Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Pharm Pharmacol ; 76(4): 354-367, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38330446

RESUMO

OBJECTIVES: Reportedly, ganoderic acid A (GA-A) increases the sensitivity of hepatocellular carcinoma cells to cisplatin (DDP) chemotherapy. Therefore, this study aims to fathom the influence of GA-A on lung cancer cells. METHODS: After the construction of A549/DDP cells through exposure to DDP, the effects of GA-A on A549 and A549/DDP cells were revealed by cellular functional assays, western blot and quantitative reverse transcription PCR (qRT-PCR). The DDP-resistant lung cancer tumor was established in vivo, followed by further validation of the mechanism of GA-A. RESULTS: GA-A suppressed the viability, migration, and invasion while downregulating Beclin and autophagy marker LC3II/LC3I levels and upregulating P62 levels in A549 and A549/DDP cells. These effects were reversed by circFLNA overexpression. Also, GA-A reinforced the sensitivity of A549/DDP cells to DDP, elevated the apoptosis and regulated the circFLNA/miR-486-3p/cytochrome P450 family 1 subfamily A member 1 (CYP1A1)/X-ray repair cross-complementing 1 (XRCC1) axis. The reversal effects of circFLNA overexpression on GA-A-induced viability and apoptosis of A549/DDP cells could all be counteracted in the presence of 3MA. GA-A inhibited lung cancer tumor growth and blocked autophagy. CONCLUSION: GA-A suppresses autophagy by regulating the circFLNA/miR-486-3p/CYP1A1/XRCC1 axis to strengthen the sensitivity of lung cancer cells to DDP.


Assuntos
Antineoplásicos , Autofagia , Carcinoma Pulmonar de Células não Pequenas , Ácidos Heptanoicos , Lanosterol , Neoplasias Pulmonares , MicroRNAs , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Autofagia/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células , Cisplatino/farmacologia , Citocromo P-450 CYP1A1/efeitos dos fármacos , Citocromo P-450 CYP1A1/metabolismo , Resistencia a Medicamentos Antineoplásicos , Ácidos Heptanoicos/farmacologia , Ácidos Heptanoicos/uso terapêutico , Lanosterol/análogos & derivados , Lanosterol/farmacologia , Lanosterol/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , MicroRNAs/efeitos dos fármacos , MicroRNAs/metabolismo , RNA Circular/efeitos dos fármacos , RNA Circular/metabolismo , Proteína 1 Complementadora Cruzada de Reparo de Raio-X/efeitos dos fármacos , Proteína 1 Complementadora Cruzada de Reparo de Raio-X/metabolismo
2.
Curr Mol Pharmacol ; 16(8): 870-880, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36635928

RESUMO

BACKGROUND: Nasopharyngeal carcinoma (NPC) is a usual head and neck malignancy. Guggulsterone (GS) has potential in cancer chemoprophylaxis and treatment, but its therapeutic effect on NPC is unknown. We aimed to explore whether GS could promote the secretion of exosomal circFIP1L1 from NPC cells and its regulatory mechanism. METHODS: NPC tissues and adjacent tissues were collected from NPC patients. Human nasopharyngeal epithelial cell lines (NP69) and NPC lines (5-8F, CNE1, and HNE1) were used for in vitro experiments. HNE1 cells were treated with GS (20, 40, 60 µmol/L). The expressions of miR-125a-5p and circFIP1L1 were evaluated by qRT-PCR. Cell proliferation and apoptosis abilities were measured by CCK-8 and flow cytometry. HNE1 cell exosomes were extracted and identified, and the levels of VEGFA and VEGFR2 were detected by ELISA. Then miR-125a-5p was knocked down and overexpressed. HUVECs angiogenesis was determined by the tube formation assay. qRT-PCR and Western blot were utilized to evaluate the expressions of VEGFA, MMP-2, MMP-9, and ICAM-1 in HUVECs. RESULTS: miR-125a-5p was highly expressed in NPC tissues and cells. GS promoted the secretion of exosomal circFIP1L1 from HNE1 cells to affect HUVECs proliferation and angiogenesis. Overexpression of miR-125a-5p accelerated HUVECs proliferation and angiogenesis. Knocking down miR-125a- 5p inhibited VEGFA expression. In addition, exosomal circFIP1L1 sponged miR-125a-5p, inhibiting the VEGFA pathway to repress HUVECs angiogenesis. CONCLUSIONS: GS promoted exosomal circFIP1L1 in NPC cells to mediate miR-125a-5p/VEGFA axis affecting tumor angiogenesis.


Assuntos
Exossomos , MicroRNAs , Neoplasias Nasofaríngeas , Humanos , Linhagem Celular Tumoral , Proliferação de Células , MicroRNAs/genética , MicroRNAs/metabolismo , Carcinoma Nasofaríngeo/metabolismo , Neoplasias Nasofaríngeas/tratamento farmacológico , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/patologia , Fator A de Crescimento do Endotélio Vascular/genética , RNA Circular/efeitos dos fármacos , RNA Circular/genética , Exossomos/efeitos dos fármacos , Exossomos/genética
3.
Phytother Res ; 37(5): 1850-1863, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36515407

RESUMO

Evidence exists suggesting the anti-depressive activities of geniposide (GP), a major compound in Gardenia jasminoides Ellis. Accordingly, the present study attempts to explore the anti-depressive mechanism of GP in chronic unpredictable mild stress (CUMS)-induced depression-like behaviors of mice. CUMS-induced mice were given GP daily and subjected to behavioral tests to observe the effect of GP on the depression-like behaviors. It was noted that GP administration reduced depression-like behaviors in CUMS mice. Transcriptome sequencing was conducted in three control and three CUMS mice. Differentially expressed circRNAs, lncRNAs and mRNAs were then screened by bioinformatics analyses. Intersection analysis of the transcriptome sequencing results with the bioinformatics analysis results was followed to identify the candidate targets. We found that Gata2 alleviated depression-like behaviors via the metabolism- and synapse-related pathways. Gata2 was a target of miR-25-3p, which had binding sites to circ_0008405 and Oip5os1. circ_0008405 and Oip5os1 competitively bound to miR-25-3p to release the expression of Gata2. GP administration ameliorated depression-like behaviors in CUMS mice through regulation of the circ_0008405/miR-25-3p/Gata2 and Oip5os1/miR-25-3p/Gata2 crosstalk networks. Taken together, GP may exert a potential antidepressant-like effect on CUMS mice, which is ascribed to regulation of the circ_0008405/miR-25-3p/Gata2 and Oip5os1/miR-25-3p/Gata2 crosstalk networks.


Assuntos
Transtorno Depressivo , MicroRNAs , Animais , Camundongos , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Depressão/tratamento farmacológico , Depressão/metabolismo , Transtorno Depressivo/tratamento farmacológico , Fator de Transcrição GATA2 , MicroRNAs/efeitos dos fármacos , MicroRNAs/metabolismo , RNA Circular/efeitos dos fármacos , RNA Longo não Codificante
4.
Anticancer Drugs ; 33(1): e711-e719, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34486534

RESUMO

In our paper, the effects of As4S4 treatments on the growth and migration of gastric cancer (GC) cells were explored, and the potential underlying molecular mechanisms were also identified. Cell viability was evaluated by cell counting kit 8 assay. The expression of Ki-67 was examined using immunofluorescence staining. Cell apoptosis was assessed by flow cytometry. The migratory and invasion abilities of cells were determined using Transwell assay. The mRNA and protein levels of related gene were examined by RT-qPCR and western blotting, respectively. CircRNAs chip was performed to identify the differentiated expression of circRNAs in GC cells following the treatment with As4S4. Our results revealed that the proliferation, migration and invasion of GC cells were remarkably suppressed by the treatment with As4S4, while cell apoptosis was promoted. Furthermore, circRNA_ASAP2 was a novel target of As4S4 in GC, and it is involved in As4S4-modulated biological behavior alterations in GC cells. In addition, the activities of the Wnt/ß-catenin signaling in GC cells were affected by the overexpression circRNA_ASAP2 and the treatment with As4S4. Moreover, the behavior changes in GC cells caused by the knockdown of circRNA_ASAP2 were reversed by the treatment with Wnt agonist SKL2001. In summary, As4S4 could function as an antitumor agent in GC through regulating the circRNA_ASAP2/Wnt/ß-catenin pathway, which in turn influences the growth and metastasis of GC cells.


Assuntos
Arsenicais/farmacologia , Proteínas Ativadoras de GTPase/efeitos dos fármacos , RNA Circular/efeitos dos fármacos , Neoplasias Gástricas/patologia , Sulfetos/farmacologia , Via de Sinalização Wnt/efeitos dos fármacos , beta Catenina/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Humanos , Antígeno Ki-67/efeitos dos fármacos
5.
Genes (Basel) ; 12(12)2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34946953

RESUMO

Despite the enormous burden of Alzheimer's disease and related dementias (ADRD) on patients, caregivers, and society, only a few treatments with limited efficacy are currently available. While drug development conventionally focuses on disease-associated proteins, RNA has recently been shown to be druggable for therapeutic purposes as well. Approximately 70% of the human genome is transcribed into non-protein-coding RNAs (ncRNAs) such as microRNAs, long ncRNAs, and circular RNAs, which can adopt diverse structures and cellular functions. Many ncRNAs are specifically enriched in the central nervous system, and their dysregulation is implicated in ADRD pathogenesis, making them attractive therapeutic targets. In this review, we first detail why targeting ncRNAs with small molecules is a promising therapeutic strategy for ADRD. We then outline the process from discovery to validation of small molecules targeting ncRNAs in preclinical studies, with special emphasis on primary high-throughput screens for identifying lead compounds. Screening strategies for specific ncRNAs will also be included as examples. Key challenges-including selecting appropriate ncRNA targets, lack of specificity of small molecules, and general low success rate of neurological drugs and how they may be overcome-will be discussed throughout the review.


Assuntos
Doença de Alzheimer/tratamento farmacológico , RNA não Traduzido/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Doença de Alzheimer/genética , Demência/tratamento farmacológico , Demência/genética , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , MicroRNAs/efeitos dos fármacos , MicroRNAs/genética , RNA Circular/efeitos dos fármacos , RNA Circular/genética , RNA Longo não Codificante/efeitos dos fármacos , RNA Longo não Codificante/genética , RNA não Traduzido/genética
6.
J Ovarian Res ; 14(1): 158, 2021 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-34784955

RESUMO

BACKGROUND: Curcumin has a potential therapeutic role in ovarian cancer. However, whether curcumin plays anti-cancer role in ovarian cancer by mediating the circular RNA (circRNA)/microRNA (miRNA)/mRNA network is still unclear. METHODS: The expression of circ-PLEKHM3, miR-320a, and suppressor of morphogenesis in genitalia 1 (SMG1) was detected via qRT-PCR. Cell viability, colony-formation ability and apoptosis were analyzed via cell counting kit-8 assay, colony formation analysis, and flow cytometry. Protein expression was measured using western blot. The in vivo experiments were performed using a xenograft model. Target association was evaluated via dual-luciferase reporter analysis and RIP assay. RESULTS: Curcumin suppressed ovarian cancer cell proliferation and promoted apoptosis. Circ-PLEKHM3 was downregulated in ovarian cancer, and its expression could be promoted by curcumin treatment. Circ-PLEKHM3 overexpression exacerbated the effect of curcumin on ovarian cancer cell proliferation and apoptosis, as well as anti-tumor effect. MiR-320a was targeted by circ-PLEKHM3. The inhibition effect of circ-PLEKHM3 overexpression on cell proliferation and the enhancing effect on cell apoptosis could be reversed by miR-320a mimic. SMG1 was targeted by miR-320a, and its knockdown also reversed the regulation of miR-320a inhibitor on the proliferation and apoptosis of ovarian cancer cells. In addition, circ-PLEKHM3 could upregulate SMG1 expression via sponging miR-320a. CONCLUSION: Curcumin restrained proliferation and facilitated apoptosis in ovarian cancer by regulating the circ-PLEKHM3/miR-320a/SMG1 axis.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Epitelial do Ovário/genética , Proliferação de Células/efeitos dos fármacos , Curcumina/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , MicroRNAs/efeitos dos fármacos , Neoplasias Ovarianas/genética , Proteínas Serina-Treonina Quinases/efeitos dos fármacos , RNA Circular/efeitos dos fármacos , Animais , Carcinoma Epitelial do Ovário/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Feminino , Humanos , Técnicas In Vitro , Camundongos , Camundongos Nus , MicroRNAs/genética , Transplante de Neoplasias , Neoplasias Ovarianas/metabolismo , Proteínas Serina-Treonina Quinases/genética , RNA Circular/genética
7.
BMC Anesthesiol ; 21(1): 213, 2021 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-34479497

RESUMO

BACKGROUND: Sevoflurane (Sev) has been reported to inhibit cancer development, and sevoflurane treatment in cancers is implicated with the deregulation of specific non-coding RNAs (ncRNAs). This study aimed to investigate the relationship between sevoflurane and circular RNA reelin (circRELN) in glioma. METHODS: The expression of circRELN, microRNA-1290 (miR-1290) and RAR-related orphan receptor A (RORA) was measured by quantitative real-time PCR (qPCR). Cell proliferative capacity was assessed by cell counting kit-8 (CCK-8) and colony formation assays. Cell apoptosis and cell cycle distribution were monitored by flow cytometry assay. Cell migration was assessed by wound healing assay and transwell assay, and cell invasion was assessed by transwell assay. The protein levels of matrix metalloproteinase-2 (MMP2), MMP9 and RORA were quantified by western blot. Tumor growth in vivo was assessed by Xenograft models. The binding relationship between miR-1290 and circRELN or RORA was verified by dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay. RESULTS: We found that circRELN expression was declined in glioma tissues and cells, while Sev treatment enhanced circRELN expression. In function, Sev notably inhibited glioma cell proliferation, migration and invasion and promoted apoptosis and cell cycle arrest, while circRELN knockdown reversed these effects. MiR-1290 served as a target of circRELN, and glioma cell malignant phenotypes recovered by circRELN knockdown were partly repressed by miR-1290 deficiency. In addition, RORA was a target of miR-1290, and glioma cell malignant phenotypes promoted by miR-1290 restoration were partly blocked by RORA overexpression. CircRELN regulated RORA expression by targeting miR-1290. In Xenograft models, Sev inhibited tumor growth by upregulating circRELN. CONCLUSION: Sev blocked the progression of glioma by increasing circRELN expression, and circRELN played roles in glioma partly by regulating the miR-1290/RORA network.


Assuntos
Anestésicos Inalatórios/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Glioma/tratamento farmacológico , MicroRNAs/metabolismo , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , RNA Circular/metabolismo , Sevoflurano/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Glioma/metabolismo , Glioma/patologia , Humanos , Invasividade Neoplásica , RNA Circular/efeitos dos fármacos , Proteína Reelina/metabolismo , Regulação para Cima
8.
J Ovarian Res ; 14(1): 30, 2021 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-33563314

RESUMO

BACKGROUND: Propofol is a kind of common intravenous anaesthetic agent that plays an anti-tumor role in a variety of cancers, including ovarian cancer. However, the working mechanism of Propofol in ovarian cancer needs further exploration. METHODS: The viability and metastasis of ovarian cancer cells were assessed by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and transwell assays. Flow cytometry was used to evaluate the cell cycle and apoptosis. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to examine the abundance of circular RNA vacuolar protein sorting 13 homolog C (circVPS13C) and microRNA-145 (miR-145). The target relationship between miR-145 and circVPS13C was predicted by circinteractome database and verified by dual-luciferase reporter assay, RNA-binding protein immunoprecipitation (RIP) assay and RNA-pull down assay. Western blot assay was used to detect the levels of phosphorylated extracellular regulated MAP kinase (p-ERK), ERK, p-MAP kinse-ERK kinase (p-MEK) and MEK, in ovarian cancer cells. RESULTS: Propofol treatment suppressed the viability, cell cycle and motility and elevated the apoptosis rate of ovarian cancer cells. Propofol up-regulated miR-145 in a dose-dependent manner. Propofol exerted an anti-tumor role partly through up-regulating miR-145. MiR-145 was a direct target of circVPS13C. Propofol suppressed the progression of ovarian cancer through up-regulating miR-145 via suppressing circVPS13C. Propofol functioned through circVPS13C/miR-145/MEK/ERK signaling in ovarian cancer cells. CONCLUSION: Propofol suppressed the proliferation, cell cycle, migration and invasion and induced the apoptosis of ovarian cancer cells through circVPS13C/miR-145/MEK/ERK signaling in vitro.


Assuntos
Anestésicos Intravenosos/farmacologia , Apoptose/efeitos dos fármacos , Carcinoma Epitelial do Ovário/genética , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , MicroRNAs/efeitos dos fármacos , Neoplasias Ovarianas/genética , Propofol/farmacologia , RNA Circular/efeitos dos fármacos , Carcinoma Epitelial do Ovário/metabolismo , Carcinoma Epitelial do Ovário/patologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Feminino , Citometria de Fluxo , Células HEK293 , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Proteínas/genética , RNA Circular/genética , RNA Circular/metabolismo , Reação em Cadeia da Polimerase em Tempo Real
9.
Ecotoxicol Environ Saf ; 208: 111672, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33396004

RESUMO

Along with the increasing application of graphene quantum dots (GQDs) in the fields of biomedicine and neuroscience, it is important to assess the probably adverse effects of GQDs in the central nervous system (CNS) but their underlying toxic mechanisms is still unclear. In this study, we evaluate the molecular mechanisms associated with circular RNAs (circRNAs) of nitrogen-doped GQDs (N-GQDs) and amino-functionalized GQDs (A-GQDs) damaging the cell viability and cellular structure in microglia by an integrative analysis of RNA microarray. The differentially expressed circRNA (DEcircRNAs)-miRNA- differentially expressed mRNA (DEmRNAs) regulatory networks were conducted in BV2 microglial cells treated with 25 µg/mL N-GQDs, 100 µg/mL N-GQDs and 100 µg/mL A-GQDs. Based on that, the protein-coding genes in each ceRNA network were collected to do bio-functional analysis to evaluate signaling pathways that were indirectly mediated by circRNAs. Some pathways that could play indispensable roles in the neurotoxicity of N-GQDs or both two kinds of GQDs were found. Low-dosed N-GQDs exposure mainly induced inflammatory action in microglia, while high-dosed N-GQDs and A-GQDs exposure both affect olfactory transduction and GABAergic synapse. Meanwhile, several classical signaling pathways, including mTOR, ErbB and MAPK, could make diverse contributions to the neurotoxicity of both two kinds of GQDs. These circRNAs could be toxic biomarkers or protective targets in neurotoxicity of GQDs. More importantly, they emphasized the necessity of comprehensive analysis of latent molecular mechanisms through epigenetics approaches in biosafety assessment of graphene-based nanomaterials.


Assuntos
Redes Reguladoras de Genes/efeitos dos fármacos , Grafite/toxicidade , Microglia/efeitos dos fármacos , Pontos Quânticos/toxicidade , RNA Circular/efeitos dos fármacos , Animais , Biomarcadores , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Grafite/química , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Microglia/metabolismo , RNA Circular/genética , RNA Circular/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais/efeitos dos fármacos
10.
Neuroreport ; 32(1): 52-60, 2021 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-33252475

RESUMO

BACKGROUND: Lidocaine is well known as a local anesthetic that has been reported to play an antitumor role in numerous cancers, including glioma. Circular RNAs (circRNAs) play multiple biological roles in cancers. The aim of this study was to determine the effects of lidocaine in glioma in vitro and in vivo and explore functional mechanisms. METHODS: The effects of lidocaine on glioma progression were investigated by cell proliferation, migration and invasion using 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay, colony formation assay and transwell assay. The expression of CD133 and glial fibrillary acidic protein (GFAP) was quantified by western blot to assess cell differentiation. The expression of circEZH2 and miR-181b-5p was detected by a quantitative real-time PCR (qRT-PCR). The target relationship between circEZH2 and miR-181b-5p was verified by dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay. The effect of lidocaine on tumor growth in vivo was investigated by establishing Xenograft models. RESULTS: Lidocaine inhibited proliferation, migration, invasion and induced differentiation of glioma cells in vitro. Lidocaine suppressed the expression of circEZH2, and circEZH2 was highly expressed in glioma tissues and cells. CircEZH2 overexpression partly inhibited the function of lidocaine. CircEZH2 was a sponge of miR-181b-5p, and miR-181b-5p was downregulated in glioma tissues and cells. Besides, miR-181b-5p restoration reversed the effects of circEZH2 overexpression to repress the malignant behaviors of glioma cells. In addition, lidocaine mediated the circEZH2/miR-181b-5p axis to inhibit tumor growth in vivo. CONCLUSION: Lidocaine suppressed glioma progression by modulating the circEZH2/miR-181b-5p pathway.


Assuntos
Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioma/patologia , Lidocaína/farmacologia , MicroRNAs/metabolismo , Anestésicos Locais/farmacologia , Animais , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Proteína Potenciadora do Homólogo 2 de Zeste/efeitos dos fármacos , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , MicroRNAs/efeitos dos fármacos , Invasividade Neoplásica/genética , RNA Circular/efeitos dos fármacos , RNA Circular/metabolismo , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Circ Res ; 127(4): e108-e125, 2020 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-32392088

RESUMO

RATIONALE: Doxorubicin is one of the most potent antitumor agents available; however, its clinical use is restricted because it poses a risk of severe cardiotoxicity. Previous work has established that CircITCH (circular RNA ITCH [E3 ubiquitin-protein ligase]) is a broad-spectrum tumor-suppressive circular RNA and that its host gene, ITCH (E3 ubiquitin protein ligase), is involved in doxorubicin-induced cardiotoxicity (DOXIC). Whether CircITCH plays a role in DOXIC remains unknown. OBJECTIVE: We aimed to dissect the role of CircITCH in DOXIC and further decipher its potential mechanisms. METHODS AND RESULTS: Circular RNA sequencing was performed to screen the potentially involved circRNAs in DOXI pathogenesis. Quantitative polymerase chain reaction and RNA in situ hybridization revealed that CircITCH was downregulated in doxorubicin-treated human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) as well as in the autopsy specimens from cancer patients who suffered from doxorubicin-induced cardiomyopathy. Cell death/viability assays, detection of cardiomyocyte necrosis markers, microelectrode array, and cardiomyocyte functional assays revealed that CircITCH ameliorated doxorubicin-induced cardiomyocyte injury and dysfunction. Detection of cellular/mitochondrial oxidative stress and DNA damage markers verified that CircITCH alleviated cellular/mitochondrial oxidative stress and DNA damage induced by doxorubicin. RNA pull-down assays, Ago2 immunoprecipitation and double fluorescent in situ hybridization identified miR-330-5p as a direct target of CircITCH. Moreover, CircITCH was found to function by acting as an endogenous sponge that sequestered miR-330-5p. Bioinformatic analysis, luciferase reporter assays, and quantitative polymerase chain reaction showed that SIRT6 (sirtuin 6), BIRC5 (baculoviral IAP repeat containing 5, Survivin), and ATP2A2 (ATPase sarcoplasmic/endoplasmic reticulum Ca2+ transporting 2, SERCA2a [SR Ca2+-ATPase 2]) were direct targets of miR-330-5p and that they were regulated by the CircITCH/miR-330-5p axis in DOXIC. Further experiments demonstrated that CircITCH-mediated alleviation of DOXIC was dependent on the interactions between miR-330-5p and the 3'-UTRs of SIRT6, BIRC5, and ATP2A2 mRNA. Finally, AAV9 (adeno-associated virus serotype 9) vector-based overexpression of the well-conserved CircITCH partly prevented DOXIC in mice. CONCLUSIONS: CircITCH represents a novel therapeutic target for DOXIC because it acts as a natural sponge of miR-330-5p, thereby upregulating SIRT6, Survivin and SERCA2a to alleviate doxorubicin-induced cardiomyocyte injury and dysfunction.


Assuntos
Antibióticos Antineoplásicos/efeitos adversos , Doxorrubicina/efeitos adversos , MicroRNAs/metabolismo , RNA Circular/fisiologia , Proteínas Repressoras/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Sirtuínas/metabolismo , Survivina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Regiões 3' não Traduzidas/genética , Adenovírus Humanos , Animais , Proteínas Argonautas/análise , Sítios de Ligação , Biomarcadores , Cardiotoxicidade/genética , Cardiotoxicidade/metabolismo , Cardiotoxicidade/terapia , Morte Celular , Sobrevivência Celular , Dano ao DNA , Regulação para Baixo , Inativação Gênica , Genes Supressores de Tumor , Humanos , Imunoprecipitação/métodos , Hibridização in Situ Fluorescente/métodos , Camundongos , MicroRNAs/genética , Mitocôndrias Cardíacas/metabolismo , Mutação , Contração Miocárdica/fisiologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Necrose , Estresse Oxidativo , RNA Circular/efeitos dos fármacos , Proteínas Repressoras/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , Survivina/genética , Ubiquitina-Proteína Ligases/genética , Regulação para Cima
12.
Oncogene ; 39(12): 2493-2508, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31996784

RESUMO

Early studies indicated that estrogen receptor α (ERα) might impact the progression of hepatocellular carcinoma (HCC). However, the detailed mechanisms, especially its linkage to the gelsolin (GSN)-mediated cell invasion, remain unclear. Here we found that ERα could decrease HCC cell invasion via suppressing the circular RNA-SMG1.72 (circRNA-SMG1.72) expression via transcriptional regulation through directly binding to the 5' promoter region of its host gene SMG1, We showed that ERα-suppressed circ-SMG1.72 could sponge and inhibit the expression of the microRNA (miRNA, miR), miR-141-3p, which could then result in increasing the GSN messenger RNA translation via reduced miR binding to its 3' untranslated region (3'UTR). The preclinical study using an in vivo mouse model with orthotopic xenografts of HCC cells confirmed the in vitro data, and the human HCC clinical sample survey and tissue staining also confirmed the linkage of ERα/miR-141-3p/GSN signaling to the HCC progression. Together, our findings suggest that ERα can suppress HCC cell invasion via altering the ERα/circRNA-SMG1.72/miR-141-3p/GSN signaling, and targeting this newly identified signaling with small molecules may help in the development of novel therapies to better suppress the HCC progression.


Assuntos
Carcinoma Hepatocelular/metabolismo , Receptor alfa de Estrogênio/metabolismo , Gelsolina/metabolismo , Neoplasias Hepáticas/metabolismo , MicroRNAs/metabolismo , Invasividade Neoplásica , Proteínas Serina-Treonina Quinases/metabolismo , Antineoplásicos/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Receptor alfa de Estrogênio/antagonistas & inibidores , Gelsolina/antagonistas & inibidores , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Neoplasias Hepáticas/tratamento farmacológico , MicroRNAs/antagonistas & inibidores , Invasividade Neoplásica/prevenção & controle , RNA Circular/efeitos dos fármacos , RNA Neoplásico/efeitos dos fármacos , RNA Neoplásico/metabolismo , Transdução de Sinais/efeitos dos fármacos , Taxa de Sobrevida
13.
Can Respir J ; 2019: 9107806, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31885751

RESUMO

Background: The small molecule inhibitor XAV939 could inhibit the proliferation and promote the apoptosis of non-small cell lung cancer (NSCLC) cells. This study was conducted to identify the key circular RNAs (circRNAs) and microRNAs (miRNAs) in XAV939-treated NSCLC cells. Methods: After grouping, the NCL-H1299 cells in the treatment group were treated by 10 µM XAV939 for 12 h. RNA-sequencing was performed, and then the differentially expressed circRNAs (DE-circRNAs) were analyzed by the edgeR package. Using the clusterprofiler package, enrichment analysis for the hosting genes of the DE-circRNAs was performed. Using Cytoscape software, the miRNA-circRNA regulatory network was built for the disease-associated miRNAs and the DE-circRNAs. The DE-circRNAs that could translate into proteins were predicted using circBank database and IRESfinder tool. Finally, the transcription factor (TF)-circRNA regulatory network was built by Cytoscape software. In addition, A549 and HCC-827 cell treatment with XAV939 were used to verify the relative expression levels of key DE-circRNAs. Results: There were 106 DE-circRNAs (including 61 upregulated circRNAs and 45 downregulated circRNAs) between treatment and control groups. Enrichment analysis for the hosting genes of the DE-circRNAs showed that ATF2 was enriched in the TNF signaling pathway. Disease association analysis indicated that 8 circRNAs (including circ_MDM2_000139, circ_ATF2_001418, circ_CDC25C_002079, and circ_BIRC6_001271) were correlated with NSCLC. In the miRNA-circRNA regulatory network, let-7 family members⟶circ_MDM2_000139, miR-16-5p/miR-134-5p⟶circ_ATF2_001418, miR-133b⟶circ_BIRC6_001271, and miR-221-3p/miR-222-3p⟶circ_CDC25C_002079 regulatory pairs were involved. A total of 47 DE-circRNAs could translate into proteins. Additionally, circ_MDM2_000139 was targeted by the TF POLR2A. The verification test showed that the relative expression levels of circ_MDM2_000139, circ_CDC25C_002079, circ_ATF2_001418, and circ_DICER1_000834 in A549 and HCC-827 cell treatment with XAV939 were downregulated comparing with the control. Conclusions: Let-7 family members and POLR2A targeting circ_MDM2_000139, miR-16-5p/miR-134-5p targeting circ_ATF2_001418, miR-133b targeting circ_BIRC6_001271, and miR-221-3p/miR-222-3p targeting circ_CDC25C_002079 might be related to the mechanism in the treatment of NSCLC by XAV939.


Assuntos
Compostos Heterocíclicos com 3 Anéis/farmacologia , MicroRNAs/efeitos dos fármacos , RNA Circular/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Fator 2 Ativador da Transcrição/genética , Apoptose/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Proteínas Inibidoras de Apoptose/genética , Proteínas Proto-Oncogênicas c-mdm2/genética , Análise de Sequência de RNA , Fosfatases cdc25/genética
14.
Neurosci Lett ; 701: 146-153, 2019 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-30797870

RESUMO

Methamphetamine (METH) has been a worldwide health threat for years. Recent studies have reported that circular RNA (circRNA) are highly abundant and dynamically expressed in brain. However, connections between circRNA and METH-induced neurotoxicity remains indefinite. In the present study, primary cortical neurons were treated with METH in vitro. We profiled circRNA via high-throughput RNA sequencing and identified 2458 circRNAs. Bioinformatics analysis was performed to predict potential functions of these circRNAs which revealed several relevant pathways including 'morphine addiction' that may contribute to the pathogenesis of neuronal damage by METH. Especially, a METH-addicted mouse model was established with conditional place preference paradigm for validation of screened circRNAs. At last, we established co-expression networks of circRNAs with miRNAs and mRNAs to exhibit potential association among them. In conclusion, we firstly unveiled a role of circRNAs in METH-induced neuronal damage and METH addiction.


Assuntos
Metanfetamina/farmacologia , Neurônios/efeitos dos fármacos , RNA Circular/efeitos dos fármacos , RNA Circular/genética , Animais , Sobrevivência Celular , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Sequenciamento de Nucleotídeos em Larga Escala , Masculino , Metanfetamina/toxicidade , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs , Cultura Primária de Células , RNA , RNA Mensageiro
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...