Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 183
Filtrar
1.
Nat Commun ; 15(1): 5550, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956014

RESUMO

Oocyte in vitro maturation is a technique in assisted reproductive technology. Thousands of genes show abnormally high expression in in vitro maturated metaphase II (MII) oocytes compared to those matured in vivo in bovines, mice, and humans. The mechanisms underlying this phenomenon are poorly understood. Here, we use poly(A) inclusive RNA isoform sequencing (PAIso-seq) for profiling the transcriptome-wide poly(A) tails in both in vivo and in vitro matured mouse and human oocytes. Our results demonstrate that the observed increase in maternal mRNA abundance is caused by impaired deadenylation in in vitro MII oocytes. Moreover, the cytoplasmic polyadenylation of dormant Btg4 and Cnot7 mRNAs, which encode key components of deadenylation machinery, is impaired in in vitro MII oocytes, contributing to reduced translation of these deadenylase machinery components and subsequently impaired global maternal mRNA deadenylation. Our findings highlight impaired maternal mRNA deadenylation as a distinct molecular defect in in vitro MII oocytes.


Assuntos
Oócitos , Poliadenilação , Oócitos/metabolismo , Animais , Humanos , Feminino , Camundongos , Poli A/metabolismo , Técnicas de Maturação in Vitro de Oócitos , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Transcriptoma , RNA Mensageiro Estocado/metabolismo , RNA Mensageiro Estocado/genética , Metáfase , Exorribonucleases , Proteínas Repressoras , Proteínas de Ciclo Celular
2.
Curr Biol ; 34(11): R519-R523, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38834020

RESUMO

Rapid cleavage divisions and the transition from maternal to zygotic control of gene expression are the hallmarks of early embryonic development in most species. Early development in insects, fish and amphibians is characterized by several short cell cycles with no gap phases, necessary for the rapid production of cells prior to patterning and morphogenesis. Maternal mRNAs and proteins loaded into the egg during oogenesis are essential to drive these rapid early divisions. Once the function of these maternal inputs is complete, the maternal-to-zygotic transition (MZT) marks the handover of developmental control to the gene products synthesized from the zygotic genome. The MZT requires three major events: the removal of a subset of maternal mRNAs, the initiation of zygotic transcription, and the remodeling of the cell cycle. In each species, the MZT occurs at a highly reproducible time during development due to a series of feedback mechanisms that tightly couple these three processes. Dissecting these feedback mechanisms and their spatiotemporal control will be essential to understanding the control of the MZT. In this primer, we outline the mechanisms that govern the major events of the MZT across species and highlight the role of feedback mechanisms that ensure the MZT is precisely timed and orchestrated.


Assuntos
Zigoto , Zigoto/metabolismo , Zigoto/crescimento & desenvolvimento , Animais , Regulação da Expressão Gênica no Desenvolvimento , Desenvolvimento Embrionário , Feminino , RNA Mensageiro Estocado/metabolismo , RNA Mensageiro Estocado/genética
3.
Open Biol ; 14(6): 240065, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38896085

RESUMO

The transition from oocyte to embryo requires translation of maternally provided transcripts that in Drosophila is activated by Pan Gu kinase to release a rapid succession of 13 mitotic cycles. Mitotic entry is promoted by several protein kinases that include Greatwall/Mastl, whose Endosulfine substrates antagonize Protein Phosphatase 2A (PP2A), facilitating mitotic Cyclin-dependent kinase 1/Cyclin B kinase activity. Here we show that hyperactive greatwallScant can not only be suppressed by mutants in its Endos substrate but also by mutants in Pan Gu kinase subunits. Conversely, mutants in me31B or trailer hitch, which encode a complex that represses hundreds of maternal mRNAs, enhance greatwallScant . Me31B and Trailer Hitch proteins, known substrates of Pan Gu kinase, copurify with Endos. This echoes findings that budding yeast Dhh1, orthologue of Me31B, associates with Igo1/2, orthologues of Endos and substrates of the Rim15, orthologue of Greatwall. endos-derived mutant embryos show reduced Me31B and elevated transcripts for the mitotic activators Cyclin B, Polo and Twine/Cdc25. Together, our findings demonstrate a previously unappreciated conservation of the Greatwall-Endosulfine pathway in regulating translational repressors and its interactions with the Pan Gu kinase pathway to regulate translation and/or stability of maternal mRNAs upon egg activation.


Assuntos
Proteínas de Drosophila , Regulação da Expressão Gênica no Desenvolvimento , Oócitos , Proteína Fosfatase 2 , Animais , Feminino , RNA Helicases DEAD-box , Drosophila melanogaster/genética , Drosophila melanogaster/embriologia , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Embrião não Mamífero/metabolismo , Mutação , Oócitos/metabolismo , Oócitos/citologia , Biossíntese de Proteínas , Proteína Fosfatase 2/metabolismo , Proteína Fosfatase 2/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Estabilidade de RNA , RNA Mensageiro Estocado/metabolismo , RNA Mensageiro Estocado/genética
4.
Biochem Soc Trans ; 52(2): 861-871, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38477334

RESUMO

A large number of mRNAs of maternal origin are produced during oogenesis and deposited in the oocyte. Since transcription stops at the onset of meiosis during oogenesis and does not resume until later in embryogenesis, maternal mRNAs are the only templates for protein synthesis during this period. To ensure that a protein is made in the right place at the right time, the translation of maternal mRNAs must be activated at a specific stage of development. Here we summarize our current understanding of the sophisticated mechanisms that contribute to the temporal repression of maternal mRNAs, termed maternal mRNA dormancy. We discuss mechanisms at the level of the RNA itself, such as the regulation of polyadenine tail length and RNA modifications, as well as at the level of RNA-binding proteins, which often block the assembly of translation initiation complexes at the 5' end of an mRNA or recruit mRNAs to specific subcellular compartments. We also review microRNAs and other mechanisms that contribute to repressing translation, such as ribosome dormancy. Importantly, the mechanisms responsible for mRNA dormancy during the oocyte-to-embryo transition are also relevant to cellular quiescence in other biological contexts.


Assuntos
Oócitos , Oogênese , Animais , Humanos , Oócitos/metabolismo , Oogênese/genética , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Mensageiro Estocado/metabolismo , RNA Mensageiro Estocado/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Biossíntese de Proteínas , Regulação da Expressão Gênica no Desenvolvimento , Feminino , Desenvolvimento Embrionário/genética
5.
BMC Ecol Evol ; 24(1): 21, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38347459

RESUMO

BACKGROUND: The origin of variation is of central interest in evolutionary biology. Maternal mRNAs govern early embryogenesis in many animal species, and we investigated the possibility that heterogeneity in maternal mRNA provisioning of eggs can be modulated by environmental stimuli. RESULTS: We employed two sibling species of the ascidian Ciona, called here types A and B, that are adapted to different temperature regimes and can be hybridized. Previous study showed that hybrids using type B eggs had higher susceptibility to thermal stress than hybrids using type A eggs. We conducted transcriptome analyses of multiple single eggs from crosses using eggs of the different species to compare the effects of maternal thermal stress on heterogeneity in egg provisioning, and followed the effects across generations. We found overall decreases of heterogeneity of egg maternal mRNAs associated with maternal thermal stress. When the eggs produced by the F1 AB generation were crossed with type B sperm and the progeny ('ABB' generation) reared unstressed until maturation, the overall heterogeneity of the eggs produced was greater in a clutch from an individual with a heat-stressed mother compared to one from a non-heat-stressed mother. By examining individual genes, we found no consistent overall effect of thermal stress on heterogeneity of expression in genes involved in developmental buffering. In contrast, heterogeneity of expression in signaling molecules was directly affected by thermal stress. CONCLUSIONS: Due to the absence of batch replicates and variation in the number of reads obtained, our conclusions are very limited. However, contrary to the predictions of bet-hedging, the results suggest that maternal thermal stress at the embryo stage is associated with reduced heterogeneity of maternal mRNA provision in the eggs subsequently produced by the stressed individual, but there is then a large increase in heterogeneity in eggs of the next generation, although itself unstressed. Despite its limitations, our study presents a proof of concept, identifying a model system, experimental approach and analytical techniques capable of providing a significant advance in understanding the impact of maternal environment on developmental heterogeneity.


Assuntos
RNA Mensageiro Estocado , Sêmen , Animais , Feminino , Masculino , Humanos , RNA Mensageiro Estocado/genética , Perfilação da Expressão Gênica , Mães , Evolução Biológica
6.
Trends Genet ; 40(3): 238-249, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38262796

RESUMO

Maternal mRNAs accumulate during egg growth and must be judiciously degraded or translated to ensure successful development of mammalian embryos. In this review we integrate recent investigations into pathways controlling rapid degradation of maternal mRNAs during the maternal-to-zygotic transition. Degradation is not indiscriminate, and some mRNAs are selectively protected and rapidly translated after fertilization for reprogramming the zygotic genome during early embryogenesis. Oocyte specific cofactors and pathways have been illustrated to control different futures of maternal mRNAs. We discuss mechanisms that control the fate of maternal mRNAs during late oogenesis and after fertilization. Issues to be resolved in current maternal mRNA research are described, and future research directions are proposed.


Assuntos
Desenvolvimento Embrionário , RNA Mensageiro Estocado , Animais , RNA Mensageiro Estocado/genética , RNA Mensageiro Estocado/metabolismo , Desenvolvimento Embrionário/genética , Oócitos , Oogênese/genética , Zigoto , Regulação da Expressão Gênica no Desenvolvimento/genética , Mamíferos/genética
7.
EMBO Rep ; 25(1): 404-427, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38177902

RESUMO

Maternal mRNAs are essential for protein synthesis during oogenesis and early embryogenesis. To adapt translation to specific needs during development, maternal mRNAs are translationally repressed by shortening the polyA tails. While mRNA deadenylation is associated with decapping and degradation in somatic cells, maternal mRNAs with short polyA tails are stable. Here we report that the germline-specific eIF4E paralog, eIF4E1b, is essential for zebrafish oogenesis. eIF4E1b localizes to P-bodies in zebrafish embryos and binds to mRNAs with reported short or no polyA tails, including histone mRNAs. Loss of eIF4E1b results in reduced histone mRNA levels in early gonads, consistent with a role in mRNA storage. Using mouse and human eIF4E1Bs (in vitro) and zebrafish eIF4E1b (in vivo), we show that unlike canonical eIF4Es, eIF4E1b does not interact with eIF4G to initiate translation. Instead, eIF4E1b interacts with the translational repressor eIF4ENIF1, which is required for eIF4E1b localization to P-bodies. Our study is consistent with an important role of eIF4E1b in regulating mRNA dormancy and provides new insights into fundamental post-transcriptional regulatory principles governing early vertebrate development.


Assuntos
RNA Mensageiro Estocado , Peixe-Zebra , Animais , Humanos , Camundongos , RNA Mensageiro Estocado/genética , RNA Mensageiro Estocado/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Histonas/metabolismo , Fator de Iniciação 4E em Eucariotos/genética , Fator de Iniciação 4E em Eucariotos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Biossíntese de Proteínas
8.
Physiol Genomics ; 56(1): 9-31, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37842744

RESUMO

Oocyte maturation is accompanied by changes in abundances of thousands of mRNAs, many degraded and many preferentially stabilized. mRNA stability can be regulated by diverse features including GC content, codon bias, and motifs within the 3'-untranslated region (UTR) interacting with RNA binding proteins (RBPs) and miRNAs. Many studies have identified factors participating in mRNA splicing, bulk mRNA storage, and translational recruitment in mammalian oocytes, but the roles of potentially hundreds of expressed factors, how they regulate cohorts of thousands of mRNAs, and to what extent their functions are conserved across species has not been determined. We performed an extensive in silico cross-species analysis of features associated with mRNAs of different stability classes during oocyte maturation (stable, moderately degraded, and highly degraded) for five mammalian species. Using publicly available RNA sequencing data for germinal vesicle (GV) and MII oocyte transcriptomes, we determined that 3'-UTR length and synonymous codon usage are positively associated with stability, while greater GC content is negatively associated with stability. By applying machine learning and feature selection strategies, we identified RBPs and miRNAs that are predictive of mRNA stability, including some across multiple species and others more species-restricted. The results provide new insight into the mechanisms regulating maternal mRNA stabilization or degradation.NEW & NOTEWORTHY Conservation across species of mRNA features regulating maternal mRNA stability during mammalian oocyte maturation was analyzed. 3'-Untranslated region length and synonymous codon usage are positively associated with stability, while GC content is negatively associated. Just three RNA binding protein motifs were predicted to regulate mRNA stability across all five species examined, but associated pathways and functions are shared, indicating oocytes of different species arrive at comparable physiological destinations via different routes.


Assuntos
MicroRNAs , RNA Mensageiro Estocado , Animais , Mamíferos/genética , Mamíferos/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Oócitos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Mensageiro Estocado/genética , RNA Mensageiro Estocado/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Regiões não Traduzidas , Feminino
9.
Semin Cell Dev Biol ; 154(Pt B): 88-98, 2024 Feb 15.
Artigo | MEDLINE | ID: mdl-36894378

RESUMO

Transcriptional and post-transcriptional regulations control gene expression in most cells. However, critical transitions during the development of the female gamete relies exclusively on regulation of mRNA translation in the absence of de novo mRNA synthesis. Specific temporal patterns of maternal mRNA translation are essential for the oocyte progression through meiosis, for generation of a haploid gamete ready for fertilization and for embryo development. In this review, we will discuss how mRNAs are translated during oocyte growth and maturation using mostly a genome-wide perspective. This broad view on how translation is regulated reveals multiple divergent translational control mechanisms required to coordinate protein synthesis with progression through the meiotic cell cycle and with development of a totipotent zygote.


Assuntos
Oócitos , Biossíntese de Proteínas , Oócitos/metabolismo , Oócitos/crescimento & desenvolvimento , Humanos , Animais , Biossíntese de Proteínas/genética , RNA Mensageiro Estocado/genética , RNA Mensageiro Estocado/metabolismo , Feminino , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Oogênese/genética , Genoma/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Meiose/genética
10.
Nucleic Acids Res ; 51(21): 11652-11667, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-37889087

RESUMO

Fully grown oocytes remain transcriptionally quiescent, yet many maternal mRNAs are synthesized and retained in growing oocytes. We now know that maternal mRNAs are stored in a structure called the mitochondria-associated ribonucleoprotein domain (MARDO). However, the components and functions of MARDO remain elusive. Here, we found that LSM14B knockout prevents the proper storage and timely clearance of mRNAs (including Cyclin B1, Btg4 and other mRNAs that are translationally activated during meiotic maturation), specifically by disrupting MARDO assembly during oocyte growth and meiotic maturation. With decreased levels of storage and clearance, the LSM14B knockout oocytes failed to enter meiosis II, ultimately resulting in female infertility. Our results demonstrate the function of LSM14B in MARDO assembly, and couple the MARDO with mRNA clearance and oocyte meiotic maturation.


Assuntos
Oogênese , RNA Mensageiro Estocado , Feminino , Humanos , Meiose/genética , Oócitos/fisiologia , Oogênese/genética , RNA Mensageiro/genética , RNA Mensageiro Estocado/genética , Camundongos Endogâmicos C57BL , Masculino , Animais , Camundongos
11.
PLoS Genet ; 19(7): e1010845, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37440598

RESUMO

Embryogenesis requires coordinated gene regulatory activities early on that establish the trajectory of subsequent development, during a period called the maternal-to-zygotic transition (MZT). The MZT comprises transcriptional activation of the embryonic genome and post-transcriptional regulation of egg-inherited maternal mRNA. Investigation into the MZT in animals has focused almost exclusively on bilaterians, which include all classical models such as flies, worms, sea urchin, and vertebrates, thus limiting our capacity to understand the gene regulatory paradigms uniting the MZT across all animals. Here, we elucidate the MZT of a non-bilaterian, the cnidarian Hydractinia symbiolongicarpus. Using parallel poly(A)-selected and non poly(A)-dependent RNA-seq approaches, we find that the Hydractinia MZT is composed of regulatory activities similar to many bilaterians, including cytoplasmic readenylation of maternally contributed mRNA, delayed genome activation, and separate phases of maternal mRNA deadenylation and degradation that likely depend on both maternally and zygotically encoded clearance factors, including microRNAs. But we also observe massive upregulation of histone genes and an expanded repertoire of predicted H4K20 methyltransferases, aspects thus far particular to the Hydractinia MZT and potentially underlying a novel mode of early embryonic chromatin regulation. Thus, similar regulatory strategies with taxon-specific elaboration underlie the MZT in both bilaterian and non-bilaterian embryos, providing insight into how an essential developmental transition may have arisen in ancestral animals.


Assuntos
Cnidários , RNA Mensageiro Estocado , Animais , RNA Mensageiro Estocado/genética , Cnidários/genética , Regulação da Expressão Gênica no Desenvolvimento , Zigoto/metabolismo , Desenvolvimento Embrionário/genética
12.
Genes Dev ; 37(9-10): 418-431, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37257918

RESUMO

Translation of maternal mRNAs is detected before transcription of zygotic genes and is essential for mammalian embryo development. How certain maternal mRNAs are selected for translation instead of degradation and how this burst of translation affects zygotic genome activation remain unknown. Using gene-edited mice, we document that the oocyte-specific eukaryotic translation initiation factor 4E family member 1b (eIF4E1b) is the regulator of maternal mRNA expression that ensures subsequent reprogramming of the zygotic genome. In oocytes, eIF4E1b binds to transcripts encoding translation machinery proteins, chromatin remodelers, and reprogramming factors to promote their translation in zygotes and protect them from degradation. The protein products are thought to establish an open chromatin landscape in one-cell zygotes to enable transcription of genes required for cleavage stage development. Our results define a program for rapid resetting of the zygotic epigenome that is regulated by maternal mRNA expression and provide new insights into the mammalian maternal-to-zygotic transition.


Assuntos
RNA Mensageiro Estocado , Zigoto , Animais , Camundongos , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento , Oócitos , Biossíntese de Proteínas , RNA Mensageiro Estocado/genética , RNA Mensageiro Estocado/metabolismo , Zigoto/metabolismo
13.
BMC Genomics ; 24(1): 191, 2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37038099

RESUMO

BACKGROUND: Modifications to early development can lead to evolutionary diversification. The early stages of development are under maternal control, as mothers produce eggs loaded with nutrients, proteins and mRNAs that direct early embryogenesis. Maternally provided mRNAs are the only expressed genes in initial stages of development and are tightly regulated. Differences in maternal mRNA provisioning could lead to phenotypic changes in embryogenesis and ultimately evolutionary changes in development. However, the extent that maternal mRNA expression in eggs can vary is unknown for most developmental models. Here, we use a species with dimorphic development- where females make eggs and larvae of different sizes and life-history modes-to investigate the extent of variation in maternal mRNA provisioning to the egg. RESULTS: We find that there is significant variation in gene expression across eggs of different development modes, and that there are both qualitative and quantitative differences in mRNA expression. We separate parental effects from allelic effects, and find that both mechanisms contribute to mRNA expression differences. We also find that offspring of intraspecific crosses differentially provision their eggs based on the parental cross direction (a parental effect), which has not been previously demonstrated in reproductive traits like oogenesis. CONCLUSION: We find that maternally controlled initiation of development is functionally distinct between eggs of different sizes and maternal genotypes. Both allele-specific effects and parent-of-origin effects contribute to gene expression differences in eggs. The latter indicates an intergenerational effect where a parent's genotype can affect gene expression in an egg made by the next generation.


Assuntos
RNA Mensageiro Estocado , Reprodução , Animais , Feminino , RNA Mensageiro Estocado/genética , Larva , Evolução Biológica , RNA Mensageiro/genética
14.
Adv Sci (Weinh) ; 10(18): e2300043, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37083226

RESUMO

Mammalian oogenesis features reliance on the mRNAs produced and stored during early growth phase. These are essential for producing an oocyte competent to undergo meiotic maturation and embryogenesis later when oocytes are transcriptionally silent. The fate of maternal mRNAs hence ensures the success of oogenesis and the quality of the resulting eggs. Nevertheless, how the fate of maternal mRNAs is determined remains largely elusive. RNA-binding proteins (RBPs) are crucial regulators of oogenesis, yet the identity of the full complement of RBPs expressed in oocytes is unknown. Here, a global view of oocyte-expressed RBPs is presented: mRNA-interactome capture identifies 1396 RBPs in mouse oocytes. An analysis of one of these RBPs, LSM family member 14 (LSM14B), demonstrates that this RBP is specific to oocytes and associated with many networks essential for oogenesis. Deletion of Lsm14b results in female-specific infertility and a phenotype characterized by oocytes incompetent to complete meiosis and early embryogenesis. LSM14B serves as an interaction hub for proteins and mRNAs throughout oocyte development and regulates translation of a subset of its bound mRNAs. Therefore, RNP complexes tethered by LSM14B are found exclusively in oocytes and are essential for the control of maternal mRNA fate and oocyte development.


Assuntos
Oócitos , RNA Mensageiro Estocado , Feminino , Animais , Camundongos , RNA Mensageiro Estocado/genética , RNA Mensageiro Estocado/metabolismo , Oócitos/metabolismo , Oogênese/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Mamíferos/metabolismo
15.
Reprod Biol Endocrinol ; 21(1): 40, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37101140

RESUMO

BACKGROUND: Studies have shown that sperm-borne microRNAs (miRNAs) are involved in mammalian preimplantation embryonic development. In humans, spermatozoan miR-34c levels are correlated with in vitro fertilization outcomes, such as embryo quality and the clinical pregnancy and live birth rates. In rabbits and cows, miR-34c improves the developmental competence of embryos generated by somatic cell nuclear transfer. However, the mechanisms underlying the regulation of embryonic development by miR-34c remain unknown. METHODS: Female C57BL/6 mice (6-8 weeks old) were superovulated, and pronucleated zygotes were collected and microinjected with an miR-34c inhibitor or a negative-control RNA. The embryonic development of the microinjected zygotes was evaluated, and the messenger RNA (mRNA) expression profiles of the embryos at the two-cell, four-cell and blastocyst stages (five embryos per group) were determined by RNA sequencing analysis. Gene expression levels were verified by reverse transcription-quantitative polymerase chain reaction. Cluster analysis and heat map visualization were performed to detect differentially expressed mRNAs. Pathway and process enrichment analyses were performed using ontology resources. Differentially expressed mRNAs were systematically analyzed using the Search Tool for the Retrieval of Interacting Genes/Proteins database to determine their biological functions. RESULTS: Embryonic developmental potential was significantly reduced in zygotes microinjected with the miR-34c inhibitor compared with those microinjected with a negative-control RNA. Two-cell stage embryos microinjected with an miR-34c inhibitor presented altered transcriptomic profiles, with upregulated expression of maternal miR-34c target mRNAs and classical maternal mRNAs. Differentially expressed transcripts were mainly of genes associated with lipid metabolism and cellular membrane function at the two-cell stage, with cell-cycle phase transition and energy metabolism at the four-cell stage; and with vesicle organization, lipid biosynthetic process and endomembrane system organization at the blastocyst stage. We also showed that genes related to preimplantation embryonic development, including Alkbh4, Sp1, Mapk14, Sin3a, Sdc1 and Laptm4b, were significantly downregulated after microinjection of an miR-34c inhibitor. CONCLUSIONS: Sperm-borne miR-34c may regulate preimplantation embryonic development by affecting multiple biological processes, such as maternal mRNA degradation, cellular metabolism, cell proliferation and blastocyst implantation. Our data demonstrate the importance of sperm-derived miRNAs in the development of preimplantation embryos.


Assuntos
MicroRNAs , RNA Mensageiro Estocado , Humanos , Gravidez , Masculino , Animais , Feminino , Camundongos , Bovinos , Coelhos , RNA Mensageiro Estocado/genética , RNA Mensageiro Estocado/metabolismo , Camundongos Endogâmicos C57BL , Sêmen/metabolismo , Desenvolvimento Embrionário/genética , Espermatozoides/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Blastocisto , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Estabilidade de RNA , Mamíferos , Proteínas de Membrana/metabolismo , Proteínas Oncogênicas/metabolismo
16.
Biol Rev Camb Philos Soc ; 98(3): 900-930, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36718948

RESUMO

Vertebrate oocytes face a particular challenge concerning the regulation of gene expression during meiotic maturation. Global transcription becomes quiescent in fully grown oocytes, remains halted throughout maturation and fertilization, and only resumes upon embryonic genome activation. Hence, the oocyte meiotic maturation process is largely regulated by protein synthesis from pre-existing maternal messenger RNAs (mRNAs) that are transcribed and stored during oocyte growth. Rapidly developing genome-wide techniques have greatly expanded our insights into the global translation changes and possible regulatory mechanisms during oocyte maturation. The storage, translation, and processing of maternal mRNAs are thought to be regulated by factors interacting with elements in the mRNA molecules. Additionally, posttranscriptional modifications of mRNAs, such as methylation and uridylation, have recently been demonstrated to play crucial roles in maternal mRNA destabilization. However, a comprehensive understanding of the machineries that regulate maternal mRNA fate during oocyte maturation is still lacking. In particular, how the transcripts of important cell cycle components are stabilized, recruited at the appropriate time for translation, and eliminated to modulate oocyte meiotic progression remains unclear. A better understanding of these mechanisms will provide invaluable insights for the preconditions of developmental competence acquisition, with important implications for the treatment of infertility. This review discusses how the storage, localization, translation, and processing of oocyte mRNAs are regulated, and how these contribute to oocyte maturation progression.


Assuntos
Oócitos , RNA Mensageiro Estocado , Animais , RNA Mensageiro Estocado/genética , RNA Mensageiro Estocado/metabolismo , Oócitos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Vertebrados/genética , Proliferação de Células , Regulação da Expressão Gênica no Desenvolvimento
17.
EMBO J ; 42(3): e111364, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36477743

RESUMO

Early embryonic development depends on proper utilization and clearance of maternal transcriptomes. How these processes are spatiotemporally regulated remains unclear. Here we show that nuclear RNA-binding protein Rbm14 and maternal mRNAs co-phase separate into cytoplasmic condensates to facilitate vertebrate blastula-to-gastrula development. In zebrafish, Rbm14 condensates were highly abundant in blastomeres and markedly reduced after prominent activation of zygotic transcription. They concentrated at spindle poles by associating with centrosomal γ-tubulin puncta and displayed mainly asymmetric divisions with a global symmetry across embryonic midline in 8- and 16-cell embryos. Their formation was dose-dependently stimulated by m6 A, but repressed by m5 C modification of the maternal mRNA. Furthermore, deadenylase Parn co-phase separated with these condensates, and this was required for deadenylation of the mRNAs in early blastomeres. Depletion of Rbm14 impaired embryonic cell differentiations and full activations of the zygotic genome in both zebrafish and mouse and resulted in developmental arrest at the blastula stage. Our results suggest that cytoplasmic Rbm14 condensate formation regulates early embryogenesis by facilitating deadenylation, protection, and mitotic allocation of m6 A-modified maternal mRNAs, and by releasing the poly(A)-less transcripts upon regulated disassembly to allow their re-polyadenylation and translation or clearance.


Assuntos
RNA Mensageiro Estocado , Peixe-Zebra , Animais , Feminino , Camundongos , Gravidez , Blastocisto/metabolismo , Blástula/metabolismo , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Mensageiro Estocado/genética , RNA Mensageiro Estocado/metabolismo
18.
Clin Transl Med ; 12(12): e1137, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36495115

RESUMO

BACKGROUND: RNA modification-induced ovarian dysgenesis appears to be necessary for ovary development. However, how m5 C (5-methylcytosine)-coordinating modificatory transcripts are dynamically regulated during oogenesis, and ovarian development is unknown. The purpose of this study was to determine whether NOP2/Sun RNA methyltransferase 5 (Nsun5) deletion leads to suppression of ovarian function and arrest of embryonic development. The regulation of mRNA decay and stability by m5 C modification is essential at multiple stages during the maternal-to-zygotic (MZT) transition. METHODS: Mouse ovaries and oocytes with Nsun5KO and the KGN cell line were subjected to m5 C identification, alternative splicing analysis and protein expression. BS-m5 C-seq, real-time polymerase chain reaction, Western blot, immunofluorescence and actinomycin D treatment assays were used. In particular, BS-m5 C-seq revealed a dynamic pattern of m5 C sites and genes in the ovaries between Nsun5KO and WT mice at the 2-month and 6-month stages. Diverse bioinformatic tools were employed to identify target genes for Nsun5. RESULTS: Here, a maternal mRNA stability study showed that deletion of the m5 C methyltransferase Nsun5 obstructs follicular development and ovarian function, which leads directly to inhibition of embryogenesis and embryo development. Dynamic analysis of m5 C revealed that the level of m5 C decreased in a time-dependent manner after Nsun5 knockout. Regarding the molecular mechanism, we found that Nsun5 deficiency caused a m5 C decline in the exon and 3'UTR regions that influenced the translation efficiency of Mitotic arrest deficient 2 like 2 (MAD2L2) and Growth differentiation factor 9 (GDF9) in the ovary. Mechanistic investigation of alternative splicing indicated that Nsun5KO triggers aberrant events in the exon region of Brd8. CONCLUSIONS: Nsun5 loss arrests follicular genesis and development in ovarian aging, indicating that Nsun5/m5 C-regulated maternal mRNA stabilization is essential for MZT transition.


Assuntos
Metiltransferases , RNA Mensageiro Estocado , Gravidez , Feminino , Camundongos , Animais , RNA Mensageiro Estocado/genética , RNA Mensageiro Estocado/metabolismo , Metiltransferases/genética , Metiltransferases/metabolismo , RNA/metabolismo , Zigoto/metabolismo , Estabilidade de RNA/genética
19.
Science ; 378(6617): eabq4835, 2022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-36264786

RESUMO

Full-grown oocytes are transcriptionally silent and must stably maintain the messenger RNAs (mRNAs) needed for oocyte meiotic maturation and early embryonic development. However, where and how mammalian oocytes store maternal mRNAs is unclear. Here, we report that mammalian oocytes accumulate mRNAs in a mitochondria-associated ribonucleoprotein domain (MARDO). MARDO assembly around mitochondria was promoted by the RNA-binding protein ZAR1 and directed by an increase in mitochondrial membrane potential during oocyte growth. MARDO foci coalesced into hydrogel-like matrices that clustered mitochondria. Maternal mRNAs stored in the MARDO were translationally repressed. Loss of ZAR1 disrupted the MARDO, dispersed mitochondria, and caused a premature loss of MARDO-localized mRNAs. Thus, a mitochondria-associated membraneless compartment controls mitochondrial distribution and regulates maternal mRNA storage, translation, and decay to ensure fertility in mammals.


Assuntos
Mitocôndrias , Oócitos , RNA Mensageiro Estocado , Animais , Feminino , Hidrogéis , Mitocôndrias/genética , Mitocôndrias/metabolismo , Oócitos/metabolismo , RNA Mensageiro Estocado/genética , RNA Mensageiro Estocado/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Humanos , Camundongos , Suínos , Bovinos , Proteínas do Ovo/genética , Proteínas do Ovo/metabolismo
20.
Sci Adv ; 8(41): eabn0897, 2022 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-36240265

RESUMO

How the germ line achieves a clean transition from maternal to zygotic gene expression control is a fundamental problem in sexually reproducing organisms. Whereas several mechanisms terminate the maternal program in the soma, this combined molecular reset and handover are poorly understood for primordial germ cells (PGCs). Here, we show that GRIF-1, a TRIM32-related and presumed E3 ubiquitin ligase in Caenorhabditis elegans, eliminates the maternal cytoplasmic poly(A) polymerase (cytoPAP) complex by targeting the germline-specific intrinsically disordered region of its enzymatic subunit, GLD-2, for proteasome-mediated degradation. Interference with cytoPAP turnover in PGCs causes frequent transgenerational sterility and, eventually, germline mortality. Hence, positively acting maternal RNA regulators are cleared via the proteasome system to avoid likely interference between maternal and zygotic gene expression programs to maintain transgenerational fertility and acquire germline immortality. This strategy is likely used in all animals that preform their immortal germ line via maternally inherited germplasm determinants.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Células Germinativas/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , RNA/metabolismo , RNA Mensageiro Estocado/genética , RNA Mensageiro Estocado/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...