Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.349
Filtrar
1.
ACS Chem Biol ; 19(6): 1243-1249, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38747804

RESUMO

Nicotinamide adenine dinucleotide (NAD) is a critical component of the cellular metabolism and also serves as an alternative 5' cap on various RNAs. However, the function of the NAD RNA cap is still under investigation. We studied NAD capping of RNAs in HIV-1-infected cells because HIV-1 is responsible for the depletion of the NAD/NADH cellular pool and causing intracellular pellagra. By applying the NAD captureSeq protocol to HIV-1-infected and uninfected cells, we revealed that four snRNAs (e.g., U1) and four snoRNAs lost their NAD cap when infected with HIV-1. Here, we provide evidence that the presence of the NAD cap decreases the stability of the U1/HIV-1 pre-mRNA duplex. Additionally, we demonstrate that reducing the quantity of NAD-capped RNA by overexpressing the NAD RNA decapping enzyme DXO results in an increase in HIV-1 infectivity. This suggests that NAD capping is unfavorable for HIV-1 and plays a role in its infectivity.


Assuntos
Infecções por HIV , HIV-1 , NAD , RNA Nuclear Pequeno , RNA Nucleolar Pequeno , Humanos , NAD/metabolismo , RNA Nucleolar Pequeno/metabolismo , RNA Nucleolar Pequeno/genética , RNA Nuclear Pequeno/metabolismo , Infecções por HIV/virologia , Infecções por HIV/metabolismo , Capuzes de RNA/metabolismo
2.
Technol Cancer Res Treat ; 23: 15330338241245939, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38752263

RESUMO

OBJECTIVES: Small nucleolar RNAs (snoRNAs) form clusters within the genome, representing a mysterious category of small non-coding RNAs. Research has demonstrated that aberrant snoRNAs can contribute to the development of various types of cancers. Recent studies have identified snoRNAs as potentially valuable biomarkers for the diagnosis or/and prognosis of cancers. However, there has been a lack of comprehensive reviews on prognostic and diagnostic snoRNAs across different types of cancers. METHODS: We conducted a systematic search of various databases including Google Scholar, Medline, Cochrane, Scopus, PubMed, Embase, ScienceDirect, Ovid-Medline, Chinese National Knowledge Infrastructure, WanFang, and SinoMed with a time frame reception to December 30, 2022. A total of 49 relevant articles were included in our analysis, consisting of 21 articles focusing on diagnostic aspects and 41 articles focusing on prognostic aspects. Pooled odds ratio, 95% confidence intervals (CIs), and hazard ratio (HR) were utilized to evaluate clinical parameters and overall survival (OS), respectively. RESULT: The findings indicated that area under the curve, sensitivity, and specificity were 0.85, 75%, and 80% in cancer, respectively. There was a possibility that snoRNAs had a positive impact on the diagnosis (risk ratio, RR = 2.95, 95% CI: 2.75-3.16, P = 0.000) and OS (HR = 1) in cancer. Additionally, abnormally expressed snoRNAs were associated with a positive impact on OS time for chronic lymphocytic leukemia (HR: 0.88, 95%Cl: 0.69-1.11, P < 0.00001), colon adenocarcinoma (HR: 0.97, 95%Cl: 0.91-1.03, P < 0.0001), and ovarian cancer (HR: 0.98, 95%Cl: 0.98-0.99, P < 0.00001). However, dysregulated snoRNAs of colon cancer and colorectal cancer had a negative impact on OS time (HR = 3.01 and 1.01 respectively, P < 0.0001). CONCLUSION: The results strongly suggested that snoRNAs could serve as potential novel indicators for prognosis and diagnosis in cancers. This systematic review followed the guidelines of the Transparent Reporting of Systematic Review and Meta-Analyses (PROSPERO register: CRD42020209096).


Assuntos
Biomarcadores Tumorais , Neoplasias , RNA Nucleolar Pequeno , Humanos , RNA Nucleolar Pequeno/genética , Biomarcadores Tumorais/genética , Prognóstico , Neoplasias/genética , Neoplasias/diagnóstico , Neoplasias/mortalidade , Curva ROC
3.
Biol Direct ; 19(1): 38, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38741178

RESUMO

BACKGROUND: Clear cell renal cell carcinoma (ccRCC) is the most common subtype of RCC with high rates of metastasis. Targeted therapies such as tyrosine kinase and checkpoint inhibitors have improved treatment success, but therapy-related side effects and tumor recurrence remain a challenge. As a result, ccRCC still have a high mortality rate. Early detection before metastasis has great potential to improve outcomes, but no suitable biomarker specific for ccRCC is available so far. Therefore, molecular biomarkers derived from body fluids have been investigated over the past decade. Among them, RNAs from urine-derived extracellular vesicles (EVs) are very promising. METHODS: RNA was extracted from urine-derived EVs from a cohort of 78 subjects (54 ccRCC patients, 24 urolithiasis controls). RNA-seq was performed on the discovery cohort, a subset of the whole cohort (47 ccRCC, 16 urolithiasis). Reads were then mapped to the genome, and expression was quantified based on 100 nt long contiguous genomic regions. Cluster analysis and differential region expression analysis were performed with adjustment for age and gender. The candidate biomarkers were validated by qPCR in the entire cohort. Receiver operating characteristic, area under the curve and odds ratios were used to evaluate the diagnostic potential of the models. RESULTS: An initial cluster analysis of RNA-seq expression data showed separation by the subjects' gender, but not by tumor status. Therefore, the following analyses were done, adjusting for gender and age. The regions differentially expressed between ccRCC and urolithiasis patients mainly overlapped with small nucleolar RNAs (snoRNAs). The differential expression of four snoRNAs (SNORD99, SNORD22, SNORD26, SNORA50C) was validated by quantitative PCR. Confounder-adjusted regression models were then used to classify the validation cohort into ccRCC and tumor-free subjects. Corresponding accuracies ranged from 0.654 to 0.744. Models combining multiple genes and the risk factors obesity and hypertension showed improved diagnostic performance with an accuracy of up to 0.811 for SNORD99 and SNORA50C (p = 0.0091). CONCLUSIONS: Our study uncovered four previously unrecognized snoRNA biomarkers from urine-derived EVs, advancing the search for a robust, easy-to-use ccRCC screening method.


Assuntos
Biomarcadores Tumorais , Carcinoma de Células Renais , Vesículas Extracelulares , Neoplasias Renais , RNA Nucleolar Pequeno , Humanos , Carcinoma de Células Renais/urina , Carcinoma de Células Renais/genética , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Biomarcadores Tumorais/urina , Biomarcadores Tumorais/genética , Feminino , Masculino , Pessoa de Meia-Idade , Neoplasias Renais/urina , Neoplasias Renais/genética , Idoso , RNA Nucleolar Pequeno/genética , Estudos de Coortes , Adulto
4.
Arch Insect Biochem Physiol ; 116(1): e22117, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38706214

RESUMO

More and more evidence shows that small noncoding RNAs (ncRNAs) play diverse roles in development, stress response and other cellular processes, but functional study of intermediate-size ncRNAs is still rare. Here, the expression profile of 16 intermediate-size ncRNAs in ovary and testis of silkworm Bombyx mori were analyzed. Twelve ncRNAs, including 5 small nucleolar RNAs (snoRNAs) and 7 unclassified ncRNAs, accumulated more in the testis than in the ovary of silkworm, especially Bm-163, Bm-51 and Bm-68. Four ncRNAs (including three orphan snoRNAs and one unclassified ncRNA) had higher expression level in the ovary than in the testis, especially Bm-86. Overexpression of the testis-enriched snoRNA Bm-68 in the female led to the accumulation of male-specific isoform of doublesex (BmdsxM) and increased the expression ratio of BmdsxM: BmdsxF. While overexpression of ovary-enriched snoRNA Bm-86 in the male decreased the expression ratio of BmdsxM: BmdsxF, indicating the roles of the two snoRNAs played in the alternative splicing of Bmdsx of silkworm, which will provide new clues for the functional study of snoRNAs in insects.


Assuntos
Processamento Alternativo , Bombyx , Proteínas de Ligação a DNA , Proteínas de Insetos , RNA Nucleolar Pequeno , Animais , Feminino , Masculino , Bombyx/genética , Bombyx/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Ovário/metabolismo , RNA Nucleolar Pequeno/genética , RNA Nucleolar Pequeno/metabolismo , Testículo/metabolismo
5.
Cell Death Dis ; 15(5): 342, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760378

RESUMO

U3 snoRNA is essential for ribosome biogenesis during interphase. Upon mitotic onset, the nucleolus disassembles and U3 snoRNA relocates to the perichromosomal region (PR) to be considered as a chromosome passenger. Whether U3 controls mitosis remains unknown. Here, we demonstrate that U3 snoRNA is required for mitotic progression. We identified DDX21 as the predominant U3-binding protein during mitosis and confirmed that U3 snoRNA colocalizes with DDX21 in the PR. DDX21 knockdown induces mitotic catastrophe and similar mitotic defects caused by U3 snoRNA depletion. Interestingly, the uniform PR distribution of U3 snoRNA and DDX21 is interdependent. DDX21 functions in mitosis depending on its PR localization. Mechanistically, U3 snoRNA regulates DDX21 PR localization through maintaining its mobility. Moreover, Cy5-U3 snoRNA downsizes the fibrous condensates of His-DDX21 at proper molecular ratios in vitro. This work highlights the importance of the equilibrium between U3 snoRNA and DDX21 in PR formation and reveals the potential relationship between the PR assembly and mitotic regulation.


Assuntos
RNA Helicases DEAD-box , Mitose , RNA Nucleolar Pequeno , Humanos , RNA Helicases DEAD-box/metabolismo , RNA Helicases DEAD-box/genética , RNA Nucleolar Pequeno/metabolismo , RNA Nucleolar Pequeno/genética , Células HeLa
6.
Int J Mol Sci ; 25(10)2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38791231

RESUMO

Ribosomal RNAs (rRNAs) are extensively modified during the transcription and subsequent maturation. Three types of modifications, 2'-O-methylation of ribose moiety, pseudouridylation, and base modifications, are introduced either by a snoRNA-driven mechanism or by stand-alone enzymes. Modified nucleotides are clustered at the functionally important sites, including peptidyl transferase center (PTC). Therefore, it has been hypothesised that the modified nucleotides play an important role in ensuring the functionality of the ribosome. In this study, we demonstrate that seven 25S rRNA modifications, including four evolutionarily conserved modifications, in the proximity of PTC can be simultaneously depleted without loss of cell viability. Yeast mutants lacking three snoRNA genes (snR34, snR52, and snR65) and/or expressing enzymatically inactive variants of spb1(D52A/E679K) and nop2(C424A/C478A) were constructed. The results show that rRNA modifications in PTC contribute collectively to efficient translation in eukaryotic cells. The deficiency of seven modified nucleotides in 25S rRNA resulted in reduced cell growth, cold sensitivity, decreased translation levels, and hyperaccurate translation, as indicated by the reduced missense and nonsense suppression. The modification m5C2870 is crucial in the absence of the other six modified nucleotides. Thus, the pattern of rRNA-modified nucleotides around the PTC is essential for optimal ribosomal translational activity and translational fidelity.


Assuntos
Peptidil Transferases , Biossíntese de Proteínas , RNA Ribossômico , Saccharomyces cerevisiae , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Peptidil Transferases/metabolismo , Peptidil Transferases/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomycetales/genética , Saccharomycetales/metabolismo , Ribossomos/metabolismo , RNA Nucleolar Pequeno/genética , RNA Nucleolar Pequeno/metabolismo , Processamento Pós-Transcricional do RNA , RNA Fúngico/genética , RNA Fúngico/metabolismo , Mutação
7.
Brief Bioinform ; 25(3)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38647155

RESUMO

Accurately delineating the connection between short nucleolar RNA (snoRNA) and disease is crucial for advancing disease detection and treatment. While traditional biological experimental methods are effective, they are labor-intensive, costly and lack scalability. With the ongoing progress in computer technology, an increasing number of deep learning techniques are being employed to predict snoRNA-disease associations. Nevertheless, the majority of these methods are black-box models, lacking interpretability and the capability to elucidate the snoRNA-disease association mechanism. In this study, we introduce IGCNSDA, an innovative and interpretable graph convolutional network (GCN) approach tailored for the efficient inference of snoRNA-disease associations. IGCNSDA leverages the GCN framework to extract node feature representations of snoRNAs and diseases from the bipartite snoRNA-disease graph. SnoRNAs with high similarity are more likely to be linked to analogous diseases, and vice versa. To facilitate this process, we introduce a subgraph generation algorithm that effectively groups similar snoRNAs and their associated diseases into cohesive subgraphs. Subsequently, we aggregate information from neighboring nodes within these subgraphs, iteratively updating the embeddings of snoRNAs and diseases. The experimental results demonstrate that IGCNSDA outperforms the most recent, highly relevant methods. Additionally, our interpretability analysis provides compelling evidence that IGCNSDA adeptly captures the underlying similarity between snoRNAs and diseases, thus affording researchers enhanced insights into the snoRNA-disease association mechanism. Furthermore, we present illustrative case studies that demonstrate the utility of IGCNSDA as a valuable tool for efficiently predicting potential snoRNA-disease associations. The dataset and source code for IGCNSDA are openly accessible at: https://github.com/altriavin/IGCNSDA.


Assuntos
RNA Nucleolar Pequeno , RNA Nucleolar Pequeno/genética , Humanos , Algoritmos , Biologia Computacional/métodos , Redes Neurais de Computação , Software , Aprendizado Profundo
8.
Cancer Med ; 13(8): e7200, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38634194

RESUMO

BACKGROUND: Recently, increasing data have suggested that the lncRNA small nucleolar RNA host genes (SNHGs) were aberrantly expressed in hepatocellular carcinoma (HCC), but the association between the prognosis of HCC and their expression remained unclear. The purpose of this meta-analysis was to determine the prognostic significance of lncRNA SNHGs in HCC. METHODS: We systematically searched Embase, Web of Science, PubMed, and Cochrane Library for eligible articles published up to February 2024. The prognostic significance of SNHGs in HCC was evaluated by hazard ratios (HRs) and 95% confidence intervals (CIs). Odds ratios (ORs) were used to assess the clinicopathological features of SNHGs. RESULTS: This analysis comprised a total of 25 studies covering 2314 patients with HCC. The findings demonstrated that over-expressed SNHGs were associated with larger tumor size, multiple tumor numbers, poor histologic grade, earlier lymphatic metastasis, vein invasion, advanced tumor stage, portal vein tumor thrombosis (PVTT), and higher alpha-fetoprotein (AFP) level, but not with hepatitis B virus (HBV) infection, and cirrhosis. In terms of prognosis, patients with higher SNHG expression were more likely to have shorter overall survival (OS), relapse-free survival (RFS), and disease-free survival (DFS). CONCLUSIONS: In conclusion, upregulation of SNHGs expression correlates with shorter OS, RFS, DFS, tumor size and numbers, histologic grade, lymphatic metastasis, vein invasion, tumor stage, PVTT, and AFP level, suggesting that SNHGs may serve as prognostic biomarkers in HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , RNA Longo não Codificante , Humanos , alfa-Fetoproteínas , Biomarcadores Tumorais/genética , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Metástase Linfática , Recidiva Local de Neoplasia , Prognóstico , RNA Longo não Codificante/genética , RNA Nucleolar Pequeno
9.
RNA Biol ; 21(1): 1-11, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38626213

RESUMO

Small nucleolar RNAs (snoRNAs) are a class of conserved noncoding RNAs forming complexes with proteins to catalyse site-specific modifications on ribosomal RNA. Besides this canonical role, several snoRNAs are now known to regulate diverse levels of gene expression. While these functions are carried out in trans by mature snoRNAs, evidence has also been emerging of regulatory roles of snoRNAs in cis, either within their genomic locus or as longer transcription intermediates during their maturation. Herein, we review recent findings that snoRNAs can interact in cis with their intron to regulate the expression of their host gene. We also explore the ever-growing diversity of longer host-derived snoRNA extensions and their functional impact across the transcriptome. Finally, we discuss the role of snoRNA duplications into forging these new layers of snoRNA-mediated regulation, as well as their involvement in the genomic imprinting of their host locus.


Assuntos
RNA Nucleolar Pequeno , RNA não Traduzido , RNA Nucleolar Pequeno/genética , RNA Nucleolar Pequeno/metabolismo , RNA não Traduzido/genética , RNA Ribossômico/genética , Íntrons
10.
Sci Rep ; 14(1): 8258, 2024 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-38589409

RESUMO

Major depressive disorder (MDD) is a complex and potentially debilitating illness whose etiology and pathology remains unclear. Non-coding RNAs have been implicated in MDD, where they display differential expression in the brain and the periphery. In this study, we quantified small nucleolar RNA (snoRNA) expression by small RNA sequencing in the lateral habenula (LHb) of individuals with MDD (n = 15) and psychiatrically-healthy controls (n = 15). We uncovered five snoRNAs that exhibited differential expression between MDD and controls (FDR < 0.01). Specifically, SNORA69 showed increased expression in MDD and was technically validated via RT-qPCR. We further investigated the expression of Snora69 in the LHb and peripheral blood of an unpredicted chronic mild stress (UCMS) mouse model of depression. Snora69 was specifically up-regulated in mice that underwent the UCMS paradigm. SNORA69 is known to guide pseudouridylation onto 5.8S and 18S rRNAs. We quantified the relative abundance of pseudouridines on 5.8S and 18S rRNA in human post-mortem LHb samples and found increased abundance of pseudouridines in the MDD group. Overall, our findings indicate the importance of brain snoRNAs in the pathology of MDD. Future studies characterizing SNORA69's role in MDD pathology is warranted.


Assuntos
Transtorno Depressivo Maior , Habenula , Humanos , Animais , Camundongos , Transtorno Depressivo Maior/genética , Habenula/metabolismo , Sequência de Bases , RNA Ribossômico 18S , RNA Nucleolar Pequeno/genética , RNA Nucleolar Pequeno/metabolismo
11.
BMC Genomics ; 25(1): 345, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580917

RESUMO

BACKGROUND: High-mobility group B1 (HMGB1) is both a DNA binding nuclear factor modulating transcription and a crucial cytokine that mediates the response to both infectious and noninfectious inflammation such as autoimmunity, cancer, trauma, and ischemia reperfusion injury. HMGB1 has been proposed to control ribosome biogenesis, similar as the other members of a class of HMGB proteins. RESULTS: Here, we report that HMGB1 selectively promotes transcription of genes involved in the regulation of transcription, osteoclast differentiation and apoptotic process. Improved RNA immunoprecipitation by UV cross-linking and deep sequencing (iRIP-seq) experiment revealed that HMGB1 selectively bound to mRNAs functioning not only in signal transduction and gene expression, but also in axon guidance, focal adhesion, and extracellular matrix organization. Importantly, HMGB1-bound reads were strongly enriched in specific structured RNAs, including the domain II of 28S rRNA, H/ACA box snoRNAs including snoRNA63 and scaRNAs. RTL-P experiment showed that overexpression of HMGB1 led to a decreased methylation modification of 28S rRNA at position Am2388, Cm2409, and Gm2411. We further showed that HMGB1 overexpression increased ribosome RNA expression levels and enhanced protein synthesis. CONCLUSION: Taken together, our results support a model in which HMGB1 binds to multiple RNA species in human cancer cells, which could at least partially contribute to HMGB1-modulated rRNA modification, protein synthesis function of ribosomes, and differential gene expression including rRNA genes. These findings provide additional mechanistic clues to HMGB1 functions in cancers and cell differentiation.


Assuntos
Proteína HMGB1 , Metilação de RNA , Humanos , Células HeLa , Proteína HMGB1/genética , Proteína HMGB1/metabolismo , Metilação , RNA Ribossômico 28S/metabolismo , RNA Nucleolar Pequeno/química , RNA Nucleolar Pequeno/genética , RNA Nucleolar Pequeno/metabolismo , Metilação de RNA/genética
12.
Int J Mol Sci ; 25(7)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38612790

RESUMO

Deregulation of small non-coding RNAs (sncRNAs) has been associated with the onset of metastasis. We evaluated the expression of sncRNAs in patients with early-stage breast cancer, performing RNA sequencing in 60 patients for whom tumor and sentinel lymph node (SLN) samples were available, and conducting differential expression, gene ontology, enrichment and survival analyses. Sequencing annotation classified most of the sncRNAs into small nucleolar RNA (snoRNAs, 70%) and small nuclear RNA (snRNA, 13%). Our results showed no significant differences in sncRNA expression between tumor or SLNs obtained from the same patient. Differential expression analysis showed down-regulation (n = 21) sncRNAs and up-regulation (n = 2) sncRNAs in patients with locoregional metastasis. The expression of SNHG5, SNORD90, SCARNA2 and SNORD78 differentiated luminal A from luminal B tumors, whereas SNORD124 up-regulation was associated with luminal B HER2+ tumors. Discriminating analysis and receiver-operating curve analysis revealed a signature of six snoRNAs (SNORD93, SNORA16A, SNORD113-6, SNORA7A, SNORA57 and SNORA18A) that distinguished patients with locoregional metastasis and predicted patient outcome. Gene ontology and Reactome pathway analysis showed an enrichment of biological processes associated with translation initiation, protein targeting to specific cell locations, and positive regulation of Wnt and NOTCH signaling pathways, commonly involved in the promotion of metastases. Our results point to the potential of several sncRNAs as surrogate markers of lymph node metastases and patient outcome in early-stage breast cancer patients. Further preclinical and clinical studies are required to understand the biological significance of the most significant sncRNAs and to validate our results in a larger cohort of patients.


Assuntos
Neoplasias da Mama , Pequeno RNA não Traduzido , Humanos , Feminino , Neoplasias da Mama/genética , Pequeno RNA não Traduzido/genética , Genes Reguladores , Metástase Linfática/genética , RNA Nucleolar Pequeno/genética
13.
Trends Mol Med ; 30(6): 562-578, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38523014

RESUMO

Small nucleolar RNAs (snoRNAs) are emerging as important regulators of cardiovascular (patho)biology. Several roles of snoRNAs have recently been identified in heart development and congenital heart diseases, as well as their dynamic regulation in hypertrophic and dilated cardiomyopathies, coronary heart disease (CHD), myocardial infarction (MI), cardiac fibrosis, and heart failure. Furthermore, reports of changes in vesicular snoRNA expression and altered levels of circulating snoRNAs in response to cardiac stress suggest that snoRNAs also function in cardiac signaling and intercellular communication. In this review, we summarize and discuss key findings and outline the clinical potential of snoRNAs considering current challenges and gaps in the field of cardiovascular diseases (CVDs).


Assuntos
Doenças Cardiovasculares , RNA Nucleolar Pequeno , Humanos , RNA Nucleolar Pequeno/genética , RNA Nucleolar Pequeno/metabolismo , Animais , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/etiologia , Sistema Cardiovascular/metabolismo , Sistema Cardiovascular/fisiopatologia , Transdução de Sinais
14.
Int J Mol Sci ; 25(5)2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38474168

RESUMO

Small nucleolar RNAs (snoRNAs) constitute a class of intron-derived non-coding RNAs ranging from 60 to 300 nucleotides. Canonically localized in the nucleolus, snoRNAs play a pivotal role in RNA modifications and pre-ribosomal RNA processing. Based on the types of modifications they involve, such as methylation and pseudouridylation, they are classified into two main families-box C/D and H/ACA snoRNAs. Recent investigations have revealed the unconventional synthesis and biogenesis strategies of snoRNAs, indicating their more profound roles in pathogenesis than previously envisioned. This review consolidates recent discoveries surrounding snoRNAs and provides insights into their mechanistic roles in cancer. It explores the intricate interactions of snoRNAs within signaling pathways and speculates on potential therapeutic solutions emerging from snoRNA research. In addition, it presents recent findings on the long non-coding small nucleolar RNA host gene (lncSNHG), a subset of long non-coding RNAs (lncRNAs), which are the transcripts of parental SNHGs that generate snoRNA. The nucleolus, the functional epicenter of snoRNAs, is also discussed. Through a deconstruction of the pathways driving snoRNA-induced oncogenesis, this review aims to serve as a roadmap to guide future research in the nuanced field of snoRNA-cancer interactions and inspire potential snoRNA-related cancer therapies.


Assuntos
Neoplasias , RNA Nucleolar Pequeno , Humanos , RNA Nucleolar Pequeno/genética , Ribossomos/metabolismo , RNA Ribossômico/metabolismo , Nucléolo Celular/metabolismo , Neoplasias/metabolismo
15.
Nat Commun ; 15(1): 2425, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38499544

RESUMO

Up to 80% of the human genome produces "dark matter" RNAs, most of which are noncapped RNAs (napRNAs) that frequently act as noncoding RNAs (ncRNAs) to modulate gene expression. Here, by developing a method, NAP-seq, to globally profile the full-length sequences of napRNAs with various terminal modifications at single-nucleotide resolution, we reveal diverse classes of structured ncRNAs. We discover stably expressed linear intron RNAs (sliRNAs), a class of snoRNA-intron RNAs (snotrons), a class of RNAs embedded in miRNA spacers (misRNAs) and thousands of previously uncharacterized structured napRNAs in humans and mice. These napRNAs undergo dynamic changes in response to various stimuli and differentiation stages. Importantly, we show that a structured napRNA regulates myoblast differentiation and a napRNA DINAP interacts with dyskerin pseudouridine synthase 1 (DKC1) to promote cell proliferation by maintaining DKC1 protein stability. Our approach establishes a paradigm for discovering various classes of ncRNAs with regulatory functions.


Assuntos
MicroRNAs , RNA Longo não Codificante , Humanos , Animais , Camundongos , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , MicroRNAs/genética , RNA Nucleolar Pequeno/genética , RNA Nucleolar Pequeno/metabolismo , Proteínas Nucleares , Proteínas de Ciclo Celular
16.
Mol Carcinog ; 63(6): 1117-1132, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38421204

RESUMO

Breast cancer stem cells (BCSCs) are key players in carcinogenesis and development. Small nucleolar RNAs (snoRNAs) seem to have a crucial influence on regulating stem cell-like properties in various cancers, but the underlying mechanism in breast cancer has not been determined. In this study, we first found that the expression of SNORA51 might be strongly and positively related to BCSCs-like properties. SNORA51 expression was assessed in breast cancer tissues (n = 158 patients) by in situ hybridization. Colony formation, cell counting kit-8, and sphere formation assays were used to detect cell proliferation and self-renewal, respectively. Wound healing and transwell assays were used to detect cell migration. Coimmunoprecipitation and molecular docking were used to determine the underlying mechanism through which SNORA51 regulates BCSCs-like properties. High SNORA51 expression was associated with a worse prognosis, overall survival, and disease-free survival, in 158 breast cancer patients and was also closely related to lymph node status, ER status, the Ki-67 index, histological grade, and TNM stage. Further analysis proved that SNORA51 could enhance and maintain stem cell-like properties, including cell proliferation, self-renewal, and migration, in breast cancer. Moreover, high SNORA51 expression could reduce nucleolar RPL3 expression, induce changes in the expression of NPM1 in the nucleolus and nucleoplasm, and ultimately increase c-MYC expression. Taken together, our findings demonstrated that SNORA51 could enhance BCSCs-like properties via the RPL3/NPM1/c-MYC pathway both in vitro and in vivo. Therefore, SNORA51 might be a significant biomarker and potential therapeutic target and might even provide a new viewpoint on the regulatory mechanism of snoRNAs in breast cancer or other malignant tumors.


Assuntos
Neoplasias da Mama , Proliferação de Células , Células-Tronco Neoplásicas , Nucleofosmina , Proteínas Proto-Oncogênicas c-myc , RNA Nucleolar Pequeno , Proteínas Ribossômicas , Humanos , Feminino , Neoplasias da Mama/patologia , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , RNA Nucleolar Pequeno/genética , RNA Nucleolar Pequeno/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Pessoa de Meia-Idade , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Prognóstico , Regulação Neoplásica da Expressão Gênica , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Movimento Celular , Transdução de Sinais , Animais , Linhagem Celular Tumoral , Camundongos
17.
World J Gastroenterol ; 30(2): 115-127, 2024 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-38312115

RESUMO

Small nucleolar RNAs (snoRNAs) represent a class of non-coding RNAs that play pivotal roles in post-transcriptional RNA processing and modification, thereby contributing significantly to the maintenance of cellular functions related to protein synthesis. SnoRNAs have been discovered to possess the ability to influence cell fate and alter disease progression, holding immense potential in controlling human diseases. It is suggested that the dysregulation of snoRNAs in cancer exhibits differential expression across various cancer types, stages, metastasis, treatment response and/or prognosis in patients. On the other hand, colorectal cancer (CRC), a prevalent malignancy of the digestive system, is characterized by high incidence and mortality rates, ranking as the third most common cancer type. Recent research indicates that snoRNA dysregulation is associated with CRC, as snoRNA expression significantly differs between normal and cancerous conditions. Consequently, assessing snoRNA expression level and function holds promise for the prognosis and diagnosis of CRC. Nevertheless, current comprehension of the potential roles of snoRNAs in CRC remains limited. This review offers a comprehensive survey of the aberrant regulation of snoRNAs in CRC, providing valuable insights into the discovery of novel biomarkers, therapeutic targets, and potential tools for the diagnosis and treatment of CRC and furnishing critical cues for advancing research into CRC and the judicious selection of therapeutic targets.


Assuntos
Neoplasias Colorretais , RNA Nucleolar Pequeno , Humanos , RNA Nucleolar Pequeno/genética , RNA Nucleolar Pequeno/metabolismo , Carcinogênese/genética , Transformação Celular Neoplásica/genética , Prognóstico , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia
18.
Nucleic Acids Res ; 52(6): 2848-2864, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38416577

RESUMO

During their maturation, ribosomal RNAs (rRNAs) are decorated by hundreds of chemical modifications that participate in proper folding of rRNA secondary structures and therefore in ribosomal function. Along with pseudouridine, methylation of the 2'-hydroxyl ribose moiety (Nm) is the most abundant modification of rRNAs. The majority of Nm modifications in eukaryotes are placed by Fibrillarin, a conserved methyltransferase belonging to a ribonucleoprotein complex guided by C/D box small nucleolar RNAs (C/D box snoRNAs). These modifications impact interactions between rRNAs, tRNAs and mRNAs, and some are known to fine tune translation rates and efficiency. In this study, we built the first comprehensive map of Nm sites in Drosophila melanogaster rRNAs using two complementary approaches (RiboMethSeq and Nanopore direct RNA sequencing) and identified their corresponding C/D box snoRNAs by whole-transcriptome sequencing. We de novo identified 61 Nm sites, from which 55 are supported by both sequencing methods, we validated the expression of 106 C/D box snoRNAs and we predicted new or alternative rRNA Nm targets for 31 of them. Comparison of methylation level upon different stresses show only slight but specific variations, indicating that this modification is relatively stable in D. melanogaster. This study paves the way to investigate the impact of snoRNA-mediated 2'-O-methylation on translation and proteostasis in a whole organism.


Assuntos
Drosophila melanogaster , RNA Nucleolar Pequeno , Animais , RNA Nucleolar Pequeno/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Ribossomos/genética , Ribossomos/metabolismo , Sequência de Bases , RNA Ribossômico/metabolismo , Metilação
19.
J Cell Sci ; 137(3)2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38345344

RESUMO

The 2'-O-methylation (2'-O-Me) of ribosomal RNA (rRNA) shows plasticity that is potentially associated with cell phenotypes. We used RiboMeth-seq profiling to reveal growth arrest-specific 2'-O-Me patterns in primary human dermal fibroblasts from three different donors. We exposed cells to hydrogen peroxide to induce cellular senescence and to high cell densities to promote quiescence by contact inhibition. We compared both modes of cell cycle arrest to proliferating cells and could indeed distinguish these conditions by their overall 2'-O-Me patterns. Methylation levels at a small fraction of sites showed plasticity and correlated with the expression of specific small nucleolar RNAs (snoRNAs) but not with expression of fibrillarin. Moreover, we observed subtle senescence-associated alterations in ribosome biogenesis. Knockdown of the snoRNA SNORD87, which acts as a guide for modification of a hypermethylated position in non-proliferating cells, was sufficient to boost cell proliferation. Conversely, depletion of SNORD88A, SNORD88B and SNORD88C, which act as guides for modification of a hypomethylated site, caused decreased proliferation without affecting global protein synthesis or apoptosis. Taken together, our findings provide evidence that rRNA modifications can be used to distinguish and potentially influence specific growth phenotypes of primary cells.


Assuntos
RNA Ribossômico , Ribose , Humanos , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , Ribose/metabolismo , Ribossomos/metabolismo , Metilação , RNA Nucleolar Pequeno/genética , Fibroblastos/metabolismo
20.
Funct Integr Genomics ; 24(1): 15, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38240925

RESUMO

Chronic psoriasis is a kind of immune-mediated skin illness and the underlying molecular mechanisms of pathogenesis remain incompletely understood. Here, we used small RNA microarray assays to scan the differential expressed RNAs in psoriasis patient samples. The downstream miRNAs and its targets were predicted using bioinformatics analysis from online bases and confirmed using fluorescence in situ hybridization and dual­luciferase report gene assay. Cell ability of proliferation and migration were detected using CCK-8 and transwell assays. The results showed that a new snoRNA Snora73 was upregulated in psoriasis patient samples. Overexpression of Snora73 significantly increased psoriasis cells viability and migration, while knockdown of Snora73 got the opposite results. Mechanistically, our results showed that Snora73 acted as a sponge for miR-3074-5p and PBX1 is a direct target of miR-3074-5p in psoriasis cells. Furthermore, miR-3074-5p suppressed psoriasis cell proliferation and migration, while PBX1 promoted cell proliferation and migration in psoriasis. Collectively, these findings reveal a crucial role of Snora73 in progression of psoriasis through miR-3074-5p/PBX1 signaling pathway and suggest a potential therapeutic strategy.


Assuntos
MicroRNAs , Fator de Transcrição 1 de Leucemia de Células Pré-B , Psoríase , RNA Longo não Codificante , RNA Nucleolar Pequeno , Humanos , Linhagem Celular Tumoral , Proliferação de Células/genética , Hibridização in Situ Fluorescente , MicroRNAs/genética , Psoríase/genética , RNA Longo não Codificante/genética , RNA Nucleolar Pequeno/genética , Fator de Transcrição 1 de Leucemia de Células Pré-B/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...