Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28.029
Filtrar
1.
J Transl Med ; 22(1): 423, 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38704606

RESUMO

BACKGROUND: Cancer stem cells (CSCs) and long non-coding RNAs (lncRNAs) are known to play a crucial role in the growth, migration, recurrence, and drug resistance of tumor cells, particularly in triple-negative breast cancer (TNBC). This study aims to investigate stemness-related lncRNAs (SRlncRNAs) as potential prognostic indicators for TNBC patients. METHODS: Utilizing RNA sequencing data and corresponding clinical information from the TCGA database, and employing Weighted Gene Co-expression Network Analysis (WGCNA) on TNBC mRNAsi sourced from an online database, stemness-related genes (SRGs) and SRlncRNAs were identified. A prognostic model was developed using univariate Cox and LASSO-Cox analysis based on SRlncRNAs. The performance of the model was evaluated using Kaplan-Meier analysis, ROC curves, and ROC-AUC. Additionally, the study delved into the underlying signaling pathways and immune status associated with the divergent prognoses of TNBC patients. RESULTS: The research identified a signature of six SRlncRNAs (AC245100.6, LINC02511, AC092431.1, FRGCA, EMSLR, and MIR193BHG) for TNBC. Risk scores derived from this signature were found to correlate with the abundance of plasma cells. Furthermore, the nominated chemotherapy drugs for TNBC exhibited considerable variability between different risk score groups. RT-qPCR validation confirmed abnormal expression patterns of these SRlncRNAs in TNBC stem cells, affirming the potential of the SRlncRNAs signature as a prognostic biomarker. CONCLUSION: The identified signature not only demonstrates predictive power in terms of patient outcomes but also provides insights into the underlying biology, signaling pathways, and immune status associated with TNBC prognosis. The findings suggest the possibility of guiding personalized treatments, including immune checkpoint gene therapy and chemotherapy strategies, based on the risk scores derived from the SRlncRNA signature. Overall, this research contributes valuable knowledge towards advancing precision medicine in the context of TNBC.


Assuntos
Simulação por Computador , Regulação Neoplásica da Expressão Gênica , Células-Tronco Neoplásicas , RNA Longo não Codificante , Neoplasias de Mama Triplo Negativas , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Humanos , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/imunologia , Prognóstico , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Feminino , Resultado do Tratamento , Animais , Estimativa de Kaplan-Meier , Redes Reguladoras de Genes , Pessoa de Meia-Idade , Linhagem Celular Tumoral , Curva ROC , Perfilação da Expressão Gênica , Modelos de Riscos Proporcionais , Imunidade/genética , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo
2.
PLoS One ; 19(5): e0295971, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38709794

RESUMO

The human genome is pervasively transcribed and produces a wide variety of long non-coding RNAs (lncRNAs), constituting the majority of transcripts across human cell types. Some specific nuclear lncRNAs have been shown to be important regulatory components acting locally. As RNA-chromatin interaction and Hi-C chromatin conformation data showed that chromatin interactions of nuclear lncRNAs are determined by the local chromatin 3D conformation, we used Hi-C data to identify potential target genes of lncRNAs. RNA-protein interaction data suggested that nuclear lncRNAs act as scaffolds to recruit regulatory proteins to target promoters and enhancers. Nuclear lncRNAs may therefore play a role in directing regulatory factors to locations spatially close to the lncRNA gene. We provide the analysis results through an interactive visualization web portal at https://fantom.gsc.riken.jp/zenbu/reports/#F6_3D_lncRNA.


Assuntos
Cromatina , RNA Longo não Codificante , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Cromatina/metabolismo , Cromatina/genética , Humanos , Anotação de Sequência Molecular , Núcleo Celular/metabolismo , Núcleo Celular/genética , Genoma Humano , Regiões Promotoras Genéticas
3.
Front Immunol ; 15: 1374437, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38711507

RESUMO

Mycobacterium avium complex (MAC) is a non-tuberculous mycobacterium widely distributed in the environment. Even though MAC infection is increasing in older women and immunocompromised patients, to our knowledge there has been no comprehensive analysis of the MAC-infected host-cell transcriptome-and particularly of long non-coding RNAs (lncRNAs). By using in vitro-cultured primary mouse bone-marrow-derived macrophages (BMDMs) and Cap analysis of gene expression, we analyzed the transcriptional and kinetic landscape of macrophage genes, with a focus on lncRNAs, during MAC infection. MAC infection of macrophages induced the expression of immune/inflammatory response genes and other genes similar to those involved in M1 macrophage activation, consistent with previous reports, although Nos2 (M1 activation) and Arg1 (M2 activation) had distinct expression profiles. We identified 31 upregulated and 30 downregulated lncRNA promoters corresponding respectively to 18 and 26 lncRNAs. Upregulated lncRNAs were clustered into two groups-early and late upregulated-predicted to be associated with immune activation and the immune response to infection, respectively. Furthermore, an Ingenuity Pathway Analysis revealed canonical pathways and upstream transcription regulators associated with differentially expressed lncRNAs. Several differentially expressed lncRNAs reported elsewhere underwent expressional changes upon M1 or M2 preactivation and subsequent MAC infection. Finally, we showed that expressional change of lncRNAs in MAC-infected BMDMs was mediated by toll-like receptor 2, although there may be other mechanisms that sense MAC infection. We identified differentially expressed lncRNAs in MAC-infected BMDMs, revealing diverse features that imply the distinct roles of these lncRNAs in MAC infection and macrophage polarization.


Assuntos
Perfilação da Expressão Gênica , Macrófagos , Complexo Mycobacterium avium , Infecção por Mycobacterium avium-intracellulare , RNA Longo não Codificante , Transcriptoma , RNA Longo não Codificante/genética , Animais , Macrófagos/imunologia , Macrófagos/microbiologia , Macrófagos/metabolismo , Complexo Mycobacterium avium/imunologia , Complexo Mycobacterium avium/genética , Camundongos , Infecção por Mycobacterium avium-intracellulare/imunologia , Infecção por Mycobacterium avium-intracellulare/genética , Infecção por Mycobacterium avium-intracellulare/microbiologia , Ativação de Macrófagos/genética , Ativação de Macrófagos/imunologia , Camundongos Endogâmicos C57BL , Células Cultivadas , Regulação da Expressão Gênica
4.
Anal Cell Pathol (Amst) ; 2024: 8972022, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38715918

RESUMO

Preeclampsia (PE) manifests as a pregnancy-specific complication arising from compromised placentation characterized by inadequate trophoblast invasion. A growing body of evidence underscores the pivotal involvement of pseudogenes, a subset of long noncoding RNAs, in the pathological processes of PE. This study presents a novel finding, demonstrating a significant downregulation of the pseudogene PDIA3P1 in PE placental tissues compared to normal tissues. In vitro functional assays revealed that suppressing PDIA3P1 hindered trophoblast proliferation, invasion, and migration, concurrently upregulating the expression of secreted frizzled-related protein 1 (SFRP1). Further exploration of the regulatory role of PDIA3P1 in PE, utilizing human trophoblasts, established that PDIA3P1 exerts its function by binding to HuR, thereby enhancing the stability of Snail expression in trophoblasts. Overall, our findings suggest a crucial role for PDIA3P1 in regulating trophoblast properties and contributing to the pathogenesis of PE, offering potential targets for prognosis and therapeutic intervention.


Assuntos
Regulação para Baixo , Fenótipo , Pré-Eclâmpsia , RNA Longo não Codificante , Fatores de Transcrição da Família Snail , Trofoblastos , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Feminino , Trofoblastos/metabolismo , Trofoblastos/patologia , Pré-Eclâmpsia/genética , Pré-Eclâmpsia/metabolismo , Pré-Eclâmpsia/patologia , Gravidez , Regulação para Baixo/genética , Fatores de Transcrição da Família Snail/metabolismo , Fatores de Transcrição da Família Snail/genética , Proliferação de Células/genética , Movimento Celular/genética , Isomerases de Dissulfetos de Proteínas/metabolismo , Isomerases de Dissulfetos de Proteínas/genética , Adulto
5.
Sci Rep ; 14(1): 10595, 2024 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-38719908

RESUMO

Delayed diagnosis in patients with pulmonary tuberculosis (PTB) often leads to serious public health problems. High throughput sequencing was used to determine the expression levels of lncRNAs, mRNAs, and miRNAs in the lesions and adjacent health lung tissues of patients with PTB. Their differential expression profiles between the two groups were compared, and 146 DElncRs, 447 DEmRs, and 29 DEmiRs were obtained between lesions and adjacent health tissues in patients with PTB. Enrichment analysis for mRNAs showed that they were mainly involved in Th1, Th2, and Th17 cell differentiation. The lncRNAs, mRNAs with target relationship with miRNAs were predicted respectively, and correlation analysis was performed. The ceRNA regulatory network was obtained by comparing with the differentially expressed transcripts (DElncRs, DEmRs, DEmiRs), then 2 lncRNAs mediated ceRNA networks were established. The expression of genes within the network was verified by quantitative real-time PCR (qRT-PCR). Flow cytometric analysis revealed that the proportion of Th1 cells and Th17 cells was lower in PTB than in controls, while the proportion of Th2 cells increased. Our results provide rich transcriptome data for a deeper investigation of PTB. The ceRNA regulatory network we obtained may be instructive for the diagnosis and treatment of PTB.


Assuntos
Redes Reguladoras de Genes , MicroRNAs , RNA Longo não Codificante , RNA Mensageiro , Tuberculose Pulmonar , Humanos , Tuberculose Pulmonar/genética , RNA Longo não Codificante/genética , MicroRNAs/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Perfilação da Expressão Gênica , Transcriptoma , Células Th17/imunologia , Células Th17/metabolismo , Feminino , Masculino , Adulto , Pessoa de Meia-Idade , Regulação da Expressão Gênica , Pulmão/patologia , Pulmão/metabolismo , RNA Endógeno Competitivo
6.
Clin Respir J ; 18(5): e13765, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38721812

RESUMO

LINC00857 is frequently dysregulated in varying cancers, which in turn exerts carcinogenic effects; however, its DNA methylation status in promoter region and molecular mechanisms underlying the progression of lung adenocarcinoma (LUAD) remain rarely understood. Through bioinformatics analysis, we examined the expression state and methylation site of LINC00857 in LUAD and further investigated the properties of LINC00857 as a competitive endogenous RNA in the cancer progression. The current study revealed that the overexpression of LINC00857 in LUAD tissue and cells was mainly caused by the hypomethylation of the promoter region. LINC00857 knockdown prominently reduced cell proliferation, impeded cell migration and invasion, and restrained lymph node metastasis, with enhancing radiosensitivity. The effects of LINC00857 on tumor growth were also investigated in nude mice models. Subsequently, the downstream factors, miR-486-5p and NEK2, were screened, and the putative regulatory axis was examined. Overall, the regulatory effect of methylation-mediated LINC00857 overexpression on miR-486-5p/NEK2 axis may be a new mechanism for LUAD progression.


Assuntos
Adenocarcinoma de Pulmão , Proliferação de Células , Metilação de DNA , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares , MicroRNAs , RNA Longo não Codificante , Regulação para Cima , MicroRNAs/genética , MicroRNAs/metabolismo , Humanos , Animais , Camundongos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Adenocarcinoma de Pulmão/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Proliferação de Células/genética , Quinases Relacionadas a NIMA/genética , Quinases Relacionadas a NIMA/metabolismo , Linhagem Celular Tumoral , Camundongos Nus , Movimento Celular/genética , Masculino
7.
J Cell Mol Med ; 28(9): e18361, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38722283

RESUMO

Hypoxia and Ferroptosis are associated with the malignant behaviour of cervical cancer. Endothelial PAS domain-containing protein 1 (EPAS1) contributes to the progression of cervical cancer. EPAS1 plays important roles in hypoxia and ferroptosis. Using the GEO dataset, machine-learning algorithms were used to screen for hypoxia- and ferroptosis-related genes (HFRGs) in cervical cancer. EPAS1 was identified as the hub gene. qPCR and WB were used to investigate the expression of EPAS1 in normal and cervical cancer tissues. The proliferation, invasion and migration of EPAS1 cells in HeLa and SiHa cell lines were detected using CCK8, transwell and wound healing assays, respectively. Apoptosis was detected by flow cytometry. A dual-luciferase assay was used to analyse the MALAT1-miR-182-5P-EPAS1 mRNA axis and core promoter elements of the super-enhancer. EPAS1 was significantly overexpressed in cervical cancer tissues. EPAS1 could increase the proliferation, invasion, migration of HeLa and SiHa cells and reduce the apoptosis of HeLa and SiHa cell. According to the double-luciferase assay, EPAS1 expression was regulated by the MALAT1-Mir-182-5p-EPAS1 mRNA axis. EPAS1 is associated with super-enhancers. Double-luciferase assay showed that the core elements of the super-enhancer were E1 and E3. EPAS1, an HFRG, is significantly overexpressed in cervical cancer. EPAS1 promotes malignant behaviour of cervical cancer cells. EPAS1 expression is regulated by super-enhancers and the MALAT1-miR-182-5P- EPAS1 mRNA axis. EPAS1 may be a target for the diagnosis and treatment of cervical cancer.


Assuntos
Apoptose , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Movimento Celular , Proliferação de Células , Ferroptose , Regulação Neoplásica da Expressão Gênica , Neoplasias do Colo do Útero , Humanos , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/patologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Feminino , Ferroptose/genética , Proliferação de Células/genética , Movimento Celular/genética , Apoptose/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Linhagem Celular Tumoral , Células HeLa , RNA Longo não Codificante/genética , RNA Endógeno Competitivo
8.
Int J Biol Sci ; 20(7): 2388-2402, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38725844

RESUMO

Metastasis is the leading cause of death in colorectal cancer (CRC) patients. By mediating intercellular communication, exosomes exhibit considerable value in regulating tumor metastasis. Long non-coding RNAs (lncRNAs) are abundant in exosomes and participate in regulating tumor progression. However, it is poorly understood how the cancer-secreted exosomal lncRNAs affect CRC proliferation and metastasis. Here, by analyzing the public databases we identified a lncRNA SNHG3 and demonstrated that SNHG3 was delivered through CRC cells-derived exosomes to promote metastasis in CRC. Mechanistically, exosomal SNHG3 was internalized by CRC cells and afterward upregulated the expression of ß-catenin by facilitating the intranuclear transport of hnRNPC. Consequently, the RNA stability of ß-catenin was enhanced which led to the activation of EMT and metastasis of CRC cells. Our findings expand the oncogenic mechanisms of exosomal SNHG3 and identify it as a diagnostic marker for CRC.


Assuntos
Neoplasias Colorretais , Exossomos , RNA Longo não Codificante , beta Catenina , Humanos , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Neoplasias Colorretais/genética , RNA Longo não Codificante/metabolismo , RNA Longo não Codificante/genética , beta Catenina/metabolismo , Exossomos/metabolismo , Linhagem Celular Tumoral , Estabilidade de RNA/genética , Regulação Neoplásica da Expressão Gênica , Metástase Neoplásica , Animais , Camundongos , Proliferação de Células/genética , Camundongos Nus
9.
Nat Commun ; 15(1): 3806, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714658

RESUMO

Unlike coding genes, the number of lncRNA genes in organism genomes is relatively proportional to organism complexity. From plants to humans, the tissues with highest numbers and levels of lncRNA gene expression are the male reproductive organs. To learn why, we initiated a genome-wide analysis of Drosophila lncRNA spatial expression patterns in these tissues. The numbers of genes and levels of expression observed greatly exceed those previously reported, due largely to a preponderance of non-polyadenylated transcripts. In stark contrast to coding genes, the highest numbers of lncRNAs expressed are in post-meiotic spermatids. Correlations between expression levels, localization and previously performed genetic analyses indicate high levels of function and requirement. More focused analyses indicate that lncRNAs play major roles in evolution by controlling transposable element activities, Y chromosome gene expression and sperm construction. A new type of lncRNA-based particle found in seminal fluid may also contribute to reproductive outcomes.


Assuntos
RNA Longo não Codificante , Espermatogênese , Cromossomo Y , Animais , Masculino , Espermatogênese/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Cromossomo Y/genética , Drosophila melanogaster/genética , Evolução Molecular , Elementos de DNA Transponíveis/genética , Drosophila/genética , Espermátides/metabolismo
10.
Clin Epigenetics ; 16(1): 61, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38715048

RESUMO

BACKGROUND: Diabetes in pregnancy is associated with increased risk of long-term metabolic disease in the offspring, potentially mediated by in utero epigenetic variation. Previously, we identified multiple differentially methylated single CpG sites in offspring of women with gestational diabetes mellitus (GDM), but whether stretches of differentially methylated regions (DMRs) can also be identified in adolescent GDM offspring is unknown. Here, we investigate which DNA regions in adolescent offspring are differentially methylated in blood by exposure to diabetes in pregnancy. The secondary aim was to characterize the RNA expression of the identified DMR, which contained the nc886 non-coding RNA. METHODS: To identify DMRs, we employed the bump hunter method in samples from young (9-16 yr, n = 92) offspring of women with GDM (O-GDM) and control offspring (n = 94). Validation by pyrosequencing was performed in an adult offspring cohort (age 28-33 years) consisting of O-GDM (n = 82), offspring exposed to maternal type 1 diabetes (O-T1D, n = 67) and control offspring (O-BP, n = 57). RNA-expression was measured using RT-qPCR in subcutaneous adipose tissue and skeletal muscle. RESULTS: One significant DMR represented by 10 CpGs with a bimodal methylation pattern was identified, located in the nc886/VTRNA2-1 non-coding RNA gene. Low methylation status across all CpGs of the nc886 in the young offspring was associated with maternal GDM. While low methylation degree in adult offspring in blood, adipose tissue, and skeletal muscle was not associated with maternal GDM, adipose tissue nc886 expression was increased in O-GDM compared to O-BP, but not in O-T1D. In addition, adipose tissue nc886 expression levels were positively associated with maternal pre-pregnancy BMI (p = 0.006), but not with the offspring's own adiposity. CONCLUSIONS: Our results highlight that nc886 is a metastable epiallele, whose methylation in young offspring is negatively correlated with maternal obesity and GDM status. The physiological effect of nc886 may be more important in adipose tissue than in skeletal muscle. Further research should aim to investigate how nc886 regulation in adipose tissue by exposure to GDM may contribute to development of metabolic disease.


Assuntos
Tecido Adiposo , Metilação de DNA , Diabetes Gestacional , Epigênese Genética , Músculo Esquelético , Efeitos Tardios da Exposição Pré-Natal , Humanos , Gravidez , Feminino , Diabetes Gestacional/genética , Epigênese Genética/genética , Adulto , Metilação de DNA/genética , Músculo Esquelético/metabolismo , Adolescente , Tecido Adiposo/metabolismo , Masculino , Efeitos Tardios da Exposição Pré-Natal/genética , Criança , Diabetes Mellitus Tipo 1/genética , RNA não Traduzido/genética , RNA não Traduzido/sangue , RNA Longo não Codificante/genética , Ilhas de CpG/genética
11.
Parasit Vectors ; 17(1): 205, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38715092

RESUMO

BACKGROUND: Angiostrongyliasis is a highly dangerous infectious disease. Angiostrongylus cantonensis larvae migrate to the mouse brain and cause symptoms, such as brain swelling and bleeding. Noncoding RNAs (ncRNAs) are novel targets for the control of parasitic infections. However, the role of these molecules in A. cantonensis infection has not been fully clarified. METHODS: In total, 32 BALB/c mice were randomly divided into four groups, and the infection groups were inoculated with 40 A. cantonensis larvae by gavage. Hematoxylin and eosin (H&E) staining and RNA library construction were performed on brain tissues from infected mice. Differential expression of long noncoding RNAs (lncRNAs) and mRNAs in brain tissues was identified by high-throughput sequencing. The pathways and functions of the differentially expressed lncRNAs were determined by Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analyses. The functions of the differentially expressed lncRNAs were further characterized by lncRNA‒microRNA (miRNA) target interactions. The potential host lncRNAs involved in larval infection of the brain were validated by quantitative real-time polymerase chain reaction (qRT‒PCR). RESULTS: The pathological results showed that the degree of brain tissue damage increased with the duration of infection. The transcriptome results showed that 859 lncRNAs and 1895 mRNAs were differentially expressed compared with those in the control group, and several lncRNAs were highly expressed in the middle-late stages of mouse infection. GO and KEGG pathway analyses revealed that the differentially expressed target genes were enriched mainly in immune system processes and inflammatory response, among others, and several potential regulatory networks were constructed. CONCLUSIONS: This study revealed the expression profiles of lncRNAs in the brains of mice after infection with A. cantonensis. The lncRNAs H19, F630028O10Rik, Lockd, AI662270, AU020206, and Mexis were shown to play important roles in the infection of mice with A. cantonensis infection.


Assuntos
Angiostrongylus cantonensis , Encéfalo , Camundongos Endogâmicos BALB C , RNA Longo não Codificante , Infecções por Strongylida , Animais , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Angiostrongylus cantonensis/genética , Infecções por Strongylida/parasitologia , Infecções por Strongylida/genética , Encéfalo/parasitologia , Encéfalo/metabolismo , Encéfalo/patologia , Camundongos , Larva/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Perfilação da Expressão Gênica , Feminino , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
12.
Cell Biochem Funct ; 42(4): e4020, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38702967

RESUMO

The regulatory potential of long noncoding RNA (lncRNA) FBXL19-AS1 has been highlighted in various cancers, but its effect on triple-negative breast cancer (TNBC) remains unclear. Here, we aimed to elucidate the role of FBXL19-AS1 in TNBC and its underlying mechanism. RT-qPCR was employed to detect the expressions of FBXL19-AS1 and miR-378a-3p in tissues and cells. Immunohistochemical staining and western blot were utilized to detect the expression levels of proteins. Cell activities were detected using flow cytometry, CCK-8, and transwell assay. Dual-luciferase reporter and RNA immunoprecipitation (RIP) assays were deployed to investigate interactions of different molecules. Protein-protein interaction (PPI) network, gene ontology (GO), and Kyoto encyclopedia of genes and genomes (KEGG) pathways were used to analyze the downstream pathway. In vivo xenograft model was conducted to detect the effect of FBXL19-AS1 on tumor growth. FBXL19-AS1 was overexpressed in TNBC tissues and cell lines compared with counterparts. FBXL19-AS1 knockdown suppressed TNBC cell activities, whereas its overexpression exhibited the opposite effect. Mechanistically, FBXL19-AS1 was found to interact with miR-378a-3p. Further analysis revealed that miR-378a-3p exerted tumor-suppressive effects in TNBC cells. Additionally, miR-378a-3p targeted and downregulated the expression of ubiquitin aldehyde binding 2 (OTUB2), a deubiquitinase associated with TNBC progression. In vivo experiments substantiated the inhibitory effects of FBXL19-AS1 knockdown on TNBC tumorigenesis, and a miR-378a-3p inhibitor partially rescued these effects. The downstream pathway of the miR-378a-3p/OTUB2 axis was explored, revealing connections with proteins involved in modifying other proteins, removing ubiquitin molecules, and influencing signaling pathways, including the Hippo signaling pathway. Western blot analysis confirmed changes in YAP and TAZ expression levels, indicating a potential regulatory network. In summary, FBXL19-AS1 promotes exacerbation in TNBC by suppressing miR-378a-3p, leading to increased OTUB2 expression. The downstream mechanism may be related to the Hippo signaling pathway. These findings propose potential therapeutic targets for TNBC treatment.


Assuntos
MicroRNAs , RNA Longo não Codificante , Neoplasias de Mama Triplo Negativas , Animais , Feminino , Humanos , Camundongos , Linhagem Celular Tumoral , Proliferação de Células , Enzimas Desubiquitinantes/metabolismo , Proteínas F-Box/metabolismo , Proteínas F-Box/genética , Regulação Neoplásica da Expressão Gênica , Camundongos Endogâmicos BALB C , Camundongos Nus , MicroRNAs/metabolismo , MicroRNAs/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/genética
13.
FASEB J ; 38(9): e23622, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38703029

RESUMO

Endometriosis (EMs)-related infertility commonly has decreased endometrial receptivity and normal decidualization is the basis for establishing and maintaining endometrial receptivity. However, the potential molecular regulatory mechanisms of impaired endometrial decidualization in patients with EMs have not been fully clarified. We confirmed the existence of reduced endometrial receptivity in patients with EMs by scanning electron microscopy and quantitative real-time PCR. Here we identified an lncRNA, named BMPR1B-AS1, which is significantly downregulated in eutopic endometrium in EMs patients and plays an essential role in decidual formation. Furthermore, RNA pull-down, mass spectrometry, RNA immunoprecipitation, and rescue analyses revealed that BMPR1B-AS1 positively regulates decidual formation through interaction with the RNA-binding protein insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2). Downregulation of IGF2BP2 led to a decreased stability of BMPR1B-AS1 and inhibition of activation of the SMAD1/5/9 pathway, an inhibitory effect which diminished decidualization in human endometrial stromal cells (hESCs) decidualization. In conclusion, our identified a novel regulatory mechanism in which the IGF2BP2-BMPR1B-AS1-SMAD1/5/9 axis plays a key role in the regulation of decidualization, providing insights into the potential link between abnormal decidualization and infertility in patients with EMs, which will be of clinical significance for the management and treatment of infertility in patients with EMs.


Assuntos
Endometriose , RNA Longo não Codificante , Proteínas de Ligação a RNA , Adulto , Feminino , Humanos , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/metabolismo , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/genética , Decídua/metabolismo , Decídua/patologia , Endometriose/metabolismo , Endometriose/genética , Endometriose/patologia , Endométrio/metabolismo , Endométrio/patologia , Infertilidade Feminina/metabolismo , Infertilidade Feminina/genética , Infertilidade Feminina/patologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Transdução de Sinais , Células Estromais/metabolismo , Proteínas Smad , Adulto Jovem
14.
Sci Rep ; 14(1): 10348, 2024 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-38710798

RESUMO

The complete compound of gefitinib is effective in the treatment of lung adenocarcinoma. However, the effect on lung adenocarcinoma (LUAD) during its catabolism has not yet been elucidated. We carried out this study to examine the predictive value of gefitinib metabolism-related long noncoding RNAs (GMLncs) in LUAD patients. To filter GMLncs and create a prognostic model, we employed Pearson correlation, Lasso, univariate Cox, and multivariate Cox analysis. We combined risk scores and clinical features to create nomograms for better application in clinical settings. According to the constructed prognostic model, we performed GO/KEGG and GSEA enrichment analysis, tumor immune microenvironment analysis, immune evasion and immunotherapy analysis, somatic cell mutation analysis, drug sensitivity analysis, IMvigor210 immunotherapy validation, stem cell index analysis and real-time quantitative PCR (RT-qPCR) analysis. We built a predictive model with 9 GMLncs, which showed good predictive performance in validation and training sets. The calibration curve demonstrated excellent agreement between the expected and observed survival rates, for which the predictive performance was better than that of the nomogram without a risk score. The metabolism of gefitinib is related to the cytochrome P450 pathway and lipid metabolism pathway, and may be one of the causes of gefitinib resistance, according to analyses from the Gene Set Enrichment Analysis (GSEA), Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). Immunological evasion and immunotherapy analysis revealed that the likelihood of immune evasion increased with risk score. Tumor microenvironment analysis found most immune cells at higher concentrations in the low-risk group. Drug sensitivity analysis found 23 sensitive drugs. Twenty-one of these drugs exhibited heightened sensitivity in the high-risk group. RT-qPCR analysis validated the characteristics of 9 GMlncs. The predictive model and nomogram that we constructed have good application value in evaluating the prognosis of patients and guiding clinical treatment.


Assuntos
Adenocarcinoma de Pulmão , Resistencia a Medicamentos Antineoplásicos , Gefitinibe , Neoplasias Pulmonares , RNA Longo não Codificante , Microambiente Tumoral , Humanos , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia , Gefitinibe/uso terapêutico , Gefitinibe/farmacologia , RNA Longo não Codificante/genética , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/patologia , Adenocarcinoma de Pulmão/metabolismo , Prognóstico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Resistencia a Medicamentos Antineoplásicos/genética , Nomogramas , Feminino , Masculino , Regulação Neoplásica da Expressão Gênica , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia , Pessoa de Meia-Idade , Idoso
15.
BMC Med Genomics ; 17(1): 123, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38711022

RESUMO

BACKGROUND: Depression is a common chronic debilitating disease with a heavy social burden. single nucleotide polymorphisms (SNPs) can affect the function of microRNAs (miRNAs), which is in turn associated with neurological diseases. However, the association between SNPs located in the promoter region of miR-17-92 and the risk of depression remains unclear. Therefore, we investigated the association between rs982873, rs9588884 and rs1813389 polymorphisms in the promoter region of miR-17-92 and the incidence of depression in a Chinese population. METHODS: we used GWAS (Genome-wide association study) and NCBI (National Center for Biotechnology Information) to screen three SNPs in the miR-17-92 cluster binding sites. A case-control study (including 555 cases and 541 controls) was conducted to investigate the relationship between the SNPs and risk of depression in different regions of China. The gene sequencing ii was used to genotype the collected blood samples. RESULTS: the following genotypes were significantly associated with a reduced risk of depression: rs982873 TC (TC vs. TT: OR = 0.72, 95% CI, 0.54-0.96, P = 0.024; TC/CC vs. TT: OR = 0.74, 95% Cl, 0.56-0.96, P = 0.025); CG genotype of rs9588884 (CG vs. CC: OR = 0.74, 95% CI, 0.55-0.98, P = 0.033; CG/GG vs. CC: OR = 0.75, 95% Cl, 0.57-0.98, P = 0.036); and AG genotype of rs1813389 (AG vs. AA: OR = 0.75, 95% CI, 0.57-1.00, P = 0.049; AG/GG vs. AA: OR = 0.76, 95% Cl, 0.59-1.00, P = 0.047). Stratified analysis showed that there was no significant correlation between the three SNPS and variables such as family history of suicidal tendency (P > 0.05). CONCLUSIONS: our findings suggest that rs982873, rs9588884, and rs1813389 polymorphisms may be associated with protective factors for depression.


Assuntos
Depressão , Predisposição Genética para Doença , MicroRNAs , Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas , RNA Longo não Codificante , Humanos , Masculino , Depressão/genética , Feminino , MicroRNAs/genética , RNA Longo não Codificante/genética , Pessoa de Meia-Idade , Estudos de Casos e Controles , China , Povo Asiático/genética , Adulto , Estudo de Associação Genômica Ampla , População do Leste Asiático
16.
Curr Cancer Drug Targets ; 24(5): 519-533, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38804344

RESUMO

BACKGROUND: Medullary thyroid carcinoma (MTC) is a rare but aggressive endocrine malignancy that originates from the parafollicular C cells of the thyroid gland. Enhancer RNAs (eRNAs) are non-coding RNAs transcribed from enhancer regions, which are critical regulators of tumorigenesis. However, the roles and regulatory mechanisms of eRNAs in MTC remain poorly understood. This study aims to identify key eRNAs regulating the malignant phenotype of MTC and to uncover transcription factors involved in the regulation of key eRNAs. METHODS: GSE32662 and GSE114068 were used for the identification of differentially expressed genes, eRNAs, enhancers and enhancer-regulated genes in MTC. Metascape and the transcription factor affinity prediction method were used for gene function enrichment and transcription factor prediction, respectively. qRT-PCR was used to detect gene transcription levels. ChIP-qPCR was used to assess the binding of histone H3 lysine 27 acetylation (H3K27ac)-enriched regions to anti- H3K27ac. RIP-qPCR was used to detect the binding between FOXQ1 and LINC00887. CCK8 and Transwell were performed to measure the proliferation and invasion of MTC cells, respectively. Intracellular reactive oxygen species (ROS) levels were quantified using a ROS assay kit. RESULTS: Four eRNAs (H1FX-AS1, LINC00887, MCM3AP-AS1 and A1BG-AS1) were screened, among which LINC00887 was the key eRNA promoting the proliferation and invasion of MTC cells. A total of 135 genes controlled by LINC00887-regulated enhancers were identified; among them, BCL2, PRDX1, SFTPD, TPO, GSS, RAD52, ZNF580, and ZFP36L1 were significantly enriched in the "ROS metabolic process" term. As a transcription factor regulating genes enriched in the "ROS metabolic process" term, FOXQ1 could recruit LINC00887. Overexpression of FOXQ1 restored LINC00887 knockdown-induced downregulation of GSS and ZFP36L1 transcription in MTC cells. Additionally, FOXQ1 overexpression counteracted the inhibitory effects of LINC00887 knockdown on the proliferation and invasion of MTC cells and the promotion of intracellular ROS accumulation induced by LINC00887 knockdown. CONCLUSION: LINC00887 was identified as a key eRNA promoting the malignant phenotype of MTC cells. The involvement of FOXQ1 was essential for LINC00887 to play a pro-tumorigenic role in MTC. Our findings suggest that the FOXQ1/LINC00887 axis is a potential therapeutic target for MTC.


Assuntos
Carcinoma Neuroendócrino , Proliferação de Células , Fatores de Transcrição Forkhead , Regulação Neoplásica da Expressão Gênica , RNA Longo não Codificante , Neoplasias da Glândula Tireoide , Humanos , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/patologia , Neoplasias da Glândula Tireoide/metabolismo , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , RNA Longo não Codificante/genética , Carcinoma Neuroendócrino/genética , Carcinoma Neuroendócrino/patologia , Carcinoma Neuroendócrino/metabolismo , Elementos Facilitadores Genéticos , Progressão da Doença , Linhagem Celular Tumoral , Movimento Celular , Espécies Reativas de Oxigênio/metabolismo , RNAs Intensificadores
17.
Proc Natl Acad Sci U S A ; 121(23): e2315363121, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38805281

RESUMO

Regulatory T cells (Tregs) are central in controlling immune responses, and dysregulation of their function can lead to autoimmune disorders or cancer. Despite extensive studies on Tregs, the basis of epigenetic regulation of human Treg development and function is incompletely understood. Long intergenic noncoding RNAs (lincRNA)s are important for shaping and maintaining the epigenetic landscape in different cell types. In this study, we identified a gene on the chromosome 6p25.3 locus, encoding a lincRNA, that was up-regulated during early differentiation of human Tregs. The lincRNA regulated the expression of interleukin-2 receptor alpha (IL2RA), and we named it the lincRNA regulator of IL2RA (LIRIL2R). Through transcriptomics, epigenomics, and proteomics analysis of LIRIL2R-deficient Tregs, coupled with global profiling of LIRIL2R binding sites using chromatin isolation by RNA purification, followed by sequencing, we identified IL2RA as a target of LIRIL2R. This nuclear lincRNA binds upstream of the IL2RA locus and regulates its epigenetic landscape and transcription. CRISPR-mediated deletion of the LIRIL2R-bound region at the IL2RA locus resulted in reduced IL2RA expression. Notably, LIRIL2R deficiency led to reduced expression of Treg-signature genes (e.g., FOXP3, CTLA4, and PDCD1), upregulation of genes associated with effector T cells (e.g., SATB1 and GATA3), and loss of Treg-mediated suppression.


Assuntos
Fatores de Transcrição Forkhead , Subunidade alfa de Receptor de Interleucina-2 , RNA Longo não Codificante , Linfócitos T Reguladores , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Subunidade alfa de Receptor de Interleucina-2/genética , Subunidade alfa de Receptor de Interleucina-2/metabolismo , Epigênese Genética , Regulação da Expressão Gênica , Diferenciação Celular/genética
18.
Cell Death Dis ; 15(5): 368, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38806480

RESUMO

Transforming growth factor beta (TGFß) signaling plays a critical role in tumorigenesis and metastasis. However, little is known about the biological function of TGFbeta-induced lncRNA in cancer. In this study, we discovered a novel TGFbeta-induced lncRNA, termed TGILR, whose function in cancer remains unknown to date. TGILR expression was directly activated by the canonical TGFbeta/SMAD3 signaling axis, and this activation is highly conserved in cancer. Clinical analysis showed that TGILR overexpression showed a significant correlation with lymph node metastasis and poor survival and was an independent prognostic factor in gastric cancer (GC). Depletion of TGILR caused an obvious inhibitory effect on GC cell proliferation, invasion, and epithelial-mesenchymal transition (EMT) in vitro and in vivo. More importantly, we demonstrated that TGFbeta signaling in GC was overactivated due to cancer-associated fibroblast (CAF) infiltration. Mechanistically, increased level of CAF-secreted TGFbeta activates TGFbeta signaling, leading to TGILR overexpression in GC cells. Meanwhile, TGILR overexpression inhibited the microRNA biogenesis of miR-1306 and miR-33a by interacting with TARBP2 and reducing its protein stability, thereby promoting GC progression via TCF4-mediated EMT signaling. In conclusion, CAF infiltration drives GC metastasis and EMT signaling through activating TGFbeta/TGILR axis. Targeted blocking of CAF-derived TGFbeta should be a promising anticancer strategy in GC.


Assuntos
Fibroblastos Associados a Câncer , Progressão da Doença , Transição Epitelial-Mesenquimal , MicroRNAs , Transdução de Sinais , Neoplasias Gástricas , Fator de Crescimento Transformador beta , Neoplasias Gástricas/patologia , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/genética , Humanos , Fator de Crescimento Transformador beta/metabolismo , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/patologia , Linhagem Celular Tumoral , Animais , MicroRNAs/metabolismo , MicroRNAs/genética , Proliferação de Células , RNA Longo não Codificante/metabolismo , RNA Longo não Codificante/genética , Regulação Neoplásica da Expressão Gênica , Masculino , Camundongos Nus , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Proteína Smad3/metabolismo
19.
Sci Data ; 11(1): 545, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38806530

RESUMO

Human and non-human primates have strikingly similar genomes, but they strongly differ in many brain-based processes (e.g., behaviour and cognition). While the functions of protein-coding genes have been extensively studied, rather little is known about the role of non-coding RNAs such as long non-coding RNAs (lncRNAs). Here, we predicted lncRNAs and analysed their expression pattern across different brain regions of human and non-human primates (chimpanzee, gorilla, and gibbon). Our analysis identified shared orthologous and non-orthologous lncRNAs, showing striking differences in the genomic features. Differential expression analysis of the shared orthologous lncRNAs from humans and chimpanzees revealed distinct expression patterns in subcortical regions (striatum, hippocampus) and neocortical areas while retaining a homogeneous expression in the cerebellum. Co-expression analysis of lncRNAs and protein-coding genes revealed massive proportions of co-expressed pairs in neocortical regions of humans compared to chimpanzees. Network analysis of co-expressed pairs revealed the distinctive role of the hub-acting orthologous lncRNAs in a region- and species-specific manner. Overall, our study provides novel insight into lncRNA driven gene regulatory landscape, neural regulation, brain evolution, and constitutes a resource for primate's brain lncRNAs.


Assuntos
Encéfalo , Pan troglodytes , RNA Longo não Codificante , Animais , RNA Longo não Codificante/genética , Humanos , Encéfalo/metabolismo , Pan troglodytes/genética , Especificidade da Espécie , Hylobates/genética , Gorilla gorilla/genética , Primatas/genética
20.
Cancer Med ; 13(11): e7308, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38808948

RESUMO

BACKGROUND: Exosomes play a crucial role in intercellular communication in clear cell renal cell carcinoma (ccRCC), while the long non-coding RNAs (lncRNAs) are implicated in tumorigenesis and progression. AIMS: The purpose of this study is to construction a exosomes-related lncRNA score and a ceRNA network to predict the response to immunotherapy and potential targeted drug in ccRCC. METHODS: Data of ccRCC patients were obtained from the TCGA database. Pearson correlation analysis was used to identify eExosomes-related lncRNAs (ERLRs) from Top10 exosomes-related genes that have been screened. The entire cohort was randomly divided into a training cohort and a validation cohort in equal scale. LASSO regression and multivariate cox regression was used to construct the ERLRs-based score. Differences in clinicopathological characteristics, immune microenvironment, immune checkpoints, and drug susceptibility between the high- and low-risk groups were also investigated. Finally, the relevant ceRNA network was constructed by machine learning to analyze their potential targets in immunotherapy and drug use of ccRCC patients. RESULTS: A score consisting of 4ERLRs was identified, and patients with higher ERLRs-based score tended to have a worse prognosis than those with lower ERLRs-based score. ROC curves and multivariate Cox regression analysis demonstrated that the score could be considered as a risk factor for prognosis in both training and validation cohorts. Moreover, patients with high scores are predisposed to experience poor overall survival, a larger prevalence of advanced stage (III-IV), a greater tumor mutational burden, a higher infiltration of immunosuppressive cells, and a greater likelihood of responding favorably to immunotherapy. The importance of EMX2OS was determined by mechanical learning, and the ceRNA network was constructed, and EMX2OS may be a potential therapeutic target, possibly exerting its function through the EMX2OS/hsa-miR-31-5p/TLN2 axis. CONCLUSIONS: Based on machine learning, a novel ERLRs-based score was constructed for predicting the survival of ccRCC patients. The ERLRs-based score is a promising potential independent prognostic factor that is closely correlated with the immune microenvironment and clinicopathological characteristics. Meanwhile, we screened out key lncRNAEMX2OS and identified the EMX2OS/hsa-miR-31-5p/TLN2 axis, which may provide new clues for the targeted therapy of ccRCC.


Assuntos
Carcinoma de Células Renais , Exossomos , Imunoterapia , Neoplasias Renais , RNA Longo não Codificante , Humanos , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/terapia , Carcinoma de Células Renais/imunologia , Carcinoma de Células Renais/patologia , Carcinoma de Células Renais/mortalidade , RNA Longo não Codificante/genética , Neoplasias Renais/genética , Neoplasias Renais/terapia , Neoplasias Renais/mortalidade , Neoplasias Renais/imunologia , Neoplasias Renais/patologia , Exossomos/genética , Imunoterapia/métodos , Masculino , Feminino , Pessoa de Meia-Idade , Prognóstico , Microambiente Tumoral/imunologia , Microambiente Tumoral/genética , Biomarcadores Tumorais/genética , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...