familiar and sporadic disease. We have previously shown that PAK6 and 14-3-3γ protein interact with and regulate the activity of LRRK2. Objective: The aim of this study is to quantify PAK6 and 14-3-3γ in plasma as reliable biomarkers for the diagnosis of both sporadic and LRRK2-linked Parkinson's disease. Methods: After an initial quantification of PAK6 and 14-3-3γ expression by means of Western blot in post-mortem human brains, we verified the presence of the two proteins in plasma by using quantitative ELISA tests. We analyzed samples obtained from 39 healthy subjects, 40 patients with sporadic Parkinson's disease, 50 LRRK2-G2019S non-manifesting carriers and 31 patients with LRRK2-G2019S Parkinson's disease. Results: The amount of PAK6 and 14-3-3γ is significantly different in patients with Parkinson's disease compared to healthy subjects. Moreover, the amount of PAK6 also varies with the presence of the G2019S mutation in the LRRK2 gene. Although the generalized linear models show a low association between the presence of Parkinson's disease and PAK6, the kinase could be added in a broader panel of biomarkers for the diagnosis of Parkinson's disease. Conclusions: Changes of PAK6 and 14-3-3γ amount in plasma represent a shared readout for patients affected by sporadic and LRRK2-linked Parkinson's disease. Overall, they can contribute to the establishment of an extended panel of biomarkers for the diagnosis of Parkinson's disease.


Assuntos
Proteínas 14-3-3 , Biomarcadores , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Doença de Parkinson , Quinases Ativadas por p21 , Humanos , Doença de Parkinson/sangue , Doença de Parkinson/diagnóstico , Doença de Parkinson/genética , Proteínas 14-3-3/sangue , Masculino , Quinases Ativadas por p21/sangue , Quinases Ativadas por p21/metabolismo , Quinases Ativadas por p21/genética , Feminino , Idoso , Biomarcadores/sangue , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Pessoa de Meia-Idade , Idoso de 80 Anos ou mais , Estudos Prospectivos , Adulto , Mutação
14.
Drug Discov Ther ; 18(2): 134-139, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38569833

RESUMO

Both PAK1 (RAC/CDC42-activating kinase 1) and TOR (Target of Rapamycin) are among the major oncogenic/ageing kinases. However, they play the opposite role in our immune system, namely immune system is suppressed by PAK1, while it requires TOR. Thus, PAK1-blockers, would be more effective for therapy of cancers, than TOR-blockers. Since 2015 when we discovered genetically that PDGF-induced melanogenesis depends on "PAK1", we are able to screening a series of PAK1-blockers as melanogenesis-inhibitors which could eventually promote longevity. Interestingly, rapamycin, the first TOR-inhibitor, promotes melanogenesis, clearly indicating that TOR suppresses melanogenesis. However, a new TOR-inhibitor called TORin-1 no longer suppresses immune system, and blocks melanogenesis in cell culture. These observations strongly indicate that TORin-1 acts as PAK1-blockers, instead of TOR-blockers, in vivo. Thus, it is most likely that melanogenesis in cell culture could enable us to discriminate PAK1-blockers from TORblockers.


Assuntos
Mesilato de Imatinib , Pirimidinas , Sirolimo , Serina-Treonina Quinases TOR , Quinases Ativadas por p21 , Quinases Ativadas por p21/metabolismo , Quinases Ativadas por p21/genética , Humanos , Serina-Treonina Quinases TOR/metabolismo , Pirimidinas/farmacologia , Sirolimo/farmacologia , Sirolimo/uso terapêutico , Mesilato de Imatinib/farmacologia , Mesilato de Imatinib/uso terapêutico , Animais , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Melaninas/biossíntese , Melaninas/metabolismo , Inibidores de MTOR/farmacologia , Inibidores de MTOR/uso terapêutico , Naftiridinas
15.
Biochem Pharmacol ; 224: 116206, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38615921

RESUMO

Long-chain fatty acyl-Coa ligase 4 (ACSL4) is an important enzyme that converts fatty acids to fatty acyl-Coa esters, there is increasing evidence for its role in carcinogenesis. However, the precise role of ACLS4 in hepatocellular carcinoma (HCC) is not clearly understood. In the present study, we provide evidence that ACSL4 expression was specifically elevated in HCC and is associated with poor clinical outcomes. ACSL4 significantly promotes the growth and metastasis of HCC both in vitro and in vivo. RNA sequencing and functional experiments showed that the effect of ACSL4 on HCC development was heavily dependent on PAK2. ACSL4 expression is well correlated with PAK2 in HCC, and ACSL4 even transcriptionally increased PAK2 gene expression mediated by Sp1. In addition, emodin, a naturally occurring anthraquinone derivative, inhibited HCC cell growth and tumor progression by targeting ACSL4. In summary, ACSL4 plays a novel oncogene in HCC development by regulating PAK2 transcription. Targeting ACSL4 could be useful in drug development and therapy for HCC.


Assuntos
Carcinoma Hepatocelular , Coenzima A Ligases , Progressão da Doença , Neoplasias Hepáticas , Camundongos Nus , Quinases Ativadas por p21 , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Humanos , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/genética , Quinases Ativadas por p21/metabolismo , Quinases Ativadas por p21/genética , Coenzima A Ligases/metabolismo , Coenzima A Ligases/genética , Animais , Camundongos , Masculino , Linhagem Celular Tumoral , Camundongos Endogâmicos BALB C , Transcrição Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica , Emodina/farmacologia , Feminino
16.
Elife ; 132024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38661167

RESUMO

Osteoblast adherence to bone surfaces is important for remodeling bone tissue. This study demonstrates that deficiency of TG-interacting factor 1 (Tgif1) in osteoblasts results in altered cell morphology, reduced adherence to collagen type I-coated surfaces, and impaired migration capacity. Tgif1 is essential for osteoblasts to adapt a regular cell morphology and to efficiently adhere and migrate on collagen type I-rich matrices in vitro. Furthermore, Tgif1 acts as a transcriptional repressor of p21-activated kinase 3 (Pak3), an important regulator of focal adhesion formation and osteoblast spreading. Absence of Tgif1 leads to increased Pak3 expression, which impairs osteoblast spreading. Additionally, Tgif1 is implicated in osteoblast recruitment and activation of bone surfaces in the context of bone regeneration and in response to parathyroid hormone 1-34 (PTH 1-34) treatment in vivo in mice. These findings provide important novel insights in the regulation of the cytoskeletal architecture of osteoblasts.


Assuntos
Citoesqueleto , Proteínas de Homeodomínio , Osteoblastos , Proteínas Repressoras , Transdução de Sinais , Quinases Ativadas por p21 , Animais , Camundongos , Adesão Celular , Movimento Celular , Citoesqueleto/metabolismo , Proteínas de Homeodomínio/metabolismo , Proteínas de Homeodomínio/genética , Osteoblastos/metabolismo , Quinases Ativadas por p21/metabolismo , Quinases Ativadas por p21/genética , Quinases Ativadas por p21/deficiência , Proteínas Repressoras/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/deficiência
17.
J Cell Physiol ; 239(6): e31245, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38497504

RESUMO

Parathyroid hormone (PTH) serves dual roles in bone metabolism, exhibiting both anabolic and catabolic effects. The anabolic properties of PTH have been utilized in the treatment of osteoporosis with proven efficacy in preventing fractures. Despite these benefits, PTH can be administered therapeutically for up to 2 years, and its use in patients with underlying malignancies remains a subject of ongoing debate. These considerations underscore the need for a more comprehensive understanding of the underlying mechanisms. p21-activated kinase 4 (PAK4) is involved in bone resorption and cancer-associated osteolysis; however, its role in osteoblast function and PTH action remains unknown. Therefore, in this study, we aimed to clarify the role of PAK4 in osteoblast function and its effects on PTH-induced anabolic activity. PAK4 enhanced MC3T3-E1 osteoblast viability and proliferation and upregulated cyclin D1 expression. PAK4 also augmented osteoblast differentiation, as indicated by increased mineralization found by alkaline phosphatase and Alizarin Red staining. Treatment with PTH (1-34), an active PTH fragment, stimulated PAK4 expression and phosphorylation in a protein kinase A-dependent manner. In addition, bone morphogenetic protein-2 (which is known to promote bone formation) increased phosphorylated PAK4 (p-PAK4) and PAK4 levels. PAK4 regulated the expression of both phosphorylated and total ß-catenin, which are critical for osteoblast proliferation and differentiation. Moreover, p-PAK4 directly interacted with ß-catenin, and disruption of ß-catenin's binding to T-cell factor impaired PAK4- and PTH-induced osteoblast differentiation. Our findings elucidate the effect of PAK4 on enhancing bone formation in osteoblasts and its pivotal role in the anabolic activity of PTH mediated through its interaction with ß-catenin. These insights improve the understanding of the mechanisms underlying PTH activity and should inform the development of more effective and safer osteoporosis treatments.


Assuntos
Diferenciação Celular , Proliferação de Células , Osteoblastos , Hormônio Paratireóideo , beta Catenina , Quinases Ativadas por p21 , Animais , Humanos , Camundongos , beta Catenina/metabolismo , beta Catenina/genética , Calcificação Fisiológica/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ciclina D1/metabolismo , Ciclina D1/genética , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Osteogênese/efeitos dos fármacos , Quinases Ativadas por p21/metabolismo , Quinases Ativadas por p21/genética , Hormônio Paratireóideo/farmacologia , Hormônio Paratireóideo/metabolismo , Fosforilação/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Células Cultivadas
18.
ACS Infect Dis ; 10(4): 1370-1378, 2024 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-38503263

RESUMO

Sepsis is a severe syndrome characterized by organ dysfunction, resulting from a systemic imbalance in response to infection. PAK1 plays a critical role in various diseases. The present study aimed to explore and delineate the mechanism of PAK1 in inflammation induced by sepsis. Bioinformatics analysis was performed to assess PAK1, snail, and CXCL2 expression in the whole blood of septic patients and the pathways enriched with PAK1. To simulate the sepsis model, THP-1 cells were stimulated with lipopolysaccharide. Gene expression was evaluated using qRT-PCR, while cell viability was assessed using CCK-8 assay. Cell apoptosis was tested with flow cytometry. Expression of inflammatory factors in cells following different treatments was analyzed using the enzyme linked immunosorbent assay (ELISA). Dual-luciferase and chromatin immunoprecipitation assays were conducted to verify the binding relationship between PAK1 and the snail. Mouse models of cecal ligation and puncture were established, and hematoxylin and eosin staining and ELISA were employed to detect the infiltration levels of inflammatory cells and the expression of related protective factors in lung, liver, and kidney tissues. The results demonstrated upregulation of PAK1, snail, and CXCL2 in the whole blood of septic patients, with PAK1 being enriched in the chemokine-related pathway. Knockdown of PAK1 significantly promoted the apoptosis of LPS-stimulated THP-1 cells and inhibited the expression of inflammatory factors. PAK1 upregulated the expression of the snail, which in turn promoted the expression of CXCL2. Thus, PAK1 mediated the sepsis-induced inflammatory response through the snail/CXCL2 pathway. In conclusion, PAK1 played a role in promoting inflammation induced by sepsis through the snail/CXCL2 axis, thereby providing a potential therapeutic target for the management of sepsis.


Assuntos
Sepse , Transdução de Sinais , Camundongos , Animais , Humanos , Inflamação , Apoptose , Fígado/metabolismo , Quimiocina CXCL2/genética , Quimiocina CXCL2/metabolismo , Quinases Ativadas por p21/genética , Quinases Ativadas por p21/metabolismo
19.
Int Heart J ; 65(2): 339-348, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38556341

RESUMO

Myocarditis, a severe inflammatory disease, is becoming a worldwide public health concern. This study aims to elucidate the effect of Chemokine (C C motif) receptor-like 2 (CCRL2) in experimental autoimmune myocarditis (EAM) occurrence and its potential regulatory mechanisms.EAM was simulated in a mouse model injected with α-myosin-heavy chain. The changes on EAM were assessed through histological staining of heart tissues, including measuring cardiac troponin I (cTnI), proinflammatory cytokines, transferase-mediated dUTP nick end labeling (TUNEL) assay, and cardiac function. Then, the heart tissues from the EAM mouse model and control groups were analyzed through transcriptome sequencing to identify the differential expressed genes (DEGs) and hub genes related to pyroptosis. Downregulation of CCRL2 further verified the function of CCRL2 on EAM and p21-activated kinase 1/NOD-like receptor protein 3 (PAK/NLRP3) signaling pathways in vivo.The EAM model was constructed successfully, with the heart weight/body weight ratio, serum level of cTnI, and concentrations of proinflammatory cytokines elevation. Moreover, cell apoptosis was also significantly increased. Transcriptome sequencing revealed 696 and 120 upregulated and downregulated DEGs, respectively. After functional enrichment, CCRL2 was selected as a potential target. Then, we verified that CCRL2 knockdown improved cardiac function, alleviated EAM occurrence, and reduced PAK/NLRP3 protein expression.CCRL2 may act as a novel potential treatment target in EAM by regulating the PAK1/NLRP3 pathway.


Assuntos
Doenças Autoimunes , Miocardite , Animais , Camundongos , Doenças Autoimunes/patologia , Citocinas , Modelos Animais de Doenças , Miocardite/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR , Proteínas NLR , Quinases Ativadas por p21/genética
20.
Cancer Lett ; 587: 216725, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38364963

RESUMO

Next-generation androgen receptor signaling inhibitors (ARSIs), such as enzalutamide (Enza) and darolutamide (Daro), are initially effective for the treatment of advanced prostate cancer (PCa) and castration-resistant prostate cancer (CRPC). However, patients often relapse and develop cross-resistance, which consequently makes drug resistance an inevitable cause of CRPC-related mortality. By conducting a comprehensive analysis of GEO datasets, CRISPR genome-wide screening results, ATAC-seq data, and RNA-seq data, we systemically identified PAK1 as a significant contributor to ARSI cross-resistance due to the activation of the PAK1/RELA/hnRNPA1/AR-V7 axis. Inhibition of PAK1 followed by suppression of NF-κB pathways and AR-V7 expression effectively overcomes ARSI cross-resistance. Our findings indicate that PAK1 represents a promising therapeutic target gene for the treatment of ARSI cross-resistant PCa patients in the clinic. STATEMENT OF SIGNIFICANCE: PAK1 drives ARSI cross-resistance in prostate cancer progression.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Masculino , Humanos , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/metabolismo , Receptores Androgênicos/metabolismo , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Detecção Precoce de Câncer , Recidiva Local de Neoplasia/genética , Nitrilas/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Linhagem Celular Tumoral , Quinases Ativadas por p21/genética , Quinases Ativadas por p21/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...