Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Protein Expr Purif ; 185: 105890, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33971243

RESUMO

Human G-protein coupled receptor kinase 6 (GRK6) belongs to the GRK4 kinase subfamily of the G protein-coupled receptor kinase family which comprises of GRK1, GRK2, and GRK4. These kinases phosphorylate ligand-activated G-protein coupled receptors (GPCRs), driving heterotrimeric G protein coupling, desensitization of GPCR, and ß-arrestin recruitment. This reaction series mediates cellular signal pathways for cell survival, proliferation, migration and chemotaxis. GRK6 is a kinase target in multiple myeloma since it is highly expressed in myeloma cells compared to epithelial cells and has a significant role in mediating the chemotactic responses of T and B-lymphocytes. To support structure-based drug design, we describe three human GRK6 constructs, GRK6, GRK6His/EK, and GRK6His/TEV, designed for protein expression in Spodoptera frugiperda Sf9 insect cells. The first construct did not contain any purification tag whereas the other two constructs contained the His10 affinity tag, which increased purification yields. We report here that all three constructs of GRK6 were overexpressed in Sf9 insect cells and purified to homogeneity at levels that were suitable for co-crystallization of GRK6 with potential inhibitors. The yields of purified GRK6, GRK6His/EK, and GRK6His/TEV were 0.3 mg, 0.8 mg and 0.7 mg per liter of cell culture, respectively. In addition, we have shown that GRK6His/TEV with the His10 tag removed was highly homogeneous and monodisperse as observed by dynamic light scattering measurement and actively folded as exhibited by circular dichroism spectroscopy. The described methods will support the structure-based development of additional therapeutics against multiple myeloma.


Assuntos
Quinases de Receptores Acoplados a Proteína G/isolamento & purificação , Proteínas de Neoplasias/isolamento & purificação , Proteínas Recombinantes de Fusão/isolamento & purificação , Animais , Antineoplásicos/síntese química , Baculoviridae/genética , Baculoviridae/metabolismo , Cromatografia/métodos , Clonagem Molecular , Desenho de Fármacos , Quinases de Receptores Acoplados a Proteína G/química , Quinases de Receptores Acoplados a Proteína G/genética , Quinases de Receptores Acoplados a Proteína G/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Humanos , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/enzimologia , Mieloma Múltiplo/genética , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Conformação Proteica , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Células Sf9 , Spodoptera
2.
PLoS One ; 16(2): e0247087, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33600497

RESUMO

BACKGROUND: G protein-coupled receptor kinase 6 (GRK6) is part of the G protein-coupled receptor kinase family, whose members act as key regulators of seven-transmembrane receptor signalling. GRK6 seems to play a role in regulation of inflammatory processes, but mechanisms of transcriptional regulation of GRK6 expression in inflammatory cell lines have not been characterized. Protein kinase C (PKC) signalling is also involved in inflammatory regulation and an impact of PKC activation on GRK6 protein expression was described previously. Thus, the aim of this study was to 1) characterize the GRK6 promoter, and 2) investigate a potential influence of PKC on GRK6 expression. METHODS: Five deletion constructs of the GRK6 promoter were cloned. After transient transfection into a human T cell line, promoter activity was assessed using luciferase reporter gene assays. Putative transcription factor binding sites were identified, mutated, and binding was investigated using electrophoretic mobility shift assays (EMSA). Following stimulation with a PKC activator, GRK6 expression on mRNA and protein levels was assessed by reverse transcriptase qPCR and Western blots. RESULTS: Investigation of the GRK6 promoter revealed a putative cAMP responsive element (CRE), whose mutation led to decreased promoter activity (p = 0.0006). Functionality of the CRE binding protein (CREB) binding site was verified in EMSA blots. Stimulation with a PKC activator resulted in decreased GRK6 promoter activity (p = 0.0027), mRNA (p = 0.04) and protein expression. CONCLUSION: We characterized the human GRK6 promoter and identified promoter activity to be influenced by a CREB binding site. PKC might be one determinant contributing to altered GRK6 expression.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Quinases de Receptores Acoplados a Proteína G/genética , Elementos de Resposta/genética , Sequência de Bases , Sítios de Ligação , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/química , Ensaio de Desvio de Mobilidade Eletroforética , Quinases de Receptores Acoplados a Proteína G/química , Quinases de Receptores Acoplados a Proteína G/metabolismo , Humanos , Células Jurkat , Mutagênese Sítio-Dirigida , Regiões Promotoras Genéticas , Ligação Proteica , Proteína Quinase C/metabolismo , RNA Mensageiro/metabolismo
3.
Int J Mol Sci ; 22(3)2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-33499384

RESUMO

Na+/H+ exchange factor-1 (NHERF1), a multidomain PDZ scaffolding phosphoprotein, is required for the type II sodium-dependent phosphate cotransporter (NPT2A)-mediated renal phosphate absorption. Both PDZ1 and PDZ2 domains are involved in NPT2A-dependent phosphate uptake. Though harboring identical core-binding motifs, PDZ1 and PDZ2 play entirely different roles in hormone-regulated phosphate transport. PDZ1 is required for the interaction with the C-terminal PDZ-binding sequence of NPT2A (-TRL). Remarkably, phosphocycling at Ser290 distant from PDZ1, the penultimate step for both parathyroid hormone (PTH) and fibroblast growth factor-23 (FGF23) regulation, controls the association between NHERF1 and NPT2A. PDZ2 interacts with the C-terminal PDZ-recognition motif (-TRL) of G Protein-coupled Receptor Kinase 6A (GRK6A), and that promotes phosphorylation of Ser290. The compelling biological puzzle is how PDZ1 and PDZ2 with identical GYGF core-binding motifs specifically recognize distinct binding partners. Binding determinants distinct from the canonical PDZ-ligand interactions and located "outside the box" explain PDZ domain specificity. Phosphorylation of NHERF1 by diverse kinases and associated conformational changes in NHERF1 add more complexity to PDZ-binding diversity.


Assuntos
Hormônios/química , Fosfoproteínas/química , Trocadores de Sódio-Hidrogênio/química , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIa/química , Motivos de Aminoácidos , Fator de Crescimento de Fibroblastos 23 , Quinases de Receptores Acoplados a Proteína G/química , Humanos , Transporte de Íons , Ligantes , Mutação , Hormônio Paratireóideo/química , Fosfatos/química , Fosforilação , Ligação Proteica , Conformação Proteica , Domínios Proteicos , Serina/química
4.
PLoS One ; 15(4): e0232019, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32343709

RESUMO

Parkinson's disease (PD) is a common neurodegenerative disorder which is mostly sporadic but familial-linked PD (FPD) cases have also been found. The first reported gene mutation that linked to PD is α-synuclein (α-syn). Studies have shown that mutations, increased expression or abnormal processing of α-syn can contribute to PD, but it is believed that multiple mechanisms are involved. One of the contributing factors is post-translational modification (PTM), such as phosphorylation of α-syn at serine 129 by G-protein-coupled receptor kinases (GRKs) and casein kinase 2α (CK2α). Another known important contributing factor to PD pathogenesis is oxidative and nitrosative stress. In this study, we found that GRK6 and CK2α can be S-nitrosylated by nitric oxide (NO) both in vitro and in vivo. S-nitrosylation of GRK6 and CK2α enhanced their kinase activity towards the phosphorylation of α-syn at S129. In an A53T α-syn transgenic mouse model of PD, we found that increased GRK6 and CK2α S-nitrosylation were observed in an age dependent manner and it was associated with an increased level of pSer129 α-syn. Treatment of A53T α-syn transgenic mice with Nω-Nitro-L-arginine (L-NNA) significantly reduced the S-nitrosylation of GRK6 and CK2α in the brain. Finally, deletion of neuronal nitric oxide synthase (nNOS) in A53T α-syn transgenic mice reduced the levels of pSer129 α-syn and α-syn in an age dependent manner. Our results provide a novel mechanism of how NO through S-nitrosylation of GRK6 and CK2α can enhance the phosphorylation of pSer129 α-syn in an animal model of PD.


Assuntos
Caseína Quinase II/metabolismo , Quinases de Receptores Acoplados a Proteína G/metabolismo , Óxido Nítrico/metabolismo , Doença de Parkinson/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Fatores Etários , Animais , Caseína Quinase II/química , Modelos Animais de Doenças , Quinases de Receptores Acoplados a Proteína G/química , Deleção de Genes , Células HEK293 , Humanos , Camundongos , Camundongos Transgênicos , Mutação , Óxido Nítrico Sintase Tipo I/genética , Nitroarginina/administração & dosagem , Nitroarginina/farmacologia , Estresse Nitrosativo , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/genética , Fosforilação , Serina/metabolismo , alfa-Sinucleína/química
5.
Cells ; 10(1)2020 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-33396400

RESUMO

Many receptors for neurotransmitters, such as dopamine, norepinephrine, acetylcholine, and neuropeptides, belong to the superfamily of G protein-coupled receptors (GPCRs). A general model posits that GPCRs undergo two-step homologous desensitization: the active receptor is phosphorylated by kinases of the G protein-coupled receptor kinase (GRK) family, whereupon arrestin proteins specifically bind active phosphorylated receptors, shutting down G protein-mediated signaling, facilitating receptor internalization, and initiating distinct signaling pathways via arrestin-based scaffolding. Here, we review the mechanisms of GRK-dependent regulation of neurotransmitter receptors, focusing on the diverse modes of GRK-mediated phosphorylation of receptor subtypes. The immediate signaling consequences of GRK-mediated receptor phosphorylation, such as arrestin recruitment, desensitization, and internalization/resensitization, are equally diverse, depending not only on the receptor subtype but also on phosphorylation by GRKs of select receptor residues. We discuss the signaling outcome as well as the biological and behavioral consequences of the GRK-dependent phosphorylation of neurotransmitter receptors where known.


Assuntos
Arrestinas/metabolismo , Quinases de Receptores Acoplados a Proteína G/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Neurotransmissores/metabolismo , Animais , Quinases de Receptores Acoplados a Proteína G/antagonistas & inibidores , Quinases de Receptores Acoplados a Proteína G/química , Humanos , Fosforilação , Transdução de Sinais/genética
6.
FEBS Open Bio ; 9(4): 605-617, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30984536

RESUMO

We previously reported that the expression of G protein-coupled receptor kinase 6 (GRK6) is significantly downregulated in lung adenocarcinoma (LADC) tissues, and low expression levels of GRK6 are correlated with poor survival prognosis. However, the specific regulatory mechanisms and functions of GRK6 in LADC remain unknown. Here, we report that GRK6 mRNA expression levels are downregulated in LADC tissues compared to those in matched adjacent non-tumor tissues (P < 0.001). The promoter of the GRK6 gene was found to be hypermethylated in LADC tissues, and its methylation was correlated with both GRK6 expression and pathology grade. GRK6 promoter hypermethylation may predict shorter overall survival. Treatment with 5-aza-2'-deoxycytidine significantly enhanced GRK6 gene expression. Four binding sites of CCAAT/enhancer-binding protein-α (C/EBPα) in the CpG island of the GRK6 gene promoter were predicted in silico, of which three sites were further confirmed by ChIP. Decreased binding of C/EBPα to binding sites 1, 3 and 4 of the GRK6 gene promoter was observed in LADC tissues. Inhibition of C/EBPα significantly inhibited GRK6 expression, while overexpression of C/EBPα significantly promoted GRK6 expression. In addition, overexpression of GRK6 significantly suppressed, while GRK6 knockdown promoted cell migration and invasion. Overexpression of GRK6 enhanced E-cadherin expression and suppressed vimentin expression, and silencing of GRK6 had the opposite effects. Furthermore, ectopic expression of GRK6 significantly decreased matrix metalloproteinase (MMP) 2 and MMP7 protein expression levels. Our findings suggest that hypermethylation of the GRK6 gene promoter suppressed binding of C/EBPα, thereby contributing to the promotion of cell migration and invasion. The methylation status of the GRK6 promoter might be suitable for use as an epigenetic biomarker, and the C/EBPα-GRK6 signaling pathway may be a potential target for LADC.


Assuntos
Adenocarcinoma de Pulmão/genética , Proteínas Estimuladoras de Ligação a CCAAT/genética , Quinases de Receptores Acoplados a Proteína G/genética , Regulação Neoplásica da Expressão Gênica/genética , Neoplasias Pulmonares/genética , Regiões Promotoras Genéticas , Adenocarcinoma de Pulmão/fisiopatologia , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Movimento Celular , Metilação de DNA , Feminino , Quinases de Receptores Acoplados a Proteína G/química , Quinases de Receptores Acoplados a Proteína G/metabolismo , Técnicas de Silenciamento de Genes , Humanos , Neoplasias Pulmonares/fisiopatologia , Masculino , Pessoa de Meia-Idade , Processos Neoplásicos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
7.
PLoS Pathog ; 14(1): e1006718, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29346437

RESUMO

Schistosomes are blood-dwelling trematodes with global impact on human and animal health. Because medical treatment is currently based on a single drug, praziquantel, there is urgent need for the development of alternative control strategies. The Schistosoma mansoni genome project provides a platform to study and connect the genetic repertoire of schistosomes to specific biological functions essential for successful parasitism. G protein-coupled receptors (GPCRs) form the largest superfamily of transmembrane receptors throughout the Eumetazoan phyla, including platyhelminths. Due to their involvement in diverse biological processes, their pharmacological importance, and proven druggability, GPCRs are promising targets for new anthelmintics. However, to identify candidate receptors, a more detailed understanding of the roles of GPCR signalling in schistosome biology is essential. An updated phylogenetic analysis of the S. mansoni GPCR genome (GPCRome) is presented, facilitated by updated genome data that allowed a more precise annotation of GPCRs. Additionally, we review the current knowledge on GPCR signalling in this parasite and provide new insights into the potential roles of GPCRs in schistosome reproduction based on the findings of a recent tissue-specific transcriptomic study in paired and unpaired S. mansoni. According to the current analysis, GPCRs contribute to gonad-specific functions but also to nongonad, pairing-dependent processes. The latter may regulate gonad-unrelated functions during the multifaceted male-female interaction. Finally, we compare the schistosome GPCRome to that of another parasitic trematode, Fasciola, and discuss the importance of GPCRs to basic and applied research. Phylogenetic analyses display GPCR diversity in free-living and parasitic platyhelminths and suggest diverse functions in schistosomes. Although their roles need to be substantiated by functional studies in the future, the data support the selection of GPCR candidates for basic and applied studies, invigorating the exploitation of this important receptor class for drug discovery against schistosomes but also other trematodes.


Assuntos
Quinases de Receptores Acoplados a Proteína G/metabolismo , Proteínas de Helminto/metabolismo , Modelos Biológicos , Schistosoma mansoni/metabolismo , Transdução de Sinais , Animais , Antiplatelmínticos/farmacologia , Fasciola/efeitos dos fármacos , Fasciola/genética , Fasciola/metabolismo , Fasciola/patogenicidade , Quinases de Receptores Acoplados a Proteína G/antagonistas & inibidores , Quinases de Receptores Acoplados a Proteína G/química , Quinases de Receptores Acoplados a Proteína G/genética , Perfilação da Expressão Gênica , Genoma Helmíntico , Genômica/métodos , Proteínas de Helminto/antagonistas & inibidores , Proteínas de Helminto/química , Proteínas de Helminto/genética , Humanos , Especificidade de Órgãos , Filogenia , Inibidores de Proteínas Quinases/farmacologia , Schistosoma mansoni/efeitos dos fármacos , Schistosoma mansoni/genética , Schistosoma mansoni/patogenicidade , Transdução de Sinais/efeitos dos fármacos
8.
Mol Pharmacol ; 89(5): 585-92, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26984025

RESUMO

The recent, unfortunate death of Alfred G. ("Al") Gilman, M.D., Ph.D., represents a sad signpost for an era spanning over 40 years in molecular pharmacology. Gilman's discoveries, influence, and persona were dominant forces in research and training in pharmacology. Here, we review the progression of ideas and knowledge that spawned early work by Gilman and collaborators (among them, one of the authors) and later efforts (including those of the other author) that have recently yielded a comprehensive and precise structural understanding of fundamental topics in pharmacology: the binding of ligands to G protein-coupled receptors (GPCRs) and the interaction of GPCRs with heterotrimeric G proteins and effector molecules. Those data provide new and important insights into the molecular basis that underlies affinity and efficacy, two of the most important features of drug action, which represent the latest chapter in the saga that Al Gilman's work helped launch.


Assuntos
Bioquímica/história , AMP Cíclico/fisiologia , Quinases de Receptores Acoplados a Proteína G/metabolismo , Modelos Biológicos , Medicina Molecular/história , Farmacologia/história , Sistemas do Segundo Mensageiro , Adenilil Ciclases/química , Adenilil Ciclases/genética , Adenilil Ciclases/metabolismo , Animais , Autoria , Bioquímica/educação , Quinases de Receptores Acoplados a Proteína G/antagonistas & inibidores , Quinases de Receptores Acoplados a Proteína G/química , Quinases de Receptores Acoplados a Proteína G/genética , História do Século XX , História do Século XXI , Humanos , Cinética , Liderança , Ligantes , Medicina Molecular/educação , National Academy of Sciences, U.S. , Prêmio Nobel , Farmacocinética , Farmacologia/educação , Sistemas do Segundo Mensageiro/efeitos dos fármacos , Estados Unidos
10.
Crit Rev Biochem Mol Biol ; 50(5): 440-52, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26453028

RESUMO

Most proteins have multiple functions. Obviously, conventional methods of manipulating the level of the protein of interest in the cell, such as over-expression, knockout or knockdown, affect all of its functions simultaneously. The key advantage of these methods is that over-expression, knockout or knockdown does not require any knowledge of the molecular mechanisms of the function(s) of the protein of interest. The disadvantage is that these approaches are inadequate to elucidate the role of an individual function of the protein in a particular cellular process. An alternative is the use of re-engineered proteins, in which a single function is eliminated or enhanced. The use of mono-functional elements of a multi-functional protein can also yield cleaner answers. This approach requires detailed knowledge of the structural basis of each function of the protein in question. Thus, a lot of preliminary structure-function work is necessary to make it possible. However, when this information is available, replacing the protein of interest with a mutant in which individual functions are modified can shed light on the biological role of those particular functions. Here, we illustrate this point using the example of protein kinases, most of which have additional non-enzymatic functions, as well as arrestins, known multi-functional signaling regulators in the cell.


Assuntos
Arrestinas/metabolismo , Quinases de Receptores Acoplados a Proteína G/metabolismo , Modelos Moleculares , Animais , Arrestinas/agonistas , Arrestinas/química , Arrestinas/genética , Ativação Enzimática , Quinases de Receptores Acoplados a Proteína G/química , Quinases de Receptores Acoplados a Proteína G/genética , Técnicas de Silenciamento de Genes , Técnicas de Inativação de Genes , Humanos , Ligantes , Proteínas Mutantes/agonistas , Proteínas Mutantes/antagonistas & inibidores , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Transdução de Sinais
11.
Biochem Biophys Res Commun ; 461(2): 307-13, 2015 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-25881508

RESUMO

G protein-coupled receptor kinases (GRKs) comprise a family of seven serine/threonine kinases that phosphorylate agonist-activated G protein-coupled receptors (GPCRs). It has recently been reported that GRKs regulate GPCR-independent signaling through the phosphorylation of intracellular proteins. To date, several intracellular substrates for GRK2 and GRK5 have been reported. However, those for GRK6 are poorly understood. Here we identified IκBα, a negative regulator of NF-κB signaling, as a substrate for GRK6. GRK6 directly phosphorylated IκBα at Ser(32)/Ser(36), and the kinase activity of GRK6 was required for the promotion of NF-κB signaling after TNF-α stimulation. Knockout of GRK6 in peritoneal macrophages remarkably attenuated the transcription of inflammatory genes after TNF-α stimulation. In addition, we developed a bioluminescence resonance energy transfer (BRET) probe to monitor GRK6 activity. Using this probe, we revealed that the conformational change of GRK6 was induced by TNF-α. In summary, our study demonstrates that TNF-α induces GRK6 activation, and GRK6 promotes inflammatory responses through the phosphorylation of IκBα.


Assuntos
Quinases de Receptores Acoplados a Proteína G/imunologia , Proteínas I-kappa B/imunologia , Inflamação/imunologia , Fator de Necrose Tumoral alfa/imunologia , Animais , Células Cultivadas , Quinases de Receptores Acoplados a Proteína G/química , Quinases de Receptores Acoplados a Proteína G/genética , Quinases de Receptores Acoplados a Proteína G/metabolismo , Técnicas de Silenciamento de Genes , Técnicas de Inativação de Genes , Proteínas I-kappa B/química , Proteínas I-kappa B/metabolismo , Inflamação/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Inibidor de NF-kappaB alfa , NF-kappa B/imunologia , Células NIH 3T3 , Fosforilação , Conformação Proteica
12.
ACS Chem Biol ; 10(1): 310-9, 2015 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-25238254

RESUMO

Selective inhibitors of individual subfamilies of G protein-coupled receptor kinases (GRKs) would serve as useful chemical probes as well as leads for therapeutic applications ranging from heart failure to Parkinson's disease. To identify such inhibitors, differential scanning fluorimetry was used to screen a collection of known protein kinase inhibitors that could increase the melting points of the two most ubiquitously expressed GRKs: GRK2 and GRK5. Enzymatic assays on 14 of the most stabilizing hits revealed that three exhibit nanomolar potency of inhibition for individual GRKs, some of which exhibiting orders of magnitude selectivity. Most of the identified compounds can be clustered into two chemical classes: indazole/dihydropyrimidine-containing compounds that are selective for GRK2 and pyrrolopyrimidine-containing compounds that potently inhibit GRK1 and GRK5 but with more modest selectivity. The two most potent inhibitors representing each class, GSK180736A and GSK2163632A, were cocrystallized with GRK2 and GRK1, and their atomic structures were determined to 2.6 and 1.85 Å spacings, respectively. GSK180736A, developed as a Rho-associated, coiled-coil-containing protein kinase inhibitor, binds to GRK2 in a manner analogous to that of paroxetine, whereas GSK2163632A, developed as an insulin-like growth factor 1 receptor inhibitor, occupies a novel region of the GRK active site cleft that could likely be exploited to achieve more selectivity. However, neither compound inhibits GRKs more potently than their initial targets. This data provides the foundation for future efforts to rationally design even more potent and selective GRK inhibitors.


Assuntos
Descoberta de Drogas/métodos , Quinases de Receptores Acoplados a Proteína G/antagonistas & inibidores , Inibidores de Proteínas Quinases , Bibliotecas de Moléculas Pequenas , Animais , Bovinos , Cristalografia por Raios X , Escherichia coli/genética , Quinases de Receptores Acoplados a Proteína G/química , Quinases de Receptores Acoplados a Proteína G/genética , Humanos , Cinética , Modelos Moleculares , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Relação Estrutura-Atividade
13.
Curr Opin Cell Biol ; 27: 25-31, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24680427

RESUMO

The atomic structure of a protein can greatly advance our understanding of molecular recognition and catalysis, properties of fundamental importance in signal transduction. However, a single structure is incapable of fully describing how a protein functions, particularly when allostery is involved. Recent advances in the structure and function of G protein-coupled receptor (GPCR) kinases (GRKs) have concentrated on the mechanism of their inhibition by small and large molecules. These studies have generated a wealth of new information on the conformational flexibility of these enzymes, which opens new avenues for the development of selective chemical probes and provides deeper insights into the molecular basis for activation of these enzymes by GPCRs and phospholipids.


Assuntos
Quinases de Receptores Acoplados a Proteína G/química , Quinases de Receptores Acoplados a Proteína G/metabolismo , Animais , Sítios de Ligação , Ativação Enzimática , Quinases de Receptores Acoplados a Proteína G/antagonistas & inibidores , Humanos , Modelos Moleculares , Fosfolipídeos/metabolismo , Conformação Proteica , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais
14.
Mol Pharmacol ; 85(2): 237-48, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24220010

RESUMO

Recently we identified the serotonin reuptake inhibitor paroxetine as an inhibitor of G protein-coupled receptor kinase 2 (GRK2) that improves cardiac performance in live animals. Paroxetine exhibits up to 50-fold selectivity for GRK2 versus other GRKs. A better understanding of the molecular basis of this selectivity is important for the development of even more selective and potent small molecule therapeutics and chemical genetic probes. We first sought to understand the molecular mechanisms underlying paroxetine selectivity among GRKs. We directly measured the K(D) for paroxetine and assessed its mechanism of inhibition for each of the GRK subfamilies and then determined the atomic structure of its complex with GRK1, the most weakly inhibited GRK tested. Our results suggest that the selectivity of paroxetine for GRK2 largely reflects its lower affinity for adenine nucleotides. Thus, stabilization of off-pathway conformational states unique to GRK2 will likely be key for the development of even more selective inhibitors. Next, we designed a benzolactam derivative of paroxetine that has optimized interactions with the hinge of the GRK2 kinase domain. The crystal structure of this compound in complex with GRK2 confirmed the predicted interactions. Although the benzolactam derivative did not significantly alter potency of inhibition among GRKs, it exhibited 20-fold lower inhibition of serotonin reuptake. However, there was an associated increase in the potency for inhibition of other AGC kinases, suggesting that the unconventional hydrogen bond formed by the benzodioxole ring of paroxetine is better accommodated by GRKs.


Assuntos
Quinases de Receptores Acoplados a Proteína G/antagonistas & inibidores , Paroxetina/análogos & derivados , Paroxetina/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Trifosfato de Adenosina/metabolismo , Cristalografia , Quinase 2 de Receptor Acoplado a Proteína G/antagonistas & inibidores , Quinase 2 de Receptor Acoplado a Proteína G/química , Quinases de Receptores Acoplados a Proteína G/química , Ligação de Hidrogênio , Paroxetina/química , Fosforilação , Conformação Proteica
15.
Endocr J ; 61(4): 303-9, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24240576

RESUMO

The classical model of G protein-coupled receptor (GPCR) activation is the two-state model, in which the GPCR exists in equilibrium between an active and inactive state. Based on this model, GPCR ligands have been classified as agonists, inverse agonists, or antagonists depending on their actions in shifting this equilibrium. Recently, however, accumulating evidence has indicated that GPCRs may exist in multiple active and inactive conformational states. In this situation, each ligand recognizes and stabilizes a specific conformation of the GPCR, leading to a set of specific biological effects. Based on this new model, a unique agonist or a combination of the usual agonist and an allosteric modulator may enable activation of a specific signaling pathway via a GPCR that activates multiple signals (biased agonism, functional selectivity). The calcium-sensing receptor autoantibody that we have identified in the serum of a patient with acquired hypocalciuric hypercalcemia (AHH) is the first example of a biased allosteric modulator of a GPCR working in a pathophysiological context. Our findings may indicate the presence of physiological allosteric modulators and provide new directions for the future drug development.


Assuntos
Autoanticorpos/análise , Quinases de Receptores Acoplados a Proteína G/metabolismo , Hipercalcemia/metabolismo , Modelos Biológicos , Transdução de Sinais , Regulação Alostérica , Animais , Autoanticorpos/metabolismo , Ativação Enzimática , Quinases de Receptores Acoplados a Proteína G/química , Humanos , Hipercalcemia/sangue , Hipercalcemia/imunologia , Ligantes , Conformação Proteica , Receptores de Detecção de Cálcio/agonistas , Receptores de Detecção de Cálcio/química , Receptores de Detecção de Cálcio/metabolismo
16.
Endocrinology ; 154(10): 3539-51, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23861369

RESUMO

Increased hepatic glucose production is a key pathophysiological feature of type 2 diabetes. Like all other cell types, hepatocytes express many G protein-coupled receptors (GPCRs) that are linked to different functional classes of heterotrimeric G proteins. The important physiological functions mediated by G(s)-coupled hepatic glucagon receptors are well-documented. In contrast, little is known about the in vivo physiological roles of hepatocyte GPCRs that are linked to G proteins of the G(q) family. To address this issue, we established a transgenic mouse line (Hep-Rq mice) that expressed a G(q)-linked designer receptor (Rq) in a hepatocyte-selective fashion. Importantly, Rq could no longer bind endogenous ligands but could be selectively activated by a synthetic drug, clozapine-N-oxide. Clozapine-N-oxide treatment of Hep-Rq mice enabled us to determine the metabolic consequences caused by selective activation of a G(q)-coupled GPCR in hepatocytes in vivo. We found that acute Rq activation in vivo led to pronounced increases in blood glucose levels, resulting from increased rates of glycogen breakdown and gluconeogenesis. We also demonstrated that the expression of the V(1b) vasopressin receptor, a G(q)-coupled receptor expressed by hepatocytes, was drastically increased in livers of ob/ob mice, a mouse model of diabetes. Strikingly, treatment of ob/ob mice with a selective V(1b) receptor antagonist led to reduced glucose excursions in a pyruvate challenge test. Taken together, these findings underscore the importance of G(q)-coupled receptors in regulating hepatic glucose fluxes and suggest novel receptor targets for the treatment of type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2/induzido quimicamente , Ativadores de Enzimas/efeitos adversos , Quinases de Receptores Acoplados a Proteína G/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Gluconeogênese/efeitos dos fármacos , Glicogenólise/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Animais , Antagonistas dos Receptores de Hormônios Antidiuréticos , Células Cultivadas , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Ativadores de Enzimas/farmacologia , Feminino , Quinases de Receptores Acoplados a Proteína G/química , Quinases de Receptores Acoplados a Proteína G/genética , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/antagonistas & inibidores , Hepatócitos/citologia , Hepatócitos/metabolismo , Humanos , Hipoglicemiantes/uso terapêutico , Masculino , Camundongos , Camundongos Obesos , Camundongos Transgênicos , Engenharia de Proteínas , Domínios e Motivos de Interação entre Proteínas , Receptor Muscarínico M3/agonistas , Receptor Muscarínico M3/química , Receptor Muscarínico M3/genética , Receptor Muscarínico M3/metabolismo , Receptores de Vasopressinas/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Organismos Livres de Patógenos Específicos
17.
Artigo em Inglês | MEDLINE | ID: mdl-23759942

RESUMO

Muscarinic acetylcholine receptors, which comprise five subtypes (M1-M5 receptors), are expressed in both the CNS and PNS (particularly the target organs of parasympathetic neurons). M1-M5 receptors are integral membrane proteins with seven transmembrane segments, bind with acetylcholine (ACh) in the extracellular phase, and thereafter interact with and activate GTP-binding regulatory proteins (G proteins) in the intracellular phase: M1, M3, and M5 receptors interact with Gq-type G proteins, and M2 and M4 receptors with Gi/Go-type G proteins. Activated G proteins initiate a number of intracellular signal transduction systems. Agonist-bound muscarinic receptors are phosphorylated by G protein-coupled receptor kinases, which initiate their desensitization through uncoupling from G proteins, receptor internalization, and receptor breakdown (down regulation). Recently the crystal structures of M2 and M3 receptors were determined and are expected to contribute to the development of drugs targeted to muscarinic receptors. This paper summarizes the molecular properties of muscarinic receptors with reference to the historical background and bias to studies performed in our laboratories.


Assuntos
Receptores Muscarínicos/química , Receptores Muscarínicos/metabolismo , Acetilcolina/química , Acetilcolina/metabolismo , Animais , Sistema Nervoso Central/metabolismo , Cristalografia por Raios X , Quinases de Receptores Acoplados a Proteína G/química , Quinases de Receptores Acoplados a Proteína G/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/química , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/química , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Humanos , Sistema Nervoso Parassimpático/metabolismo , Fosforilação/fisiologia , Transdução de Sinais/fisiologia , Relação Estrutura-Atividade
18.
Curr Med Chem ; 20(1): 39-46, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23151001

RESUMO

G protein coupled-receptor (GPCR) kinases (GRKs) initiate the deactivation of GPCRs by phosphorylating their cytoplasmic loops and C-terminal tails. They are regulated not only by allosteric interactions with activated GPCRs, but also by the membrane environment itself. Herein we describe how the various GRKs are recruited to lipid bilayers and, where evident, how specific anionic phospholipids help regulate their activity. Using crystal structures representing each of the three vertebrate GRK subfamilies, we map the lipid binding sites in order to better understand how these enzymes are oriented at the cell surface. This analysis suggests that GRKs bind lipid and active GPCRs in a coordinated manner.


Assuntos
Quinases de Receptores Acoplados a Proteína G/química , Quinases de Receptores Acoplados a Proteína G/metabolismo , Bicamadas Lipídicas/metabolismo , Fosfolipídeos/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Receptores Acoplados a Proteínas G/metabolismo
19.
Curr Pharm Des ; 18(31): 4839-53, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22632864

RESUMO

Traditional Japanese herbal, or Kampo medicine was developed and modified from Chinese herbal medicine. After the Japanese government approved Kampo for clinical use, much attention has been paid to establishing scientific evidence for the effectiveness of these medicines. Recent progress has been made in elucidating the mechanisms of action of some types of Kampo medicine, including rikkunshito (RKT), daikenchuto, and yokukansan. In this review, we focused on identifying the target molecules and the active ingredients of RKT. Thus far, many target molecules have been implicated in the mechanism of action of Kampo medicines, such as ion channels, enzymes, and receptors. In particular, G protein-coupled receptors are attractive candidates for explaining herbal medicine activity. This is particularly true of RKT, which is composed of 8 independent, crude drug extracts. Recent reports have shown that RKT elicits its effects through dual action to the G protein-coupled receptors: inhibition of serotonergic 5-HT2C and 5-HT2B receptors and activation of ghrelin receptors via specific ingredients of RKT. In addition, we suggest that the identification of the effective ingredients from Kampo medicines could contribute to the discovery and development of new drugs by means of modern high-throughput drug screening technology.


Assuntos
Medicina Kampo , Preparações de Plantas/farmacologia , Animais , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Quinases de Receptores Acoplados a Proteína G/antagonistas & inibidores , Quinases de Receptores Acoplados a Proteína G/química , Quinases de Receptores Acoplados a Proteína G/metabolismo , Grelina/agonistas , Grelina/metabolismo , Humanos , Panax , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Preparações de Plantas/uso terapêutico , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Receptores de Grelina/agonistas , Receptores de Grelina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Zanthoxylum , Zingiberaceae
20.
J Biol Chem ; 287(16): 12634-44, 2012 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-22375004

RESUMO

G protein-coupled receptor kinases (GRKs) are key regulators of signal transduction that specifically phosphorylate activated G protein-coupled receptors (GPCRs) to terminate signaling. Biochemical and crystallographic studies have provided great insight into mammalian GRK2/3 interactions and structure. However, despite extensive in vitro characterization, little is known about the in vivo contribution of these described GRK structural domains and interactions to proper GRK function in signal regulation. We took advantage of the disrupted chemosensory behavior characteristic of Caenorhabditis elegans grk-2 mutants to discern the interactions required for proper in vivo Ce-GRK-2 function. Informed by mammalian crystallographic and biochemical data, we introduced amino acid substitutions into the Ce-grk-2 coding sequence that are predicted to selectively disrupt GPCR phosphorylation, Gα(q/11) binding, Gßγ binding, or phospholipid binding. Changing the most amino-terminal residues, which have been shown in mammalian systems to be required specifically for GPCR phosphorylation but not phosphorylation of alternative substrates or recruitment to activated GPCRs, eliminated the ability of Ce-GRK-2 to restore chemosensory signaling. Disrupting interaction between the predicted Ce-GRK-2 amino-terminal α-helix and kinase domain, posited to stabilize GRKs in their active ATP- and GPCR-bound conformation, also eliminated Ce-GRK-2 chemosensory function. Finally, although changing residues within the RH domain, predicted to disrupt interaction with Gα(q/11), did not affect Ce-GRK-2 chemosensory function, disruption of the predicted PH domain-mediated interactions with Gßγ and phospholipids revealed that both contribute to Ce-GRK-2 function in vivo. Combined, we have demonstrated functional roles for broadly conserved GRK2/3 structural domains in the in vivo regulation of organismal behavior.


Assuntos
Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/enzimologia , Quinase 2 de Receptor Acoplado a Proteína G/química , Quinase 2 de Receptor Acoplado a Proteína G/metabolismo , Quinases de Receptores Acoplados a Proteína G/química , Quinases de Receptores Acoplados a Proteína G/metabolismo , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Comportamento Animal/fisiologia , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Células Quimiorreceptoras/enzimologia , Quinase 2 de Receptor Acoplado a Proteína G/genética , Quinases de Receptores Acoplados a Proteína G/genética , Dados de Sequência Molecular , Mutagênese , Neurônios/enzimologia , Fosforilação/fisiologia , Estrutura Terciária de Proteína , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...