Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cells ; 10(8)2021 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-34440848

RESUMO

Learning and memory require structural and functional modifications of synaptic connections, and synaptic deficits are believed to underlie many brain disorders. The LIM-domain-containing protein kinases (LIMK1 and LIMK2) are key regulators of the actin cytoskeleton by affecting the actin-binding protein, cofilin. In addition, LIMK1 is implicated in the regulation of gene expression by interacting with the cAMP-response element-binding protein. Accumulating evidence indicates that LIMKs are critically involved in brain function and dysfunction. In this paper, we will review studies on the roles and underlying mechanisms of LIMKs in the regulation of long-term potentiation (LTP) and depression (LTD), the most extensively studied forms of long-lasting synaptic plasticity widely regarded as cellular mechanisms underlying learning and memory. We will also discuss the involvement of LIMKs in the regulation of the dendritic spine, the structural basis of synaptic plasticity, and memory formation. Finally, we will discuss recent progress on investigations of LIMKs in neurological and mental disorders, including Alzheimer's, Parkinson's, Williams-Beuren syndrome, schizophrenia, and autism spectrum disorders.


Assuntos
Encefalopatias/patologia , Quinases Lim/metabolismo , Plasticidade Neuronal/fisiologia , Animais , Encefalopatias/metabolismo , Humanos , Quinases Lim/deficiência , Quinases Lim/genética , Memória/fisiologia , Transdução de Sinais , Sinapses/metabolismo
2.
J Neurosci ; 39(47): 9316-9327, 2019 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-31578231

RESUMO

Regenerating axons often have to grow considerable distances to reestablish circuits, making functional recovery a lengthy process. One solution to this problem would be to co-opt the "temporal" guidance mechanisms that control the rate of axon growth during development to accelerate the rate at which nerves regenerate in adults. We have previously found that the loss of Limk1, a negative regulator of cofilin, accelerates the rate of spinal commissural axon growth. Here, we use mouse models to show that spinal motor axon outgrowth is similarly promoted by the loss of Limk1, suggesting that temporal guidance mechanisms are widely used during development. Furthermore, we find that the regulation of cofilin activity is an acute response to nerve injury in the peripheral nervous system. Within hours of a sciatic nerve injury, the level of phosphorylated cofilin dramatically increases at the lesion site, in a Limk1-dependent manner. This response may be a major constraint on the rate of peripheral nerve regeneration. Proof-of-principle experiments show that elevating cofilin activity, through the loss of Limk1, results in faster sciatic nerve growth, and improved recovery of some sensory and motor function.SIGNIFICANCE STATEMENT The studies shed light on an endogenous, shared mechanism that controls the rate at which developing and regenerating axons grow. An understanding of these mechanisms is key for developing therapies to reduce painful recovery times for nerve-injury patients, by accelerating the rate at which damaged nerves reconnect with their synaptic targets.


Assuntos
Fatores de Despolimerização de Actina/metabolismo , Axônios/fisiologia , Crescimento Celular , Quinases Lim/metabolismo , Neurônios Motores/fisiologia , Regeneração Nervosa/fisiologia , Fatores de Despolimerização de Actina/genética , Animais , Feminino , Quinases Lim/deficiência , Quinases Lim/genética , Masculino , Camundongos , Camundongos Transgênicos , Neurônios Motores/química , Neuropatia Ciática/metabolismo , Neuropatia Ciática/patologia , Transdução de Sinais/fisiologia
3.
Sci Rep ; 9(1): 3357, 2019 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-30833597

RESUMO

Inherited hearing loss is associated with gene mutations that result in sensory hair cell (HC) malfunction. HC structure is defined by the cytoskeleton, which is mainly composed of actin filaments and actin-binding partners. LIM motif-containing protein kinases (LIMKs) are the primary regulators of actin dynamics and consist of two members: LIMK1 and LIMK2. Actin arrangement is directly involved in the regulation of cytoskeletal structure and the maturation of synapses in the central nervous system, and LIMKs are involved in structural plasticity by controlling the activation of the actin depolymerization protein cofilin in the olfactory system and in the hippocampus. However, the expression pattern and the role of LIMKs in mouse cochlear development and synapse function also need to be further studied. We show here that the Limk genes are expressed in the mouse cochlea. We examined the morphology and the afferent synapse densities of HCs and measured the auditory function in Limk1 and Limk2 double knockout (DKO) mice. We found that the loss of Limk1 and Limk2 did not appear to affect the overall development of the cochlea, including the number of HCs and the structure of hair bundles. There were no significant differences in auditory thresholds between DKO mice and wild-type littermates. However, the expression of p-cofilin in the DKO mice was significantly decreased. Additionally, no significant differences were found in the number or distribution of ribbon synapses between the DKO and wild-type mice. In summary, our data suggest that the Limk genes play a different role in the development of the cochlea compared to their role in the central nervous system.


Assuntos
Cóclea/crescimento & desenvolvimento , Audição/fisiologia , Quinases Lim/genética , Fatores de Despolimerização de Actina/metabolismo , Actinas/metabolismo , Animais , Células Ciliadas Auditivas , Quinases Lim/deficiência , Quinases Lim/fisiologia , Camundongos , Camundongos Knockout , Sinapses
4.
Neuropharmacology ; 125: 284-294, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28669900

RESUMO

Central sensitization represents a key mechanism mediating chronic pain, a major clinical problem lacking effective treatment options. LIM-domain kinases (LIMKs) selectively regulate several substrates, e.g. cofilin and cAMP response element-binding protein (CREB), that profoundly affect neural activities, such as synaptogenesis and gene expression, thus critical in the consolidation of long-term synaptic potentiation and memory in the brain. In this study, we demonstrate that LIMK deficiency significantly impaired the development of multiple forms of chronic pain. Mechanistic studies focusing on spared nerve injury (SNI) model reveal a pivotal role of LIMKs in the up-regulation of spontaneous excitatory synaptic transmission and synaptogenesis after pain induction. Depending on the pain induction methods, LIMKs can be transiently activated with distinct time courses. Accordingly, pharmacological inhibition of LIMKs targeting this critical period remarkably attenuated central sensitization in the spinal cord and alleviated pain behaviors. We propose selectively targeting LIMKs during their activation phase as a potential therapeutic strategy for clinical management of chronic pain, especially for chronic pain with predictable onset and development time courses, such as chronic post-surgical pain (PSP).


Assuntos
Sensibilização do Sistema Nervoso Central/fisiologia , Dor Crônica/prevenção & controle , Quinases Lim/antagonistas & inibidores , Quinases Lim/fisiologia , Medula Espinal/enzimologia , Fatores de Despolimerização de Actina/metabolismo , Animais , Dor Crônica/enzimologia , Dor Crônica/patologia , Modelos Animais de Doenças , Adjuvante de Freund , Temperatura Alta , Hiperalgesia/enzimologia , Hiperalgesia/patologia , Hiperalgesia/prevenção & controle , Quinases Lim/deficiência , Quinases Lim/genética , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neuralgia/enzimologia , Neuralgia/patologia , Neuralgia/prevenção & controle , Distribuição Aleatória , Medula Espinal/efeitos dos fármacos , Medula Espinal/patologia , Sinapses/efeitos dos fármacos , Sinapses/enzimologia , Sinapses/patologia , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia , Técnicas de Cultura de Tecidos
5.
J Cell Biol ; 212(4): 449-63, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26880202

RESUMO

Neuroligin (NLG) 1 is important for synapse development and function, but the underlying mechanisms remain unclear. It is known that at least some aspects of NLG1 function are independent of the presynaptic neurexin, suggesting that the C-terminal domain (CTD) of NLG1 may be sufficient for synaptic regulation. In addition, NLG1 is subjected to activity-dependent proteolytic cleavage, generating a cytosolic CTD fragment, but the significance of this process remains unknown. In this study, we show that the CTD of NLG1 is sufficient to (a) enhance spine and synapse number, (b) modulate synaptic plasticity, and (c) exert these effects via its interaction with spine-associated Rap guanosine triphosphatase-activating protein and subsequent activation of LIM-domain protein kinase 1/cofilin-mediated actin reorganization. Our results provide a novel postsynaptic mechanism by which NLG1 regulates synapse development and function.


Assuntos
Citoesqueleto de Actina/enzimologia , Fatores de Despolimerização de Actina/metabolismo , Moléculas de Adesão Celular Neuronais/metabolismo , Córtex Cerebral/enzimologia , Espinhas Dendríticas/enzimologia , Hipocampo/enzimologia , Quinases Lim/metabolismo , Plasticidade Neuronal , Sinapses/enzimologia , Animais , Moléculas de Adesão Celular Neuronais/deficiência , Moléculas de Adesão Celular Neuronais/genética , Córtex Cerebral/citologia , Proteínas Ativadoras de GTPase/metabolismo , Genótipo , Células HEK293 , Hipocampo/citologia , Humanos , Técnicas In Vitro , Quinases Lim/deficiência , Quinases Lim/genética , Camundongos Knockout , Fenótipo , Fosforilação , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Interferência de RNA , Transdução de Sinais , Fatores de Tempo , Transfecção , Proteínas rap1 de Ligação ao GTP/metabolismo
6.
Gut ; 63(3): 480-93, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23585469

RESUMO

OBJECTIVE: Colorectal cancer (CRC) is a major contributor to cancer mortality and morbidity. LIM kinase 2 (LIMK2) promotes tumour cell invasion and metastasis. The objectives of this study were to determine how LIMK2 expression is associated with CRC progression and patient outcome, and to use genetically modified Drosophila and mice to determine how LIMK2 deletion affects gastrointestinal stem cell regulation and tumour development. DESIGN: LIMK2 expression and activity were measured by immunostaining tumours from CRC-prone mice, human CRC cell lines and 650 human tumours. LIMK knockdown in Drosophila or Limk2 deletion in mice allowed for assessment of their contributions to gastrointestinal stem cell homeostasis and tumour development. RESULTS: LIMK2 expression was reduced in intestinal tumours of cancer-prone mice, as well as in human CRC cell lines and tumours. Reduced LIMK2 expression and substrate phosphorylation were associated with shorter patient survival. Genetic analysis in Drosophila midgut and intestinal epithelial cells isolated from genetically modified mice revealed a conserved role for LIMK2 in constraining gastrointestinal stem cell proliferation. Limk2 deletion increased colon tumour size in a colitis-associated colorectal mouse cancer model. CONCLUSIONS: This study revealed that LIMK2 expression and activity progressively decrease with advancing stage, and supports the hypothesis that there is selective pressure for reduced LIMK2 expression in CRC to relieve negative constraints imposed upon gastrointestinal stem cells.


Assuntos
Biomarcadores Tumorais/metabolismo , Colo/enzimologia , Neoplasias Colorretais/enzimologia , Mucosa Intestinal/enzimologia , Quinases Lim/metabolismo , Células-Tronco Neoplásicas/enzimologia , Animais , Biomarcadores Tumorais/deficiência , Linhagem Celular Tumoral , Proliferação de Células , Colo/patologia , Colo/fisiopatologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Neoplasias Colorretais/fisiopatologia , Metilação de DNA , Progressão da Doença , Regulação para Baixo , Drosophila melanogaster , Regulação Neoplásica da Expressão Gênica , Humanos , Imuno-Histoquímica , Mucosa Intestinal/patologia , Mucosa Intestinal/fisiopatologia , Quinases Lim/deficiência , Camundongos , Camundongos Knockout , Células-Tronco Neoplásicas/fisiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise Serial de Tecidos
7.
Oncogene ; 33(27): 3571-82, 2014 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-23934191

RESUMO

Neurofibromatosis type 2 (NF2) is caused by mutations in the NF2 gene that encodes a tumor-suppressor protein called merlin. NF2 is characterized by formation of multiple schwannomas, meningiomas and ependymomas. Merlin loss-of-function is associated with increased activity of Rac and p21-activated kinases (PAKs) and deregulation of cytoskeletal organization. LIM domain kinases (LIMK1 and 2) are substrate for Cdc42/Rac-PAK and modulate actin dynamics by phosphorylating cofilin at serine-3. This modification inactivates the actin severing and depolymerizing activity of cofilin. LIMKs also translocate into the nucleus and regulate cell cycle progression. Significantly, LIMKs are overexpressed in several tumor types, including skin, breast, lung, liver and prostate. Here we report that mouse Schwann cells (MSCs) in which merlin function is lost as a result of Nf2 exon2 deletion (Nf2(ΔEx2)) exhibited increased levels of LIMK1, LIMK2 and active phospho-Thr508/505-LIMK1/2, as well as phospho-Ser3-cofilin, compared with wild-type normal MSCs. Similarly, levels of LIMK1 and 2 total protein and active phosphorylated forms were elevated in human vestibular schwannomas compared with normal human Schwann cells (SCs). Reintroduction of wild-type NF2 into Nf2(ΔEx2) MSC reduced LIMK1 and LIMK2 levels. We show that pharmacological inhibition of LIMK with BMS-5 decreased the viability of Nf2(ΔEx2) MSCs in a dose-dependent manner, but did not affect viability of control MSCs. Similarly, LIMK knockdown decreased viability of Nf2(ΔEx2) MSCs. The decreased viability of Nf2(ΔEx2) MSCs was not due to caspase-dependent or -independent apoptosis, but rather due to inhibition of cell cycle progression as evidenced by accumulation of cells in G2/M phase. Inhibition of LIMKs arrests cells in early mitosis by decreasing aurora A activation. Our results suggest that LIMKs are potential drug targets for NF2 and tumors associated with merlin deficiency.


Assuntos
Quinases Lim/metabolismo , Terapia de Alvo Molecular , Neurofibromatose 2/tratamento farmacológico , Neurofibromatose 2/enzimologia , Inibidores de Proteínas Quinases/farmacologia , Fatores de Despolimerização de Actina/metabolismo , Animais , Apoptose/efeitos dos fármacos , Aurora Quinase A/metabolismo , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Inativação Gênica , Humanos , Quinases Lim/antagonistas & inibidores , Quinases Lim/deficiência , Quinases Lim/genética , Pontos de Checagem da Fase M do Ciclo Celular/efeitos dos fármacos , Camundongos , Mitose/efeitos dos fármacos , Neurofibromatose 2/metabolismo , Neurofibromatose 2/patologia , Neurofibromina 2/genética , Neurofibromina 2/metabolismo , Fosfoproteínas/metabolismo , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/uso terapêutico , Células de Schwann/citologia , Células de Schwann/efeitos dos fármacos , Células de Schwann/metabolismo , Células de Schwann/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...