Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 398
Filtrar
1.
Commun Biol ; 7(1): 802, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38956302

RESUMO

G protein-coupled receptors (GPCRs) are mainly regulated by GPCR kinase (GRK) phosphorylation and subsequent ß-arrestin recruitment. The ubiquitously expressed GRKs are classified into cytosolic GRK2/3 and membrane-tethered GRK5/6 subfamilies. GRK2/3 interact with activated G protein ßγ-subunits to translocate to the membrane. Yet, this need was not linked as a factor for bias, influencing the effectiveness of ß-arrestin-biased agonist creation. Using multiple approaches such as GRK2/3 mutants unable to interact with Gßγ, membrane-tethered GRKs and G protein inhibitors in GRK2/3/5/6 knockout cells, we show that G protein activation will precede GRK2/3-mediated ß-arrestin2 recruitment to activated receptors. This was independent of the source of free Gßγ and observable for Gs-, Gi- and Gq-coupled GPCRs. Thus, ß-arrestin interaction for GRK2/3-regulated receptors is inseparably connected with G protein activation. We outline a theoretical framework of how GRK dependence on free Gßγ can determine a GPCR's potential for biased agonism. Due to this inherent cellular mechanism for GRK2/3 recruitment and receptor phosphorylation, we anticipate generation of ß-arrestin-biased ligands to be mechanistically challenging for the subgroup of GPCRs exclusively regulated by GRK2/3, but achievable for GRK5/6-regulated receptors, that do not demand liberated Gßγ. Accordingly, GRK specificity of any GPCR is foundational for developing arrestin-biased ligands.


Assuntos
Quinases de Receptores Acoplados a Proteína G , Subunidades beta da Proteína de Ligação ao GTP , Subunidades gama da Proteína de Ligação ao GTP , Humanos , Subunidades gama da Proteína de Ligação ao GTP/metabolismo , Subunidades gama da Proteína de Ligação ao GTP/genética , Células HEK293 , Subunidades beta da Proteína de Ligação ao GTP/metabolismo , Subunidades beta da Proteína de Ligação ao GTP/genética , Quinases de Receptores Acoplados a Proteína G/metabolismo , Quinases de Receptores Acoplados a Proteína G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/genética , Fosforilação , Animais , Transdução de Sinais
2.
Biochem Pharmacol ; 224: 116190, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38604257

RESUMO

Arrestins are key negative regulators of G Protein-Coupled Receptors (GPCRs) through mediation of G protein desensitisation and receptor internalisation. Arrestins can also contribute to signal transduction by scaffolding downstream signalling effectors for activation. GPCR kinase (GRK) enzymes phosphorylate the intracellular C-terminal domain, or intracellular loop regions of GPCRs to promote arrestin interaction. There are seven different GRK subtypes, which may uniquely phosphorylate the C-terminal tail in a type of 'phosphorylation barcode,' potentially differentially contributing to arrestin translocation and arrestin-dependent signalling. Such contributions may be exploited to develop arrestin-biased ligands. Here, we examine the effect of different GRK subtypes on the ability to promote translocation of arrestin-2 and arrestin-3 to the cannabinoid CB1 receptor (CB1) with a range of ligands. We find that most GRK subtypes (including visual GRK1) can enhance arrestin-2 and -3 translocation to CB1, and that GRK-dependent changes in arrestin-2 and arrestin-3 translocation were broadly shared for most agonists tested. GRK2/3 generally enhanced arrestin translocation more than the other GRK subtypes, with some small differences between ligands. We also explore the interplay between G protein activity and GRK2/3-dependent arrestin translocation, highlighting that high-efficacy G protein agonists will cause GRK2/3 dependent arrestin translocation. This study supports the hypothesis that arrestin-biased ligands for CB1 must engage GRK5/6 rather than GRK2/3, and G protein-biased ligands must have inherently low efficacy.


Assuntos
Arrestinas , Transporte Proteico , Receptor CB1 de Canabinoide , Transdução de Sinais , Humanos , Receptor CB1 de Canabinoide/metabolismo , Receptor CB1 de Canabinoide/agonistas , Transdução de Sinais/fisiologia , Células HEK293 , Arrestinas/metabolismo , Transporte Proteico/fisiologia , Proteínas de Ligação ao GTP/metabolismo , Quinases de Receptores Acoplados a Proteína G/metabolismo , Animais , beta-Arrestina 2/metabolismo , beta-Arrestina 2/genética
3.
Biochem Pharmacol ; 222: 116119, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38461904

RESUMO

The glucagon-like peptide 1 receptor (GLP-1R) is a validated clinical target for the treatment of type 2 diabetes and obesity. Unlike most G protein-coupled receptors (GPCRs), the GLP-1R undergoes an atypical mode of internalisation that does not require ß-arrestins. While differences in GLP-1R trafficking and ß-arrestin recruitment have been observed between clinically used GLP-1R agonists, the role of G protein-coupled receptor kinases (GRKs) in affecting these pathways has not been comprehensively assessed. In this study, we quantified the contribution of GRKs to agonist-mediated GLP-1R internalisation and ß-arrestin recruitment profiles using cells where endogenous ß-arrestins, or non-visual GRKs were knocked out using CRISPR/Cas9 genome editing. Our results confirm the previously established atypical ß-arrestin-independent mode of GLP-1R internalisation and revealed that GLP-1R internalisation is dependent on the expression of GRKs. Interestingly, agonist-mediated GLP-1R ß-arrestin 1 and ß-arrestin 2 recruitment were differentially affected by endogenous GRK knockout with ß-arrestin 1 recruitment more sensitive to GRK knockout than ß-arrestin 2 recruitment. Moreover, individual overexpression of GRK2, GRK3, GRK5 or GRK6 in a newly generated GRK2/3/4/5/6 HEK293 cells, rescued agonist-mediated ß-arrestin 1 recruitment and internalisation profiles to similar levels, suggesting that there is no specific GRK isoform that drives these pathways. This study advances mechanistic understanding of agonist-mediated GLP-1R internalisation and provides novel insights into how GRKs may fine-tune GLP-1R signalling.


Assuntos
Diabetes Mellitus Tipo 2 , Quinases de Receptores Acoplados a Proteína G , Humanos , Arrestinas/genética , Arrestinas/metabolismo , beta-Arrestina 1/metabolismo , beta-Arrestina 2/genética , beta-Arrestina 2/metabolismo , beta-Arrestinas/metabolismo , Quinases de Receptores Acoplados a Proteína G/genética , Quinases de Receptores Acoplados a Proteína G/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Células HEK293 , Fosforilação , Receptores Acoplados a Proteínas G/metabolismo
4.
Int J Mol Sci ; 25(6)2024 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-38542369

RESUMO

Arrestins are known to be involved not only in the desensitization and internalization of G protein-coupled receptors but also in the G protein-independent activation of mitogen-activated protein (MAP) kinases, such as extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK), to regulate cell proliferation and inflammation. Our previous study revealed that the histamine H1 receptor-mediated activation of ERK is dually regulated by Gq proteins and arrestins. In this study, we investigated the roles of Gq proteins and arrestins in the H1 receptor-mediated activation of JNK in Chinese hamster ovary (CHO) cells expressing wild-type (WT) human H1 receptors, the Gq protein-biased mutant S487TR, and the arrestin-biased mutant S487A. In these mutants, the Ser487 residue in the C-terminus region of the WT was truncated (S487TR) or mutated to alanine (S487A). Histamine significantly stimulated JNK phosphorylation in CHO cells expressing WT and S487TR but not S487A. Histamine-induced JNK phosphorylation in CHO cells expressing WT and S487TR was suppressed by inhibitors against H1 receptors (ketotifen and diphenhydramine), Gq proteins (YM-254890), and protein kinase C (PKC) (GF109203X) as well as an intracellular Ca2+ chelator (BAPTA-AM) but not by inhibitors against G protein-coupled receptor kinases (GRK2/3) (cmpd101), ß-arrestin2 (ß-arrestin2 siRNA), and clathrin (hypertonic sucrose). These results suggest that the H1 receptor-mediated phosphorylation of JNK is regulated by Gq-protein/Ca2+/PKC-dependent but GRK/arrestin/clathrin-independent pathways.


Assuntos
Arrestina , Histamina , Animais , Cricetinae , Humanos , Arrestina/metabolismo , Arrestinas/metabolismo , beta-Arrestinas/metabolismo , Células CHO , Clatrina/metabolismo , Cricetulus , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Quinases de Receptores Acoplados a Proteína G/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Histamina/farmacologia , Histamina/metabolismo , Fosforilação , Proteína Quinase C/metabolismo , Receptores Histamínicos H1/genética , Receptores Histamínicos H1/metabolismo , Transdução de Sinais
5.
Pharmacol Res Perspect ; 12(1): e1176, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38332691

RESUMO

Truncation of the C-terminal tail of the ß2 -AR, transfection of ßARKct or over-expression of a kinase-dead GRK mutant reduces isoprenaline-stimulated glucose uptake, indicating that GRK is important for this response. We explored whether phosphorylation of the ß2 -AR by GRK2 has a role in glucose uptake or if this response is related to the role of GRK2 as a scaffolding protein. CHO-GLUT4myc cells expressing wild-type and mutant ß2 -ARs were generated and receptor affinity for [3 H]-CGP12177A and density of binding sites determined together with the affinity of isoprenaline and BRL37344. Following receptor activation by ß2 -AR agonists, cAMP accumulation, GLUT4 translocation, [3 H]-2-deoxyglucose uptake, and ß2 -AR internalization were measured. Bioluminescence resonance energy transfer was used to investigate interactions between ß2 -AR and ß-arrestin2 or between ß2 -AR and GRK2. Glucose uptake after siRNA knockdown or GRK inhibitors was measured in response to ß2 -AR agonists. BRL37344 was a poor partial agonist for cAMP generation but displayed similar potency and efficacy to isoprenaline for glucose uptake and GLUT4 translocation. These responses to ß2 -AR agonists occurred in CHO-GLUT4myc cells expressing ß2 -ARs lacking GRK or GRK/PKA phosphorylation sites as well as in cells expressing the wild-type ß2 -AR. However, ß2 -ARs lacking phosphorylation sites failed to recruit ß-arrestin2 and did not internalize. GRK2 knock-down or GRK2 inhibitors decreased isoprenaline-stimulated glucose uptake in rat L6 skeletal muscle cells. Thus, GRK phosphorylation of the ß2 -AR is not associated with isoprenaline- or BRL37344-stimulated glucose uptake. However, GRKs acting as scaffold proteins are important for glucose uptake as GRK2 knock-down or GRK2 inhibition reduces isoprenaline-stimulated glucose uptake.


Assuntos
Quinases de Receptores Acoplados a Proteína G , Glucose , Ratos , Animais , Isoproterenol/farmacologia , Glucose/metabolismo , Receptores Acoplados a Proteínas G , Receptores Adrenérgicos
6.
Sci Signal ; 17(823): eadd9139, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38349966

RESUMO

Some G protein-coupled receptors (GPCRs) demonstrate biased signaling such that ligands of the same receptor exclusively or preferentially activate certain downstream signaling pathways over others. This phenomenon may result from ligand-specific receptor phosphorylation by GPCR kinases (GRKs). GPCR signaling can also exhibit location bias because GPCRs traffic to and signal from subcellular compartments in addition to the plasma membrane. Here, we investigated whether GRKs contributed to location bias in GPCR signaling. GRKs translocated to endosomes after stimulation of the chemokine receptor CXCR3 or other GPCRs in cultured cells. GRK2, GRK3, GRK5, and GRK6 showed distinct patterns of recruitment to the plasma membrane and to endosomes depending on the identity of the biased ligand used to activate CXCR3. Analysis of engineered forms of GRKs that localized to either the plasma membrane or endosomes demonstrated that biased CXCR3 ligands elicited different signaling profiles that depended on the subcellular location of the GRK. Each GRK exerted a distinct effect on the regulation of CXCR3 engagement of ß-arrestin, internalization, and activation of the downstream effector kinase ERK. Our work highlights a role for GRKs in location-biased GPCR signaling and demonstrates the complex interactions between ligands, GRKs, and cellular location that contribute to biased signaling.


Assuntos
Quinases de Receptores Acoplados a Proteína G , Transdução de Sinais , Ligantes , Transdução de Sinais/fisiologia , Quinases de Receptores Acoplados a Proteína G/genética , Quinases de Receptores Acoplados a Proteína G/metabolismo , Fosforilação , Receptores Acoplados a Proteínas G/metabolismo , beta-Arrestinas/metabolismo
7.
Pharmacol Rev ; 76(2): 267-299, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38351071

RESUMO

Type 2 diabetes (T2D) mellitus has emerged as a major global health concern that has accelerated in recent years due to poor diet and lifestyle. Afflicted individuals have high blood glucose levels that stem from the inability of the pancreas to make enough insulin to meet demand. Although medication can help to maintain normal blood glucose levels in individuals with chronic disease, many of these medicines are outdated, have severe side effects, and often become less efficacious over time, necessitating the need for insulin therapy. G protein-coupled receptors (GPCRs) regulate many physiologic processes, including blood glucose levels. In pancreatic ß cells, GPCRs regulate ß-cell growth, apoptosis, and insulin secretion, which are all critical in maintaining sufficient ß-cell mass and insulin output to ensure euglycemia. In recent years, new insights into the signaling of incretin receptors and other GPCRs have underscored the potential of these receptors as desirable targets in the treatment of diabetes. The signaling of these receptors is modulated by GPCR kinases (GRKs) that phosphorylate agonist-activated GPCRs, marking the receptor for arrestin binding and internalization. Interestingly, genome-wide association studies using diabetic patient cohorts link the GRKs and arrestins with T2D. Moreover, recent reports show that GRKs and arrestins expressed in the ß cell serve a critical role in the regulation of ß-cell function, including ß-cell growth and insulin secretion in both GPCR-dependent and -independent pathways. In this review, we describe recent insights into GPCR signaling and the importance of GRK function in modulating ß-cell physiology. SIGNIFICANCE STATEMENT: Pancreatic ß cells contain a diverse array of G protein-coupled receptors (GPCRs) that have been shown to improve ß-cell function and survival, yet only a handful have been successfully targeted in the treatment of diabetes. This review discusses recent advances in our understanding of ß-cell GPCR pharmacology and regulation by GPCR kinases while also highlighting the necessity of investigating islet-enriched GPCRs that have largely been unexplored to unveil novel treatment strategies.


Assuntos
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Insulinas , Humanos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Glicemia/metabolismo , Estudo de Associação Genômica Ampla , Células Secretoras de Insulina/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Quinases de Receptores Acoplados a Proteína G/metabolismo , Arrestinas/metabolismo , Insulinas/metabolismo , Fosforilação
8.
Biomolecules ; 13(10)2023 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-37892234

RESUMO

The D2 dopamine receptor (D2R) signals through both G proteins and ß-arrestins to regulate important physiological processes, such as movement, reward circuitry, emotion, and cognition. ß-arrestins are believed to interact with G protein-coupled receptors (GPCRs) at the phosphorylated C-terminal tail or intracellular loops. GPCR kinases (GRKs) are the primary drivers of GPCR phosphorylation, and for many receptors, receptor phosphorylation is indispensable for ß-arrestin recruitment. However, GRK-mediated receptor phosphorylation is not required for ß-arrestin recruitment to the D2R, and the role of GRKs in D2R-ß-arrestin interactions remains largely unexplored. In this study, we used GRK knockout cells engineered using CRISPR-Cas9 technology to determine the extent to which ß-arrestin recruitment to the D2R is GRK-dependent. Genetic elimination of all GRK expression decreased, but did not eliminate, agonist-stimulated ß-arrestin recruitment to the D2R or its subsequent internalization. However, these processes were rescued upon the re-introduction of various GRK isoforms in the cells with GRK2/3 also enhancing dopamine potency. Further, treatment with compound 101, a pharmacological inhibitor of GRK2/3 isoforms, decreased ß-arrestin recruitment and receptor internalization, highlighting the importance of this GRK subfamily for D2R-ß-arrestin interactions. These results were recapitulated using a phosphorylation-deficient D2R mutant, emphasizing that GRKs can enhance ß-arrestin recruitment and activation independently of receptor phosphorylation.


Assuntos
Quinases de Receptores Acoplados a Proteína G , Receptores Dopaminérgicos , Arrestinas/metabolismo , beta-Arrestinas/metabolismo , Quinases de Receptores Acoplados a Proteína G/metabolismo , Fosforilação , Isoformas de Proteínas/metabolismo , Receptores Dopaminérgicos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Humanos , Células HEK293
9.
Mol Pharmacol ; 104(4): 174-186, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37474305

RESUMO

Atypical chemokine receptor 3 (ACKR3) is an arrestin-biased receptor that regulates extracellular chemokine levels through scavenging. The scavenging process restricts the availability of the chemokine agonist CXCL12 for the G protein-coupled receptor (GPCR) CXCR4 and requires phosphorylation of the ACKR3 C-terminus by GPCR kinases (GRKs). ACKR3 is phosphorylated by GRK2 and GRK5, but the mechanisms by which these kinases regulate the receptor are unresolved. Here we determined that GRK5 phosphorylation of ACKR3 results in more efficient chemokine scavenging and ß-arrestin recruitment than phosphorylation by GRK2 in HEK293 cells. However, co-activation of CXCR4-enhanced ACKR3 phosphorylation by GRK2 through the liberation of Gßγ, an accessory protein required for efficient GRK2 activity. The results suggest that ACKR3 "senses" CXCR4 activation through a GRK2-dependent crosstalk mechanism, which enables CXCR4 to influence the efficiency of CXCL12 scavenging and ß-arrestin recruitment to ACKR3. Surprisingly, we also found that despite the requirement for phosphorylation and the fact that most ligands promote ß-arrestin recruitment, ß-arrestins are dispensable for ACKR3 internalization and scavenging, suggesting a yet-to-be-determined function for these adapter proteins. Since ACKR3 is also a receptor for CXCL11 and opioid peptides, these data suggest that such crosstalk may also be operative in cells with CXCR3 and opioid receptor co-expression. Additionally, kinase-mediated receptor cross-regulation may be relevant to other atypical and G protein-coupled receptors that share common ligands. SIGNIFICANCE STATEMENT: The atypical receptor ACKR3 indirectly regulates CXCR4-mediated cell migration by scavenging their shared agonist CXCL12. Here, we show that scavenging and ß-arrestin recruitment by ACKR3 are primarily dependent on phosphorylation by GRK5. However, we also show that CXCR4 co-activation enhances the contribution of GRK2 by liberating Gßγ. This phosphorylation crosstalk may represent a common feedback mechanism between atypical and G protein-coupled receptors with shared ligands for regulating the efficiency of scavenging or other atypical receptor functions.


Assuntos
Quimiocina CXCL12 , Receptores CXCR4 , Humanos , beta-Arrestinas/metabolismo , Quimiocina CXCL12/metabolismo , Quinases de Receptores Acoplados a Proteína G/metabolismo , Células HEK293 , Ligantes , Fosforilação , Ligação Proteica , Receptores CXCR4/metabolismo
10.
Int J Mol Sci ; 24(7)2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37047571

RESUMO

The D1 dopamine receptor (D1R) is a G protein-coupled receptor that signals through activating adenylyl cyclase and raising intracellular cAMP levels. When activated, the D1R also recruits the scaffolding protein ß-arrestin, which promotes receptor desensitization and internalization, as well as additional downstream signaling pathways. These processes are triggered through receptor phosphorylation by G protein-coupled receptor kinases (GRKs), although the precise phosphorylation sites and their role in recruiting ß-arrestin to the D1R remains incompletely described. In this study, we have used detailed mutational and in situ phosphorylation analyses to completely identify the GRK-mediated phosphorylation sites on the D1R. Our results indicate that GRKs can phosphorylate 14 serine and threonine residues within the C-terminus and the third intracellular loop (ICL3) of the receptor, and that this occurs in a hierarchical fashion, where phosphorylation of the C-terminus precedes that of the ICL3. Using ß-arrestin recruitment assays, we identified a cluster of phosphorylation sites in the proximal region of the C-terminus that drive ß-arrestin binding to the D1R. We further provide evidence that phosphorylation sites in the ICL3 are responsible for ß-arrestin activation, leading to receptor internalization. Our results suggest that distinct D1R GRK phosphorylation sites are involved in ß-arrestin binding and activation.


Assuntos
Arrestinas , Receptores Dopaminérgicos , Fosforilação , beta-Arrestinas/metabolismo , Receptores Dopaminérgicos/metabolismo , Arrestinas/metabolismo , Quinases de Receptores Acoplados a Proteína G/metabolismo , beta-Arrestina 1/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , beta-Arrestina 2/metabolismo
11.
Biochem Soc Trans ; 51(2): 715-724, 2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-37013982

RESUMO

G protein-coupled receptors (GPCRs) are key modulators of cell signaling. Multiple GPCRs are present in the heart where they regulate cardiac homeostasis including processes such as myocyte contraction, heart rate and coronary blood flow. GPCRs are pharmacological targets for several cardiovascular disorders including heart failure (HF) such as beta-adrenergic receptor (ßAR) blockers and angiotensin II receptor (AT1R) antagonists. The activity of GPCRs are finely regulated by GPCR kinases (GRKs), which phosphorylate agonist-occupied receptors and start the process of desensitization. Among the seven members of the GRK family, GRK2 and GRK5 are predominantly expressed in the heart, where they exhibit both canonical and non-canonical functions. Both kinases are known to be increased in cardiac pathologies and contribute to pathogenesis through their roles in different cellular compartments. Lowering or inhibiting their actions mediate cardioprotective effects against pathological cardiac growth and failing heart. Therefore, given their importance in cardiac dysfunction, these kinases are drawing attention as promising targets for the treatment of HF, which needs improved therapies. Over the past three decades, broad knowledge on GRK inhibition in HF has been gained by studies using genetically engineered animal models or through gene therapy with peptide inhibitors or using small molecule inhibitors. In this mini review, we summarize the work focusing on GRK2 and GRK5 but also discuss a couple of the non-abundant cardiac subtypes and their multi-functional roles in the normal and diseased heart and the potential and therapeutic targets.


Assuntos
Quinases de Receptores Acoplados a Proteína G , Insuficiência Cardíaca , Animais , Quinases de Receptores Acoplados a Proteína G/genética , Quinases de Receptores Acoplados a Proteína G/metabolismo , Quinases de Receptores Acoplados a Proteína G/uso terapêutico , Quinase 5 de Receptor Acoplado a Proteína G/genética , Quinase 5 de Receptor Acoplado a Proteína G/metabolismo , Transdução de Sinais , Receptores Acoplados a Proteínas G
12.
Adv Clin Exp Med ; 32(10): 1139-1147, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36994687

RESUMO

BACKGROUND: Despite G-protein-coupled receptor kinase-interacting protein-1 (GIT1) being recognized as a new promoter gene in some types of cancer, its effect on human pan-cancers and liver hepatocellular carcinoma (LIHC) remains unclear. OBJECTIVES: To elucidate the molecular mechanisms of GIT1 in pan-cancer and LIHC. MATERIAL AND METHODS: Various bioinformatics approaches were utilized to elucidate the oncogenic effects of GIT1 on human pan-cancers. RESULTS: The GIT1 was aberrantly expressed in pan-cancers and associated with the clinical stage. Moreover, the upregulation of GIT1 expression was indicative of poor overall survival (OS) in patients with LIHC, skin cutaneous melanoma (SKCM) and uterine corpus endometrial carcinoma (UCEC), as well as of poor disease-free survival (DFS) in patients with LIHC and UCEC. Furthermore, GIT1 levels were correlated with cancer-associated fibroblasts (CAFs) in adrenocortical carcinoma (ACC), cervical squamous cell carcinoma (CESC) and LIHC. The analysis of single-cell sequencing data revealed an association of GIT1 levels with apoptosis, cell cycle and DNA damage. In addition, multivariate Cox analysis indicated that high GIT1 levels were an independent risk factor for shorter OS in patients with LIHC. Finally, the gene set enrichment analysis revealed INFLAMMATORY_RESPONSE pathway and IL2_STAT5_SIGNALING to be the most enriched in LIHC. CONCLUSIONS: Our data demonstrate the oncogenic effects of GIT1 on various cancers. We believe that GIT1 can serve as a biomarker for LIHC.


Assuntos
Carcinoma Hepatocelular , Carcinoma de Células Escamosas , Neoplasias Hepáticas , Melanoma , Neoplasias Cutâneas , Neoplasias do Colo do Útero , Feminino , Humanos , Carcinoma Hepatocelular/genética , Quinases de Receptores Acoplados a Proteína G , Neoplasias Hepáticas/genética , Melanoma Maligno Cutâneo
13.
Sci Signal ; 16(778): eade3380, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36976866

RESUMO

G protein-coupled receptors (GPCRs) promote the expression of immediate early genes required for learning and memory. Here, we showed that ß2-adrenergic receptor (ß2AR) stimulation induced the nuclear export of phosphodiesterase 4D5 (PDE4D5), an enzyme that degrades the second messenger cAMP, to enable memory consolidation. We demonstrated that the endocytosis of ß2AR phosphorylated by GPCR kinases (GRKs) mediated arrestin3-dependent nuclear export of PDE4D5, which was critical for promoting nuclear cAMP signaling and gene expression in hippocampal neurons for memory consolidation. Inhibition of the arrestin3-PDE4D5 association prevented ß2AR-induced nuclear cAMP signaling without affecting receptor endocytosis. Direct PDE4 inhibition rescued ß2AR-induced nuclear cAMP signaling and ameliorated memory deficits in mice expressing a form of the ß2AR that could not be phosphorylated by GRKs. These data reveal how ß2AR phosphorylated by endosomal GRK promotes the nuclear export of PDE4D5, leading to nuclear cAMP signaling, changes in gene expression, and memory consolidation. This study also highlights the translocation of PDEs as a mechanism to promote cAMP signaling in specific subcellular locations downstream of GPCR activation.


Assuntos
Arrestina , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4 , Camundongos , Animais , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/genética , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Arrestina/metabolismo , Transporte Ativo do Núcleo Celular , Fosforilação , Quinases de Receptores Acoplados a Proteína G/metabolismo , Arrestinas/metabolismo , beta-Arrestina 2/metabolismo
14.
Br J Pharmacol ; 180(7): 943-957, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-33245558

RESUMO

BACKGROUND AND PURPOSE: G protein-biased µ opioid receptor agonists have the potential to induce less receptor desensitisation and tolerance than balanced opioids. Here, we investigated if the cyclic endomorphin analogue Tyr-c[D-Lys-Phe-Tyr-Gly] (Compound 1) is a G protein-biased µ agonist and characterised its ability to induce rapid receptor desensitisation in mammalian neurones. EXPERIMENTAL APPROACH: The signalling and trafficking properties of opioids were characterised using bioluminescence resonance energy transfer assays, enzyme-linked immunosorbent assay and phosphosite-specific immunoblotting in human embryonic kidney 293 cells. Desensitisation of opioid-induced currents were studied in rat locus coeruleus neurones using whole-cell patch-clamp electrophysiology. The mechanism of Compound 1-induced µ receptor desensitisation was probed using kinase inhibitors. KEY RESULTS: Compound 1 has similar intrinsic activity for G protein signalling as morphine. As predicted for a G protein-biased µ agonist, Compound 1 induced minimal agonist-induced internalisation and phosphorylation at intracellular µ receptor serine/threonine residues known to be involved in G protein-coupled receptor kinase (GRK)-mediated desensitisation. However, Compound 1 induced robust rapid µ receptor desensitisation in locus coeruleus neurons, to a greater degree than morphine. The extent of Compound 1-induced desensitisation was unaffected by activation or inhibition of protein kinase C (PKC) but was significantly reduced by inhibition of GRK. CONCLUSION AND IMPLICATIONS: Compound 1 is a novel G protein-biased µ agonist that induces substantial rapid receptor desensitisation in mammalian neurons. Surprisingly, Compound 1-induced desensitisation was demonstrated to be GRK dependent despite its G protein bias. Our findings refute the assumption that G protein-biased agonists will evade receptor desensitisation and tolerance. LINKED ARTICLES: This article is part of a themed issue on Advances in Opioid Pharmacology at the Time of the Opioid Epidemic. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v180.7/issuetoc.


Assuntos
Analgésicos Opioides , Receptores Opioides mu , Ratos , Humanos , Animais , Analgésicos Opioides/farmacologia , Receptores Opioides mu/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Morfina/farmacologia , Transdução de Sinais , Quinases de Receptores Acoplados a Proteína G/metabolismo , Mamíferos/metabolismo
15.
Cell Signal ; 102: 110558, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36509265

RESUMO

Viruses rely on host-cell machinery in order to invade host cells and carry out a successful infection. G-protein coupled receptor (GPCR)-mediated signaling pathways are master regulators of cellular physiological processing and are an attractive target for viruses to rewire cells during infection. In particular, the GPCR-associated scaffolding proteins ß-arrestins and GPCR signaling effectors G-protein receptor kinases (GRKs) have been identified as key cellular factors that mediate viral entry and orchestrate signaling pathways that reprogram cells for viral replication. Interestingly, a broad range of viruses have been identified to activate and/or require GPCR-mediated pathways for infection, including polyomaviruses, flaviviruses, influenza virus, and SARS-CoV-2, demonstrating that these viruses may have conserved mechanisms of host-cell invasion. Thus, GPCR-mediated pathways highlight an attractive target for the development of broad antiviral therapies.


Assuntos
COVID-19 , Quinases de Receptores Acoplados a Proteína G , Humanos , Quinases de Receptores Acoplados a Proteína G/metabolismo , beta-Arrestinas/metabolismo , Internalização do Vírus , SARS-CoV-2 , Receptores Acoplados a Proteínas G/metabolismo , Fosforilação
16.
Int J Mol Sci ; 23(23)2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36499478

RESUMO

The second volume of this Special Issue, entitled "G Protein-Coupled Receptor and Their Kinases in Cell Biology and Disease 2 [...].


Assuntos
Quinases de Receptores Acoplados a Proteína G , Receptores Acoplados a Proteínas G , Proteínas Serina-Treonina Quinases , Proteínas Quinases Dependentes de AMP Cíclico , Receptores Proteína Tirosina Quinases
17.
Front Immunol ; 13: 1039803, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36451830

RESUMO

G-protein coupled receptor kinases (GRKs) participate in the regulation of chemokine receptors by mediating receptor desensitization. They can be recruited to agonist-activated G-protein coupled receptors (GPCRs) and phosphorylate their intracellular parts, which eventually blocks signal propagation and often induces receptor internalization. However, there is growing evidence that GRKs can also control cellular functions beyond GPCR regulation. Immune cells commonly express two to four members of the GRK family (GRK2, GRK3, GRK5, GRK6) simultaneously, but we have very limited knowledge about their interplay in primary immune cells. In particular, we are missing comprehensive studies comparing the role of this GRK interplay for (a) multiple GPCRs within one leukocyte type, and (b) one specific GPCR between several immune cell subsets. To address this issue, we generated mouse models of single, combinatorial and complete GRK knockouts in four primary immune cell types (neutrophils, T cells, B cells and dendritic cells) and systematically addressed the functional consequences on GPCR-controlled cell migration and tissue localization. Our study shows that combinatorial depletions of GRKs have pleiotropic and cell-type specific effects in leukocytes, many of which could not be predicted. Neutrophils lacking all four GRK family members show increased chemotactic migration responses to a wide range of GPCR ligands, whereas combinatorial GRK depletions in other immune cell types lead to pro- and anti-migratory responses. Combined depletion of GRK2 and GRK6 in T cells and B cells shows distinct functional outcomes for (a) one GPCR type in different cell types, and (b) different GPCRs in one cell type. These GPCR-type and cell-type specific effects reflect in altered lymphocyte chemotaxis in vitro and localization in vivo. Lastly, we provide evidence that complete GRK deficiency impairs dendritic cell homeostasis, which unexpectedly results from defective dendritic cell differentiation and maturation in vitro and in vivo. Together, our findings demonstrate the complexity of GRK functions in immune cells, which go beyond GPCR desensitization in specific leukocyte types. Furthermore, they highlight the need for studying GRK functions in primary immune cells to address their specific roles in each leukocyte subset.


Assuntos
Quinases de Receptores Acoplados a Proteína G , Receptores Acoplados a Proteínas G , Animais , Camundongos , Quinases de Receptores Acoplados a Proteína G/genética , Ligantes , Receptores Acoplados a Proteínas G/genética , Transdução de Sinais , Leucócitos
18.
J Biol Chem ; 298(12): 102636, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36273582

RESUMO

In the vertebrate retina, phosphorylation of photoactivated visual pigments in rods and cones by G protein-coupled receptor kinases (GRKs) is essential for sustained visual function. Previous in vitro analysis demonstrated that GRK1 and GRK7 are phosphorylated by PKA, resulting in a reduced capacity to phosphorylate rhodopsin. In vivo observations revealed that GRK phosphorylation occurs in the dark and is cAMP dependent. In many vertebrates, including humans and zebrafish, GRK1 is expressed in both rods and cones while GRK7 is expressed only in cones. However, mice express only GRK1 in both rods and cones and lack GRK7. We recently generated a mutation in Grk1 that deletes the phosphorylation site, Ser21. This mutant demonstrated delayed dark adaptation in mouse rods but not in cones in vivo, suggesting GRK1 may serve a different role depending upon the photoreceptor cell type in which it is expressed. Here, zebrafish were selected to evaluate the role of cAMP-dependent GRK phosphorylation in cone photoreceptor recovery. Electroretinogram analyses of larvae treated with forskolin show that elevated intracellular cAMP significantly decreases recovery of the cone photoresponse, which is mediated by Grk7a rather than Grk1b. Using a cone-specific dominant negative PKA transgene, we show for the first time that PKA is required for Grk7a phosphorylation in vivo. Lastly, immunoblot analyses of rod grk1a-/- and cone grk1b-/- zebrafish and Nrl-/- mouse show that cone-expressed Grk1 does not undergo cAMP-dependent phosphorylation in vivo. These results provide a better understanding of the function of Grk phosphorylation relative to cone adaptation and recovery.


Assuntos
Quinases de Receptores Acoplados a Proteína G , Células Fotorreceptoras Retinianas Cones , Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Receptor Quinase 1 Acoplada a Proteína G/genética , Receptor Quinase 1 Acoplada a Proteína G/metabolismo , Quinases de Receptores Acoplados a Proteína G/genética , Quinases de Receptores Acoplados a Proteína G/metabolismo , Fosforilação , Células Fotorreceptoras Retinianas Cones/metabolismo , Rodopsina/genética , Rodopsina/metabolismo , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
19.
Int J Mol Sci ; 23(20)2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36293091

RESUMO

FFA1 and FFA4, two G protein-coupled receptors that are activated by long chain fatty acids, play crucial roles in mediating many biological functions in the body. As a result, these fatty acid receptors have gained considerable attention due to their potential to be targeted for the treatment of type-2 diabetes. However, the relative contribution of canonical G protein-mediated signalling versus the effects of agonist-induced phosphorylation and interactions with ß-arrestins have yet to be fully defined. Recently, several reports have highlighted the ability of ß-arrestins and GRKs to interact with and modulate different functions of both FFA1 and FFA4, suggesting that it is indeed important to consider these interactions when studying the roles of FFA1 and FFA4 in both normal physiology and in different disease settings. Here, we discuss what is currently known and show the importance of understanding fully how ß-arrestins and GRKs regulate the function of long chain fatty acid receptors.


Assuntos
Arrestinas , Quinases de Receptores Acoplados a Proteína G , Arrestinas/metabolismo , beta-Arrestinas , Receptores Acoplados a Proteínas G/metabolismo , Ácidos Graxos
20.
Nat Commun ; 13(1): 5638, 2022 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-36163356

RESUMO

ß-arrestins mediate regulatory processes for over 800 different G protein-coupled receptors (GPCRs) by adopting specific conformations that result from the geometry of the GPCR-ß-arrestin complex. However, whether ß-arrestin1 and 2 respond differently for binding to the same GPCR is still unknown. Employing GRK knockout cells and ß-arrestins lacking the finger-loop-region, we show that the two isoforms prefer to associate with the active parathyroid hormone 1 receptor (PTH1R) in different complex configurations ("hanging" and "core"). Furthermore, the utilisation of advanced NanoLuc/FlAsH-based biosensors reveals distinct conformational signatures of ß-arrestin1 and 2 when bound to active PTH1R (P-R*). Moreover, we assess ß-arrestin conformational changes that are induced specifically by proximal and distal C-terminal phosphorylation and in the absence of GPCR kinases (GRKs) (R*). Here, we show differences between conformational changes that are induced by P-R* or R* receptor states and further disclose the impact of site-specific GPCR phosphorylation on arrestin-coupling and function.


Assuntos
Arrestinas , Transdução de Sinais , Arrestinas/metabolismo , Quinases de Receptores Acoplados a Proteína G/metabolismo , Luciferases , Hormônio Paratireóideo/metabolismo , Fosforilação/fisiologia , Isoformas de Proteínas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/fisiologia , beta-Arrestina 1/genética , beta-Arrestina 1/metabolismo , beta-Arrestina 2/genética , beta-Arrestina 2/metabolismo , beta-Arrestinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...