Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 220
Filtrar
1.
J Biol Chem ; 300(5): 107149, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38479599

RESUMO

Persulfides (RSSH/RSS-) participate in sulfur metabolism and are proposed to transduce hydrogen sulfide (H2S) signaling. Their biochemical properties are poorly understood. Herein, we studied the acidity and nucleophilicity of several low molecular weight persulfides using the alkylating agent, monobromobimane. The different persulfides presented similar pKa values (4.6-6.3) and pH-independent rate constants (3.2-9.0 × 103 M-1 s-1), indicating that the substituents in persulfides affect properties to a lesser extent than in thiols because of the larger distance to the outer sulfur. The persulfides had higher reactivity with monobromobimane than analogous thiols and putative thiols with the same pKa, providing evidence for the alpha effect (enhanced nucleophilicity by the presence of a contiguous atom with high electron density). Additionally, we investigated two enzymes from the human mitochondrial H2S oxidation pathway that form catalytic persulfide intermediates, sulfide quinone oxidoreductase and thiosulfate sulfurtransferase (TST, rhodanese). The pH dependence of the activities of both enzymes was measured using sulfite and/or cyanide as sulfur acceptors. The TST half-reactions were also studied by stopped-flow fluorescence spectroscopy. Both persulfidated enzymes relied on protonated groups for reaction with the acceptors. Persulfidated sulfide quinone oxidoreductase appeared to have a pKa of 7.8 ± 0.2. Persulfidated TST presented a pKa of 9.38 ± 0.04, probably due to a critical active site residue rather than the persulfide itself. The TST thiol reacted in the anionic state with thiosulfate, with an apparent pKa of 6.5 ± 0.1. Overall, our study contributes to a fundamental understanding of persulfide properties and their modulation by protein environments.


Assuntos
Sulfetos , Tiossulfato Sulfurtransferase , Humanos , Compostos Bicíclicos com Pontes , Sulfeto de Hidrogênio/metabolismo , Sulfeto de Hidrogênio/química , Concentração de Íons de Hidrogênio , Oxirredução , Quinona Redutases/metabolismo , Quinona Redutases/química , Compostos de Sulfidrila/química , Compostos de Sulfidrila/metabolismo , Sulfetos/química , Sulfetos/metabolismo , Tiossulfato Sulfurtransferase/metabolismo , Tiossulfato Sulfurtransferase/química , Quinonas/química , Quinonas/metabolismo , Especificidade por Substrato
2.
Biochem Biophys Res Commun ; 690: 149096, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37988924

RESUMO

Electron-driven process helps the living organism in the generations of energy, biomass production and detoxification of synthetic compounds. Soluble quinone oxidoreductases (QORs) mediate the transfer of an electron from NADPH to various quinone and other compounds, helping in the detoxification of quinones. QORs play a crucial role in cellular metabolism and are thus potential targets for drug development. Here we report the crystal structure of the NADPH-dependent QOR from Leishmania donovani (LdQOR) at 2.05 Å. The enzyme exists as a homo-dimer, with each protomer consisting of two domains, responsible for binding NADPH cofactor and the substrate. Interestingly, the human QOR exists as a tetramer. Comparative analysis of the oligomeric interfaces of LdQOR with HsQOR shows no significant differences in the protomer/dimer assembly. The tetrameric interface of HsQOR is stabilized by salt bridges formed between Arg 169 and Glu 271 which is non-existent in LdQOR, with an Alanine replacing the glutamate. This distinct feature is conserved across other dimeric QORs, indicating the importance of this interaction for tetramer association. Among the homologs, the sequences of the loop region involved in the stabilization and binding of the adenine ring of the NADPH shows significant differences except for an Arginine & glycine residues. In dimer QORs, this Arginine acts as a gate to the co-factor, while the NADPH binding mode in the human homolog is distinct, stabilized by His 200 and Asn 229, which are not conserved in LdQOR. These distinct features have the potential to be utilized for therapeutic interventions.


Assuntos
NAD(P)H Desidrogenase (Quinona) , Quinona Redutases , Humanos , NADP/metabolismo , Subunidades Proteicas , NAD(P)H Desidrogenase (Quinona)/metabolismo , Quinona Redutases/química , Quinona Redutases/metabolismo , Quinonas , Arginina , Sítios de Ligação , Cristalografia por Raios X
3.
Molecules ; 28(3)2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36770840

RESUMO

The enzyme NRH:quinone oxidoreductase 2 (NQO2) plays an important role in the pathogenesis of various diseases such as neurodegenerative disorders, malaria, glaucoma, COVID-19 and cancer. NQO2 expression is known to be increased in some cancer cell lines. Since 3-arylidene-2-oxindoles are widely used in the design of new anticancer drugs, such as kinase inhibitors, it was interesting to study whether such structures have additional activity towards NQO2. Herein, we report the synthesis and study of 3-arylidene-2-oxindoles as novel NRH:quinone oxidoreductase inhibitors. It was demonstrated that oxindoles with 6-membered aryls in the arylidene moiety were obtained predominantly as E-isomers while for some 5-membered aryls, the Z-isomers prevailed. The most active compounds inhibited NQO2 with an IC50 of 0.368 µM. The presence of a double bond in the oxindoles was crucial for NQO2 inhibition activity. There was no correlation between NQO2 inhibition activity of the synthesized compounds and their cytotoxic effect on the A549 cell line.


Assuntos
COVID-19 , Quinona Redutases , Humanos , Quinona Redutases/química , Oxindóis/farmacologia , Quinonas/farmacologia
4.
Methods Mol Biol ; 2550: 315-321, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36180702

RESUMO

The third melatonin binding site MT3 turned out to be an enzyme, NQO2 (E.C. 1.6.99.2). Its catalytic activity is inhibited by melatonin with an IC50 in the 50-100 µM range. Some of the functions of melatonin at pharmacological concentrations (1 µM and above) might be explained by this inhibition capacity of melatonin at NQO2. In order to determine precisely these parameters, it is required to comprehend the basic enzymology of this enzyme. In the following chapter, we present the basic conditions of measuring NQO2 catalytic activities and inhibition.


Assuntos
Melatonina , Quinona Redutases , Sítios de Ligação , Melatonina/metabolismo , Melatonina/farmacologia , Quinona Redutases/química , Quinona Redutases/metabolismo
5.
Methods Mol Biol ; 2550: 323-328, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36180703

RESUMO

Melatonin exerts its effects through a series of target proteins/receptors and enzymes. Its antioxidant capacity might be due to its capacity to inhibit a quinone reductase (NQO2) at high concentration (50 µM). Demonstrating the existence of a complex between a compound and a protein is often not easy. It requires either that the compound is an inhibitor-and the complex translates by an inhibition of the catalytic activity-or the compound is radiolabeled-and the complex translates in standard binding approaches, such as in receptology. Outside these two cases, the detection of the protein:small molecule complexes by mass spectrometry has recently been made possible, thanks to the development of so-called native mass spectrometry. Using this approach, one can measure masses corresponding to an intact noncovalent complex between a compound and its target, usually after titration or competition experiments. In the present chapter, we detail the characterization of NQO2:melatonin interaction using native mass spectrometry.


Assuntos
Melatonina , Quinona Redutases , Antioxidantes , Quinona Redutases/química , Quinona Redutases/metabolismo , Espectrometria de Massas por Ionização por Electrospray
6.
Redox Biol ; 53: 102345, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35653932

RESUMO

Heterotrophic bacteria and human mitochondria often use sulfide: quinone oxidoreductase (SQR) and persulfide dioxygenase (PDO) to oxidize sulfide to sulfite and thiosulfate. Bioinformatic analysis showed that the genes encoding RHOD domains were widely presented in annotated sqr-pdo operons and grouped into three types: fused with an SQR domain, fused with a PDO domain, and dissociated proteins. Biochemical evidence suggests that RHODs facilitate the formation of thiosulfate and promote the reaction between inorganic polysulfide and glutathione to produce glutathione polysulfide. However, the physiological roles of RHODs during sulfide oxidation by SQR and PDO could only be tested in an RHOD-free host. To test this, 8 genes encoding RHOD domains in Escherichia coli MG1655 were deleted to produce E. coli RHOD-8K. The sqrCp and pdoCp genes from Cupriavidus pinatubonensis JMP134 were cloned into E. coli RHOD-8K. SQRCp contains a fused RHOD domain at the N-terminus. When the fused RHOD domain of SQRCp was inactivated, the cells oxidized sulfide into increased thiosulfate with the accumulation of cellular sulfane sulfur in comparison with cells containing the intact sqrCp and pdoCp. The complementation of dissociated DUF442 minimized the accumulation of cellular sulfane sulfur and reduced the production of thiosulfate. Further analysis showed that the fused DUF442 domain modulated the activity of SQRCp and prevented it from directly passing the produced sulfane sulfur to GSH. Whereas, the dissociated DUF442 enhanced the PDOCp activity by several folds. Both DUF442 forms minimized the accumulation of cellular sulfane sulfur, which spontaneously reacted with GSH to produce GSSG, causing disulfide stress during sulfide oxidation. Thus, RHODs may play multiple roles during sulfide oxidation.


Assuntos
Sulfeto de Hidrogênio , Quinona Redutases , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Dissulfetos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Glutationa/metabolismo , Humanos , Sulfeto de Hidrogênio/metabolismo , Oxirredução , Quinona Redutases/química , Quinona Redutases/genética , Quinona Redutases/metabolismo , Sulfetos/metabolismo , Enxofre/metabolismo , Tiossulfato Sulfurtransferase/genética , Tiossulfato Sulfurtransferase/metabolismo , Tiossulfatos/metabolismo
7.
J Biol Chem ; 298(8): 102182, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35752362

RESUMO

The ion-pumping NQR complex is an essential respiratory enzyme in the physiology of many pathogenic bacteria. This enzyme transfers electrons from NADH to ubiquinone through several cofactors, including riboflavin (vitamin B2). NQR is the only enzyme reported that is able to use riboflavin as a cofactor. Moreover, the riboflavin molecule is found as a stable neutral semiquinone radical. The otherwise highly reactive unpaired electron is stabilized via an unknown mechanism. Crystallographic data suggested that riboflavin might be found in a superficially located site in the interface of NQR subunits B and E. However, this location is highly problematic, as the site does not have the expected physiochemical properties. In this work, we have located the riboflavin-binding site in an amphipathic pocket in subunit B, previously proposed to be the entry site of sodium. Here, we show that this site contains absolutely conserved residues, including N200, N203, and D346. Mutations of these residues decrease enzymatic activity and specifically block the ability of NQR to bind riboflavin. Docking analysis and molecular dynamics simulations indicate that these residues participate directly in riboflavin binding, establishing hydrogen bonds that stabilize the cofactor in the site. We conclude that riboflavin is likely bound in the proposed pocket, which is consistent with enzymatic characterizations, thermodynamic studies, and distance between cofactors.


Assuntos
Quinona Redutases , Vibrio cholerae , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Oxirredução , Quinona Redutases/química , Riboflavina/genética , Sódio/metabolismo , Vibrio cholerae/metabolismo
8.
Angew Chem Int Ed Engl ; 60(52): 26960-26970, 2021 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-34652045

RESUMO

The medically important bacterial aromatic polyketide natural products typically feature a planar, polycyclic core structure. An exception is found for the rubromycins, whose backbones are disrupted by a bisbenzannulated [5,6]-spiroketal pharmacophore that was recently shown to be assembled by flavin-dependent enzymes. In particular, a flavoprotein monooxygenase proved critical for the drastic oxidative rearrangement of a pentangular precursor and the installment of an intermediate [6,6]-spiroketal moiety. Here we provide structural and mechanistic insights into the control of catalysis by this spiroketal synthase, which fulfills several important functions as reductase, monooxygenase, and presumably oxidase. The enzyme hereby tightly controls the redox state of the substrate to counteract shunt product formation, while also steering the cleavage of three carbon-carbon bonds. Our work illustrates an exceptional strategy for the biosynthesis of stable chroman spiroketals.


Assuntos
Éteres/metabolismo , Oxigenases de Função Mista/química , Quinona Redutases/química , Quinonas/metabolismo , Biocatálise , Domínio Catalítico , Éteres/química , Flavina-Adenina Dinucleotídeo/química , Flavina-Adenina Dinucleotídeo/metabolismo , Cinética , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Mutagênese Sítio-Dirigida , Mutação , NADP/química , NADP/metabolismo , Oxirredução , Ligação Proteica , Domínios Proteicos , Quinona Redutases/genética , Quinona Redutases/metabolismo , Quinonas/química
9.
Biochim Biophys Acta Bioenerg ; 1862(2): 148337, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33202220

RESUMO

Sulfide oxidation is catalyzed by ancient membrane-bound sulfide:quinone oxidoreductases (SQR) which are classified into six different types. For catalysis of sulfide oxidation, all SQRs require FAD cofactor and a redox-active centre in the active site, usually formed between conserved essential cysteines. SQRs of different types have variation in the number and position of cysteines, highlighting the potential for diverse catalytic mechanisms. The photosynthetic purple sulfur bacterium, Thiocapsa roseopersicina contains a type VI SQR enzyme (TrSqrF) having unusual catalytic parameters and four cysteines likely involved in the catalysis. Site-directed mutagenesis was applied to identify the role of cysteines in the catalytic process of TrSqrF. Based on biochemical and kinetic characterization of these TrSqrF variants, Cys121 is identified as crucial for enzyme activity. The cofactor is covalently bound via a heterodisulfide bridge between Cys121 and the C8M group of FAD. Mutation of another cysteine present in all SQRs (Cys332) causes remarkably decreased enzyme activity (14.6% of wild type enzyme) proving important, but non-essential role of this residue in enzyme catalysis. The sulfhydril-blocking agent, iodoacetamide can irreversibly inactivate TrSqrF but only if substrates are present and the enzyme is actively catalyzing its reaction. When the enzyme is inhibited by iodoacetamide, the FAD cofactor is released. The inhibition studies support a mechanism that entails opening and reforming of the heterodisulfide bridge during the catalytic cycle of TrSqrF. Our study thus reports the first detailed structure-function analysis of a type VI SQR enzyme which enables the proposal of a distinct mechanism of sulfide oxidation for this class.


Assuntos
Proteínas de Escherichia coli/química , Escherichia coli/enzimologia , Quinona Redutases/química , Thiocapsa roseopersicina/enzimologia , Catálise , Proteínas de Escherichia coli/genética , Quinona Redutases/genética , Quinona Redutases/metabolismo , Thiocapsa roseopersicina/genética
10.
Nat Chem Biol ; 17(1): 65-70, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33106663

RESUMO

Cysteine thiol-based transcriptional regulators orchestrate the coordinated regulation of redox homeostasis and other cellular processes by 'sensing' or detecting a specific redox-active molecule, which in turn activates the transcription of a specific detoxification pathway. The extent to which these sensors are truly specific in cells for a singular class of reactive small-molecule stressors, for example, reactive oxygen or sulfur species, is largely unknown. Here, we report structural and mechanistic insights into the thiol-based transcriptional repressor SqrR, which reacts exclusively with oxidized sulfur species such as persulfides, to yield a tetrasulfide bridge that inhibits DNA operator-promoter binding. Evaluation of crystallographic structures of SqrR in various derivatized states, coupled with the results of a mass spectrometry-based kinetic profiling strategy, suggest that persulfide selectivity is determined by structural frustration of the disulfide form. These findings led to the identification of an uncharacterized repressor from the bacterial pathogen Acinetobacter baumannii as a persulfide sensor.


Assuntos
Acinetobacter baumannii/genética , Proteínas de Bactérias/química , Regulação Bacteriana da Expressão Gênica , Quinona Redutases/química , Sulfetos/química , Transcrição Gênica , Acinetobacter baumannii/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Clonagem Molecular , Cristalografia por Raios X , Cisteína/química , Cisteína/metabolismo , Dissulfetos/química , Dissulfetos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Glutationa/química , Glutationa/metabolismo , Cinética , Modelos Moleculares , Oxirredução , Regiões Promotoras Genéticas , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Quinona Redutases/genética , Quinona Redutases/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Sulfetos/metabolismo , Enxofre/química , Enxofre/metabolismo , Termodinâmica
11.
Chembiochem ; 22(6): 949-960, 2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33080111

RESUMO

Hydrogen sulfide (H2 S) is an environmental toxin and a heritage of ancient microbial metabolism that has stimulated new interest following its discovery as a neuromodulator. While many physiological responses have been attributed to low H2 S levels, higher levels inhibit complex IV in the electron transport chain. To prevent respiratory poisoning, a dedicated set of enzymes that make up the mitochondrial sulfide oxidation pathway exists to clear H2 S. The committed step in this pathway is catalyzed by sulfide quinone oxidoreductase (SQOR), which couples sulfide oxidation to coenzyme Q10 reduction in the electron transport chain. The SQOR reaction prevents H2 S accumulation and generates highly reactive persulfide species as products; these can be further oxidized or can modify cysteine residues in proteins by persulfidation. Here, we review the kinetic and structural characteristics of human SQOR, and how its unconventional redox cofactor configuration and substrate promiscuity lead to sulfide clearance and potentially expand the signaling potential of H2 S. This dual role of SQOR makes it a promising target for H2 S-based therapeutics.


Assuntos
Sulfeto de Hidrogênio/metabolismo , Quinona Redutases/metabolismo , Domínio Catalítico , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Humanos , Sulfeto de Hidrogênio/química , Mitocôndrias/metabolismo , Oxirredução , Fosforilação Oxidativa , Quinona Redutases/química , Quinona Redutases/classificação , Especificidade por Substrato , Ubiquinona/análogos & derivados , Ubiquinona/química
12.
J Agric Food Chem ; 68(43): 11975-11986, 2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-33054205

RESUMO

Garcinia mangostana L. (mangosteen) is a famous tropical fruit that contains a large number of xanthones. Regular consumption of mangosteen may confer health benefits and prevent some diseases, such as malaria. Quinone reductase 2 (QR-2) is a cytosolic enzyme found in human red blood cells, and it is becoming a target for chemoprevention because it is involved in the mechanisms of several diseases, including malaria. To understand whether the xanthones present in mangosteen might inhibit the activity of QR-2, blood samples were collected from rat following the oral administration of mangosteen extract and then incubated with QR-2 followed by UF-HPLC-QTOF/MS analysis to rapidly screen for and identify the QR-2-inhibiting xanthones. A total of 16 xanthones were identified, and six of these (α-mangostin, γ-mangostin, 8-deoxyartanin, 1,3,7-trihydroxy-2,8-di(3-methylbut-2-enyl)xanthone, garcinone E, and 9-hydroxycalabaxanthone) were subjected to QR-2 inhibition assay. γ-Mangostin exhibited the strongest inhibition, achieving an IC50 value of 3.82 ± 0.51 µM. Its interaction with QR-2 was found to involve hydrogen bond and arene-arene interaction as revealed by molecular docking. The present study could provide new insight into the potential application of mangosteen as functional food ingredients for inhibiting the activity of QR-2. However, the extent of daily intake of mangosteen required and the exact contribution of mangosteen to the prevention and treatment of malaria remain subjects of further study.


Assuntos
Inibidores Enzimáticos/farmacocinética , Garcinia mangostana/química , Extratos Vegetais/farmacocinética , Quinona Redutases/antagonistas & inibidores , Administração Oral , Animais , Cromatografia Líquida , Inibidores Enzimáticos/administração & dosagem , Inibidores Enzimáticos/química , Frutas/química , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Extratos Vegetais/administração & dosagem , Extratos Vegetais/química , Quinona Redutases/química , Quinona Redutases/metabolismo , Ratos , Ratos Sprague-Dawley , Espectrometria de Massas em Tandem , Xantonas/administração & dosagem , Xantonas/química , Xantonas/farmacocinética
13.
J Inherit Metab Dis ; 43(5): 1024-1036, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32160317

RESUMO

Hydrogen sulfide, a signaling molecule formed mainly from cysteine, is catabolized by sulfide:quinone oxidoreductase (gene SQOR). Toxic hydrogen sulfide exposure inhibits complex IV. We describe children of two families with pathogenic variants in SQOR. Exome sequencing identified variants; SQOR enzyme activity was measured spectrophotometrically, protein levels evaluated by western blotting, and mitochondrial function was assayed. In family A, following a brief illness, a 4-year-old girl presented comatose with lactic acidosis and multiorgan failure. After stabilization, she remained comatose, hypotonic, had neurostorming episodes, elevated lactate, and Leigh-like lesions on brain imaging. She died shortly after. Her 8-year-old sister presented with a rapidly fatal episode of coma with lactic acidosis, and lesions in the basal ganglia and left cortex. Muscle and liver tissue had isolated decreased complex IV activity, but normal complex IV protein levels and complex formation. Both patients were homozygous for c.637G > A, which we identified as a founder mutation in the Lehrerleut Hutterite with a carrier frequency of 1 in 13. The resulting p.Glu213Lys change disrupts hydrogen bonding with neighboring residues, resulting in severely reduced SQOR protein and enzyme activity, whereas sulfide generating enzyme levels were unchanged. In family B, a boy had episodes of encephalopathy and basal ganglia lesions. He was homozygous for c.446delT and had severely reduced fibroblast SQOR enzyme activity and protein levels. SQOR dysfunction can result in hydrogen sulfide accumulation, which, consistent with its known toxicity, inhibits complex IV resulting in energy failure. In conclusion, SQOR deficiency represents a new, potentially treatable, cause of Leigh disease.


Assuntos
Sulfeto de Hidrogênio/metabolismo , Doença de Leigh/enzimologia , Mitocôndrias/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/genética , Quinona Redutases/fisiologia , Acidose Láctica/patologia , Encefalopatias/patologia , Pré-Escolar , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Família , Feminino , Homozigoto , Humanos , Sulfeto de Hidrogênio/química , Cinética , Doença de Leigh/metabolismo , Imageamento por Ressonância Magnética , Masculino , Oxirredução , Quinona Redutases/química
14.
Molecules ; 24(20)2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31618826

RESUMO

Dunnione, a natural product isolated from the leaves of Streptocarpus dunnii (Gesneriaceae), acts as a substrate for quinone-reductases that may be associated with its antimalarial properties. Following our exploration of reactive oxygen species-producing compounds such as indolones, as possible new approaches for the research of new ways to treat this parasitosis, we explored derivatives of this natural product and their possible antiplasmodial and antimalarial properties, in vitro and in vivo, respectively. Apart from one compound, all the products tested had weak to moderate antiplasmodial activities, the best IC50 value being equal to 0.58 µM. In vivo activities in the murine model were moderate (at a dose of 50 mg/kg/mice, five times higher than the dose of chloroquine). These results encourage further pharmacomodulation steps to improve the targeting of the parasitized red blood cells and antimalarial activities.


Assuntos
Antimaláricos/química , Naftoquinonas/química , Quinona Redutases/química , Animais , Antimaláricos/farmacologia , Modelos Animais de Doenças , Células HeLa , Humanos , Camundongos , Estrutura Molecular , Naftoquinonas/farmacologia , Quinona Redutases/metabolismo , Espécies Reativas de Oxigênio/química , Espécies Reativas de Oxigênio/metabolismo , Relação Estrutura-Atividade , Especificidade por Substrato
15.
Cell Chem Biol ; 26(11): 1515-1525.e4, 2019 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-31591036

RESUMO

Mitochondrial sulfide quinone oxidoreductase (SQR) catalyzes the oxidation of H2S to glutathione persulfide with concomitant reduction of CoQ10. We report herein that the promiscuous activity of human SQR supported the conversion of CoA to CoA-SSH (CoA-persulfide), a potent inhibitor of butyryl-CoA dehydrogenase, and revealed a molecular link between sulfide and butyrate metabolism, which are known to interact. Three different CoQ1-bound crystal structures furnished insights into how diverse substrates access human SQR, and provided snapshots of the reaction coordinate. Unexpectedly, the active site cysteines in SQR are configured in a bridging trisulfide at the start and end of the catalytic cycle, and the presence of sulfane sulfur was confirmed biochemically. Importantly, our study leads to a mechanistic proposal for human SQR in which sulfide addition to the trisulfide cofactor eliminates 201Cys-SSH, forming an intense charge-transfer complex with flavin adenine dinucleotide, and 379Cys-SSH, which transfers sulfur to an external acceptor.


Assuntos
Butiratos/química , Coenzima A/metabolismo , Quinona Redutases/metabolismo , Biocatálise , Domínio Catalítico , Cristalografia por Raios X , Dissulfetos/química , Glutationa/análogos & derivados , Glutationa/química , Humanos , Sulfeto de Hidrogênio/química , Cinética , Mitocôndrias/enzimologia , Oxirredução , Ligação Proteica , Estrutura Terciária de Proteína , Quinona Redutases/química , Especificidade por Substrato , Sulfetos/química , Sulfetos/metabolismo
16.
Biosci Rep ; 39(9)2019 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-31431515

RESUMO

Human NAD(P)H quinone oxidoreductase (DT-diaphorase, NQO1) exhibits negative cooperativity towards its potent inhibitor, dicoumarol. Here, we addressed the hypothesis that the effects of the two cancer-associated polymorphisms (p.R139W and p.P187S) may be partly mediated by their effects on inhibitor binding and negative cooperativity. Dicoumarol stabilized both variants and bound with much higher affinity for p.R139W than p.P187S. Both variants exhibited negative cooperativity towards dicoumarol; in both cases, the Hill coefficient (h) was approximately 0.5 and similar to that observed with the wild-type protein. NQO1 was also inhibited by resveratrol and by nicotinamide. Inhibition of NQO1 by resveratrol was approximately 10,000-fold less strong than that observed with the structurally similar enzyme, NRH quinine oxidoreductase 2 (NQO2). The enzyme exhibited non-cooperative behaviour towards nicotinamide, whereas resveratrol induced modest negative cooperativity (h = 0.85). Nicotinamide stabilized wild-type NQO1 and p.R139W towards thermal denaturation but had no detectable effect on p.P187S. Resveratrol destabilized the wild-type enzyme and both cancer-associated variants. Our data suggest that neither polymorphism exerts its effect by changing the enzyme's ability to exhibit negative cooperativity towards inhibitors. However, it does demonstrate that resveratrol can inhibit NQO1 in addition to this compound's well-documented effects on NQO2. The implications of these findings for molecular pathology are discussed.


Assuntos
Estabilidade Enzimática/efeitos dos fármacos , NAD(P)H Desidrogenase (Quinona)/genética , Neoplasias/genética , Quinona Redutases/genética , Dicumarol/química , Dicumarol/farmacologia , Humanos , Cinética , NAD(P)H Desidrogenase (Quinona)/antagonistas & inibidores , NAD(P)H Desidrogenase (Quinona)/química , Neoplasias/química , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia , Niacinamida/química , Niacinamida/farmacologia , Polimorfismo Genético , Ligação Proteica , Quinona Redutases/antagonistas & inibidores , Quinona Redutases/química
17.
Biochemistry ; 58(22): 2594-2607, 2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-31075192

RESUMO

PA0660 from Pseudomonas aeruginosa PAO1 is currently classified as a hypothetical nitronate monooxygenase (NMO), but no evidence at the transcript or protein level has been presented. In this study, PA0660 was purified and its biochemical and kinetic properties were characterized. Absorption spectroscopy and mass spectrometry demonstrated a tightly, noncovalently bound FMN in the active site of the enzyme. Analytical ultracentrifugation showed that the enzyme exists as a dimer in solution. Despite its annotation, PA0660 did not exhibit nitronate monooxygenase activity. The enzyme could be reduced with NADPH or NADH with a marked preference for NADPH, as indicated by ∼30-fold larger kcat/ Km and kred/ Kd values. Turnover could be sustained with NAD(P)H and quinones, DCPIP, and to a lesser extent molecular oxygen. However, PA0660 did not turn over with methyl red, consistent with a lack of azoreductase activity. The enzyme turned over through a ping-pong bi-bi steady-state kinetic mechanism with NADPH and 1,4-benzoquinone showing a kcat value of 90 s-1. The rate constant for flavin reduction with saturating NADPH was 360 s-1, whereas that for flavin oxidation with 1,4-benzoquinone was 270 s-1, consistent with both hydride transfers from the pyridine nucleotide to the flavin and from the flavin to 1,4-benzoquinone being partially rate-limiting for enzyme turnover. A BlastP search and a multiple-sequence alignment analysis of PA0660 highlighted the presence of six conserved motifs in >1000 open reading frames currently annotated as hypothetical NMOs. Our results suggest that PA0660 should be classified as an NAD(P)H:quinone reductase and serve as a paradigm enzyme for a new class of enzymes.


Assuntos
Flavoproteínas/química , Pseudomonas aeruginosa/enzimologia , Quinona Redutases/química , Sequência de Aminoácidos , Ensaios Enzimáticos , Escherichia coli/genética , Mononucleotídeo de Flavina/química , Flavoproteínas/genética , Flavoproteínas/isolamento & purificação , Cinética , NADP/química , Naftoquinonas/química , Oxirredução , Quinona Redutases/genética , Quinona Redutases/isolamento & purificação , Alinhamento de Sequência
18.
Biochemistry ; 58(16): 2167-2175, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-30907577

RESUMO

The sodium-pumping NADH:quinone oxidoreductase (Na+-NQR) is a bacterial enzyme that oxidizes NADH, reduces ubiquinone, and translocates Na+ across the membrane. We previously identified three acidic residues in the membrane-spanning helices, near the cytosol, NqrB-D397, NqrD-D133, and NqrE-E95, as candidates likely to be involved in Na+ uptake, and replacement of any one of them by a non-acidic residue affects the Na+-dependent kinetics of the enzyme. Here, we have inquired further into the role of the NqrE-E95 residue by constructing a series of mutants in which this residue is replaced by amino acids with charges and/or sizes different from those of the glutamate of the wild-type enzyme. All of the mutants showed altered steady-state kinetics with the acceleration of turnover by Na+ greatly diminished. Selected mutants were studied by other physical methods. Membrane potential measurements showed that NqrE-E95D and A are significantly less efficient in ion transport. NqrE-E95A, Q, and D were studied by transient kinetic measurements of the reduction of the enzyme by NADH. In all three cases, the results indicated inhibition of the electron-transfer step in which the FMNC becomes reduced. This is the first Na+-dependent step and is associated with Na+ uptake by the enzyme. Electrochemical measurements on NqrE-E95Q showed that the Na+ dependence of the redox potential of the FMN cofactors has been lost. The fact that the mutations at the NqrE-E95 site have specific effects related to translocation of Na+ and Li+ strongly indicates a definite role for NqrE-E95 in the cation transport process of Na+-NQR.


Assuntos
Proteínas de Bactérias/metabolismo , Ácido Glutâmico/metabolismo , NADH NADPH Oxirredutases/metabolismo , Quinona Redutases/metabolismo , Sódio/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Membrana Celular/metabolismo , Ácido Glutâmico/química , Ácido Glutâmico/genética , Transporte de Íons/genética , Cinética , Modelos Moleculares , Mutação de Sentido Incorreto , NADH NADPH Oxirredutases/química , NADH NADPH Oxirredutases/genética , Conformação Proteica , Quinona Redutases/química , Quinona Redutases/genética , Vibrio cholerae/enzimologia , Vibrio cholerae/genética
19.
J Pharmacol Exp Ther ; 368(1): 59-65, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30389722

RESUMO

In the 1980s, researchers used binding studies to show that there is a melatonin binding site in addition to the receptors described previously. It was first termed ML2 and then, in 1999, MT3 Purification efforts led to its identification as quinone reductase 2. Several lines of evidence support the notion that MT3 is the same as quinone reductase 2, including the detection and characterization of MT3 whenever quinone reductase 2 was added to various systems under various conditions. This evidence is discussed in this review, which summarizes the results of relevant cellular and animal experiments. The recent discovery that the quinone reductase 2 enzyme can be partly membrane-associated may unite the current body of evidence and allow us to conclude definitively that the third melatonin binding site, MT3 , is indeed quinone reductase 2.


Assuntos
Quinona Redutases/metabolismo , Receptores de Melatonina/metabolismo , Animais , Sítios de Ligação/fisiologia , Humanos , Quinona Redutases/química , Receptores de Melatonina/química
20.
J Biol Chem ; 294(2): 679-696, 2019 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-30425100

RESUMO

NADH-quinone oxidoreductase (respiratory complex I) couples NADH-to-quinone electron transfer to the translocation of protons across the membrane. Even though the architecture of the quinone-access channel in the enzyme has been modeled by X-ray crystallography and cryo-EM, conflicting findings raise the question whether the models fully reflect physiologically relevant states present throughout the catalytic cycle. To gain further insights into the structural features of the binding pocket for quinone/inhibitor, we performed chemical biology experiments using bovine heart sub-mitochondrial particles. We synthesized ubiquinones that are oversized (SF-UQs) or lipid-like (PC-UQs) and are highly unlikely to enter and transit the predicted narrow channel. We found that SF-UQs and PC-UQs can be catalytically reduced by complex I, albeit only at moderate or low rates. Moreover, quinone-site inhibitors completely blocked the catalytic reduction and the membrane potential formation coupled to this reduction. Photoaffinity-labeling experiments revealed that amiloride-type inhibitors bind to the interfacial domain of multiple core subunits (49 kDa, ND1, and PSST) and the 39-kDa supernumerary subunit, although the latter does not make up the channel cavity in the current models. The binding of amilorides to the multiple target subunits was remarkably suppressed by other quinone-site inhibitors and SF-UQs. Taken together, the present results are difficult to reconcile with the current channel models. On the basis of comprehensive interpretations of the present results and of previous findings, we discuss the physiological relevance of these models.


Assuntos
Amilorida/química , Benzoquinonas/química , Complexo I de Transporte de Elétrons/química , Complexo I de Transporte de Elétrons/metabolismo , Mitocôndrias/metabolismo , Amilorida/síntese química , Amilorida/metabolismo , Animais , Benzoquinonas/metabolismo , Sítios de Ligação , Catálise , Bovinos , Cristalografia por Raios X , Transporte de Elétrons , Complexo I de Transporte de Elétrons/antagonistas & inibidores , Complexo I de Transporte de Elétrons/genética , Cinética , Mitocôndrias/química , Mitocôndrias/genética , Marcadores de Fotoafinidade , Quinona Redutases/química , Quinona Redutases/genética , Quinona Redutases/metabolismo , Ubiquinona/química , Ubiquinona/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...