Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 121
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cell ; 64(6): 1135-1143, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27867008

RESUMO

RNA polymerase I (Pol I) is a 14-subunit enzyme that solely synthesizes pre-ribosomal RNA. Recently, the crystal structure of apo Pol I gave unprecedented insight into its molecular architecture. Here, we present three cryo-EM structures of elongating Pol I, two at 4.0 Å and one at 4.6 Å resolution, and a Pol I open complex at 3.8 Å resolution. Two modules in Pol I mediate the narrowing of the DNA-binding cleft by closing the clamp domain. The DNA is bound by the clamp head and by the protrusion domain, allowing visualization of the upstream and downstream DNA duplexes in one of the elongation complexes. During formation of the Pol I elongation complex, the bridge helix progressively folds, while the A12.2 C-terminal domain is displaced from the active site. Our results reveal the conformational changes associated with elongation complex formation and provide additional insight into the Pol I transcription cycle.


Assuntos
DNA/química , Subunidades Proteicas/química , RNA Polimerase I/química , RNA/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/química , Sequência de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , DNA/genética , DNA/metabolismo , Expressão Gênica , Modelos Moleculares , Ligação Proteica , Conformação Proteica em alfa-Hélice , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Estrutura Terciária de Proteína , Subunidades Proteicas/genética , Subunidades Proteicas/isolamento & purificação , Subunidades Proteicas/metabolismo , RNA/genética , RNA/metabolismo , RNA Polimerase I/genética , RNA Polimerase I/isolamento & purificação , RNA Polimerase I/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/enzimologia , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/isolamento & purificação , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
Methods Mol Biol ; 1455: 85-97, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27576712

RESUMO

Purification of RNA polymerase (Pol) I is essential for functional as well as for structural studies. The product needs to be extremely pure in order to exclude secondary effects, e.g., caused by copurified nucleic acids in subsequent experiments. For this purpose, the method presented here was originally introduced nearly a decade ago but underwent constant optimization [1]. The polymerase is extracted from its endogenous source, since no overexpression system for the entire 590 kDa, 14-subunit complex is available thus far. Following yeast cultivation, a number of standard protein purification techniques are applied and combined to a robust but elaborate procedure that takes 3 days. In brief, a yeast strain with histidine-tagged RNA polymerase I is fermented, cells are broken by bead beating, and cell debris is removed by a two-step centrifugation. The lysate is then dialyzed, the Pol-I-containing pellet resuspended, and polymerase I enriched by a His-trap affinity step, followed by sequential purification via anion and cation exchange and a final size exclusion chromatography.


Assuntos
RNA Polimerase I/química , RNA Polimerase I/isolamento & purificação , Saccharomyces cerevisiae/enzimologia , Cromatografia de Afinidade , Cromatografia em Gel , Cristalização , Fermentação , Proteínas Recombinantes , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transcrição Gênica
3.
Nucleic Acids Res ; 43(8): 4163-78, 2015 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-25813043

RESUMO

Using affinity purification and mass spectrometry, we identified the subunits of Arabidopsis thaliana multisubunit RNA polymerases I and III (abbreviated as Pol I and Pol III), the first analysis of their physical compositions in plants. In all eukaryotes examined to date, AC40 and AC19 subunits are common to Pol I (a.k.a. Pol A) and Pol III (a.k.a. Pol C) and are encoded by single genes. Surprisingly, A. thaliana and related species express two distinct AC40 paralogs, one of which assembles into Pol I and the other of which assembles into Pol III. Changes at eight amino acid positions correlate with the functional divergence of Pol I- and Pol III-specific AC40 paralogs. Two genes encode homologs of the yeast C53 subunit and either protein can assemble into Pol III. By contrast, only one of two potential C17 variants, and one of two potential C31 variants were detected in Pol III. We introduce a new nomenclature system for plant Pol I and Pol III subunits in which the 12 subunits that are structurally and functionally homologous among Pols I through V are assigned equivalent numbers.


Assuntos
Proteínas de Arabidopsis/química , Arabidopsis/enzimologia , Subunidades Proteicas/química , RNA Polimerase III/química , RNA Polimerase I/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/imunologia , Proteínas de Arabidopsis/isolamento & purificação , Subunidades Proteicas/genética , Subunidades Proteicas/imunologia , Subunidades Proteicas/isolamento & purificação , RNA Polimerase I/genética , RNA Polimerase I/imunologia , RNA Polimerase I/isolamento & purificação , RNA Polimerase III/genética , RNA Polimerase III/imunologia , RNA Polimerase III/isolamento & purificação , Terminologia como Assunto
4.
Methods Mol Biol ; 1276: 281-9, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25665570

RESUMO

Eukaryotic cells employ at least three nuclear, DNA-dependent RNA polymerase systems for the synthesis of cellular RNA. RNA polymerases I, II, and III primarily produce rRNA, mRNA, and tRNA, respectively. In a rapidly growing cell, most RNA synthesis is devoted to production of the translation machinery, with rRNA synthesis by RNA polymerase I representing more than half of total cellular transcription. The fundamental connection between ribosome biogenesis and cell growth is clear; furthermore, recent studies have identified transcription by RNA polymerase I as a key target for anticancer chemotherapy. Thus, efficient methods for characterizing transcription of the ribosomal DNA and its regulation are needed. In order to describe enzymatic features of an enzyme, in vitro assays are critical. Here we describe a method for purifying RNA polymerase I. This approach yields enzyme of sufficiently high quantity and activity for an array of experiments directed at describing the enzymatic properties of RNA polymerase I in detail.


Assuntos
Técnicas In Vitro/métodos , Biologia Molecular/métodos , RNA Polimerase I/isolamento & purificação , Saccharomyces cerevisiae/enzimologia
5.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 10): 2570-82, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25286842

RESUMO

Knowing the structure of multi-subunit complexes is critical to understand basic cellular functions. However, when crystals of these complexes can be obtained they rarely diffract beyond 3 Šresolution, which complicates X-ray structure determination and refinement. The crystal structure of RNA polymerase I, an essential cellular machine that synthesizes the precursor of ribosomal RNA in the nucleolus of eukaryotic cells, has recently been solved. Here, the crucial steps that were undertaken to build the atomic model of this multi-subunit enzyme are reported, emphasizing how simple crystallographic experiments can be used to extract relevant biological information. In particular, this report discusses the combination of poor molecular replacement and experimental phases, the application of multi-crystal averaging and the use of anomalous scatterers as sequence markers to guide tracing and to locate the active site. The methods outlined here will likely serve as a reference for future structural determination of large complexes at low resolution.


Assuntos
Modelos Moleculares , RNA Polimerase I/química , Domínio Catalítico , Cristalização , Cristalografia por Raios X , DNA/metabolismo , Conformação Proteica , Multimerização Proteica , RNA Polimerase I/genética , RNA Polimerase I/isolamento & purificação , RNA Polimerase I/metabolismo
6.
Tsitologiia ; 50(4): 338-46, 2008.
Artigo em Russo | MEDLINE | ID: mdl-18664117

RESUMO

In this work we describe how the nucleolus reacts to inhibition of protein synthesis as revealed by labeling with a new monoclonal antibody A3. In normal cells A3 antigen is observed as numerous foci within the nucleolus. During mitosis A3 antigen is located in a few foci on chromosomes. Regions of A3 localization are susceptible to pepsin treatment but are not susceptible to RNAse A treatment. This fact indicates that A3 antigen is of protein nature. On the ultra structural level, A3 antigen is localized primarily at the periphery of fibrillar centers. Taken together these properties of A3 antigen suggest that it's a component of the RNA polymerase I transcription machinery. A3 antigen has an intriguing property, namely, an ability to migrate from the nucleolus to the nucleoplasm upon inhibition of protein synthesis with anisomycin, puromycin or cycloheximide. The obtained results show that the localization of A3 antigen revealed by the new monoclonal antibody may serve as a cytological indicator of the overall level of protein synthesis in vitro.


Assuntos
Nucléolo Celular/química , Proteínas Nucleares/isolamento & purificação , Biossíntese de Proteínas , RNA Polimerase I/isolamento & purificação , Animais , Anticorpos Monoclonais/biossíntese , Anticorpos Monoclonais/imunologia , Especificidade de Anticorpos , Nucléolo Celular/metabolismo , Regulação da Expressão Gênica , Células HeLa , Humanos , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Nucleares/imunologia , Proteínas Nucleares/metabolismo , RNA Polimerase I/metabolismo , Transcrição Gênica
7.
Mol Cell Biol ; 27(17): 6254-63, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17606628

RESUMO

A unique characteristic of the protistan parasite Trypanosoma brucei is a multifunctional RNA polymerase I which, in addition to synthesizing rRNA as in other eukaryotes, transcribes gene units encoding the major cell surface antigens variant surface glycoprotein and procyclin. Thus far, purification of this enzyme has revealed nine orthologues of known subunits but no active enzyme. Here, we have epitope tagged the specific subunit RPB6z and tandem affinity purified RNA polymerase I from crude extract. The purified enzyme was active in both a nonspecific and a promoter-dependent transcription assay and exhibited enriched protein bands with apparent sizes of 31, 29, and 27 kDa. p31 and its trypanosomatid orthologues were identified, but their amino acid sequences have no similarity to proteins of other eukaryotes, nor do they contain a conserved sequence motif. Nevertheless, p31 cosedimented with purified RNA polymerase I, and RNA interferance-mediated silencing of p31 was lethal, affecting the abundance of rRNA. Moreover, extract of p31-silenced cells exhibited a specific defect in transcription of class I templates, which was remedied by the addition of purified RNA polymerase I, and an anti-p31 serum completely blocked RNA polymerase I-mediated transcription. We therefore dubbed this novel functional component of T. brucei RNA polymerase I TbRPA31.


Assuntos
Subunidades Proteicas/metabolismo , Proteínas de Protozoários/metabolismo , RNA Polimerase I/metabolismo , Transcrição Gênica , Trypanosoma brucei brucei/enzimologia , Sequência de Aminoácidos , Animais , Humanos , Dados de Sequência Molecular , Subunidades Proteicas/genética , Proteínas de Protozoários/genética , Interferência de RNA , RNA Polimerase I/genética , RNA Polimerase I/isolamento & purificação , RNA Ribossômico , Alinhamento de Sequência , Trypanosoma brucei brucei/genética
8.
Mol Biochem Parasitol ; 149(1): 27-37, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16730080

RESUMO

Trypanosoma brucei harbors a unique multifunctional RNA polymerase (pol) I which transcribes, in addition to ribosomal RNA genes, the gene units encoding the major cell surface antigens variant surface glycoprotein and procyclin. In consequence, this RNA pol I is recruited to three structurally different types of promoters and sequestered to two distinct nuclear locations, namely the nucleolus and the expression site body. This versatility may require parasite-specific protein-protein interactions, subunits or subunit domains. Thus far, data mining of trypanosomatid genomes have revealed 13 potential RNA pol I subunits which include two paralogous sets of RPB5, RPB6, and RPB10. Here, we analyzed a cDNA library prepared from procyclic insect form T. brucei and found that all 13 candidate subunits are co-expressed. Moreover, we PTP-tagged the largest subunit TbRPA1, tandem affinity-purified the enzyme complex to homogeneity, and determined its subunit composition. In addition to the already known subunits RPA1, RPA2, RPC40, 1RPB5, and RPA12, the complex contained RPC19, RPB8, and 1RPB10. Finally, to evaluate the absence of RPB6 in our purifications, we used a combination of epitope-tagging and reciprocal coimmunoprecipitation to demonstrate that 1RPB6 but not 2RPB6 binds to RNA pol I albeit in an unstable manner. Collectively, our data strongly suggest that T. brucei RNA pol I binds a distinct set of the RPB5, RPB6, and RPB10 paralogs.


Assuntos
RNA Polimerase I/química , RNA Polimerase I/isolamento & purificação , Trypanosoma brucei brucei/enzimologia , Sequência de Aminoácidos , Animais , Cromatografia de Afinidade , DNA Complementar , Dados de Sequência Molecular , Filogenia , Ligação Proteica , RNA Polimerase I/metabolismo , Alinhamento de Sequência , Trypanosoma brucei brucei/genética
9.
Gene Expr ; 12(4-6): 259-71, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16358415

RESUMO

Large amounts of energy are expended for the construction of the ribosome during both transcription and processing, so it is of utmost importance for the cell to efficiently regulate ribosome production. Understanding how this regulation occurs will provide important insights into cellular growth control and into the coordination of gene expression mediated by all three transcription systems. Ribosomal RNA (rRNA) transcription rates closely parallel the need for protein synthesis; as a cell approaches stationary phase or encounters conditions that negatively affect either growth rate or protein synthesis, rRNA transcription is decreased. In eukaryotes, the interaction of RNA polymerase I (pol I) with the essential transcription initiation factor IA (TIF-IA) has been implicated in this downregulation of transcription. In agreement with the first observation that rRNA transcription is regulated by altering recruitment of pol I to the promoter in Acanthamoeba castellanii, we show here that pol I and an 80-kDa homologue of TIF-IA are found tightly associated in pol I fractions competent for specific transcription. Disruption of the pol I-TIF-IA complex is mediated by a specific dephosphorylation of either pol I or TIF-IA. Phosphatase treatment of TIF-IA-containing A. castellanii pol I fractions results in a downregulation of both transcriptional activity and promoter binding, reminiscent of the inactive pol I fractions purified from encysted cells. The fraction of pol I competent for promoter recruitment is enriched in TIF-IA relative to that not bound by immobilized promoter DNA. This downregulation coincides with an altered electrophoretic mobility of TIF-IA, suggesting at least it is phosphorylated.


Assuntos
Acanthamoeba castellanii/genética , Proteínas Pol1 do Complexo de Iniciação de Transcrição/metabolismo , Regiões Promotoras Genéticas , RNA Polimerase I/metabolismo , RNA Ribossômico/biossíntese , Acanthamoeba castellanii/enzimologia , Fosfatase Alcalina/metabolismo , Ensaio de Desvio de Mobilidade Eletroforética , Regulação da Expressão Gênica , Ligação Proteica/fisiologia , RNA Polimerase I/isolamento & purificação , Transcrição Gênica
10.
Eukaryot Cell ; 4(11): 1942-50, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16278461

RESUMO

Tandem affinity purification (TAP) allows for rapid and efficient purification of epitope-tagged protein complexes from crude extracts under native conditions. The method was established in yeast and has been successfully applied to other organisms, including mammals and trypanosomes. However, we found that the original method, which is based on the TAP tag, consisting of a duplicate protein A epitope, a tobacco etch virus protease cleavage site, and the calmodulin-binding peptide (CBP), did not yield enough recovery of transcription factor SNAPc (for small nuclear RNA-activating protein complex) from crude trypanosome extracts for protein identification. Specifically, the calmodulin affinity chromatography step proved to be inefficient. To overcome this problem, we replaced CBP by the protein C epitope (ProtC) and termed this new epitope combination PTP tag. ProtC binds with high affinity to the monoclonal antibody HPC4, which has the unique property of requiring calcium for antigen recognition. Thus, analogous to the calcium-dependent CBP-calmodulin interaction, ProtC-tagged proteins can be released from immobilized HPC4 by a chelator of divalent cations. While this property was retained, epitope substitution improved purification in our experiments by eliminating the inefficiency of calmodulin affinity chromatography and by providing an alternative way of elution using the ProtC peptide in cases where EGTA inactivated protein function. Furthermore, HPC4 allowed highly sensitive and specific detection of ProtC-tagged proteins after protease cleavage. Thus far, we have successfully purified and characterized the U1 small nuclear ribonucleoprotein particle, the transcription factor complex TATA-binding protein related factor 4 (TRF4)/SNAPc/transcription factor IIA (TFIIA), and RNA polymerase I of Trypanosoma brucei.


Assuntos
Cromatografia de Afinidade/métodos , Epitopos , Proteínas de Protozoários/isolamento & purificação , Trypanosoma brucei brucei/metabolismo , Animais , Humanos , Complexos Multiproteicos , Proteínas de Protozoários/genética , RNA Polimerase I/isolamento & purificação , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Fator de Transcrição TFIIA/isolamento & purificação , Transcrição Gênica , Trypanosoma brucei brucei/genética
11.
Mol Biosyst ; 1(1): 53-6, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-16880963

RESUMO

The rapid isolation of protein complexes is critical to the goal of establishing protein interaction networks. High-throughput methods for identifying protein binding partners in a way suitable for mass spectrometric identification and structural analysis are required and small molecule/peptide interactions provide the key. We have now shown that a redesigned resin derivatized with a bisarsenical dye can be used to isolate the Shewanella oneidensis RNA polymerase core enzyme with a tetracysteine-tagged RNA polymerase A as bait protein. A critical advantage of this method is the ability to release the intact complex using a mild, one-step procedure with a competing dithiol. In addition to the identification of the core complex, additional interaction partners, including universal stress protein, were identified. These results provide a path forward to identifying how changes in critical protein complexes over time modulate cell function.


Assuntos
RNA Polimerase I/isolamento & purificação , Resinas Sintéticas , Shewanella/química , Cisteína/química , Espectrometria de Massas , Tolueno/análogos & derivados , Tolueno/química
12.
J Chromatogr B Analyt Technol Biomed Life Sci ; 800(1-2): 121-6, 2004 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-14698245

RESUMO

Four subunits of Schizosaccharomyces pombe RNA polymerases I-III shared by all three enzymes (Rpb5, Rpb8, Rpb10 and Rpc10 [Rpb12]) have been overexpressed in Escherichia coli expression vectors pQE or pET as hexahistidine fusions. The recombinant proteins have been purified to near homogeneity using metal-chelate affinity chromatography and gel filtration. Homogeneity and identity of the purified protein preparations was demonstrated by denaturing polyacrylamide gel electrophoresis and TOF-MALDI mass spectrometry. The proteins were obtained in large amounts, and their preparations are currently in use for monoclonal antibody production and physico-chemical studies of these individual components of eukaryotic transcription enzymes.


Assuntos
RNA Polimerase III/biossíntese , RNA Polimerase III/isolamento & purificação , RNA Polimerase II/biossíntese , RNA Polimerase II/isolamento & purificação , RNA Polimerase I/biossíntese , RNA Polimerase I/isolamento & purificação , Schizosaccharomyces/enzimologia , Schizosaccharomyces/metabolismo , Núcleo Celular/química , Núcleo Celular/metabolismo , Fenômenos Químicos , Físico-Química , Cromatografia de Afinidade , Cromatografia em Gel , Clonagem Molecular , Cobalto/química , DNA Complementar/biossíntese , DNA Complementar/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Regulação Enzimológica da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Vetores Genéticos , Níquel/química , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/isolamento & purificação
13.
Genes Genet Syst ; 78(3): 199-209, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12893961

RESUMO

Saccharomyces cerevisiae A49 and mouse PAF53 are subunits specific to RNA polymerase I (Pol I) in eukaryotes. It has been known that Pol I without A49 or PAF53 maintains non-specific transcription activities but a molecular role(s) of A49 (and PAF53) remains totally unknown. We studied the fission yeast gene encoding a protein of 415 amino acids exhibiting 30% and 19% identities to A49 and PAF53, respectively. We designate the corresponding protein RPA51 and gene encoding it rpa51+ since the gene encodes a Pol I subunit and an apparent molecular mass of the protein is 51 kDa. rpa51+ is required for cell growth at lower but not at higher temperatures and is able to complement S. cerevisiae rpa49Delta mutation, indicating that RPA51 is a functionally-conserved subunit of Pol I between the budding yeast and the fission yeast. Deletion analysis of rpa51+ shows that only two-thirds of the C-terminal region are required for the function. Transcripts analysis in vivo and in vitro shows that RPA51 plays a general role for maximizing transcription of rDNA whereas it is dispensable for non-specific transcription. We also found that RPA51 associates significantly with Pol I in the stationary phase, suggesting that Pol I inactivation in the stationary phase of yeast does not result from the RPA51 dissociation.


Assuntos
DNA Ribossômico/genética , RNA Polimerase I/genética , Saccharomycetales/enzimologia , Schizosaccharomyces/enzimologia , Transcrição Gênica , Sequência de Aminoácidos , Dados de Sequência Molecular , Mutação , Estrutura Terciária de Proteína , Subunidades Proteicas , RNA Polimerase I/isolamento & purificação , RNA Polimerase I/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomycetales/genética , Saccharomycetales/crescimento & desenvolvimento , Schizosaccharomyces/genética , Schizosaccharomyces/crescimento & desenvolvimento , Deleção de Sequência , Homologia de Sequência de Aminoácidos
16.
Mol Cell Biol ; 22(3): 750-61, 2002 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11784852

RESUMO

In the small, free-living amoeba Acanthamoeba castellanii, rRNA transcription requires, in addition to RNA polymerase I, a single DNA-binding factor, transcription initiation factor IB (TIF-IB). TIF-IB is a multimeric protein that contains TATA-binding protein (TBP) and four TBP-associated factors that are specific for polymerase I transcription. TIF-IB is required for accurate and promoter-specific initiation of rRNA transcription, recruiting and positioning the polymerase on the start site by protein-protein interaction. In A. castellanii, partially purified TIF-IB can form a persistent complex with the ribosomal DNA (rDNA) promoter while homogeneous TIF-IB cannot. An additional factor, TIF-IE, is required along with homogeneous TIF-IB for the formation of a stable complex on the rDNA core promoter. We show that TIF-IE by itself, however, does not bind to the rDNA promoter and thus differs in its mechanism from the upstream binding factor and upstream activating factor, which carry out similar complex-stabilizing functions in vertebrates and yeast, respectively. In addition to its presence in impure TIF-IB, TIF-IE is found in highly purified fractions of polymerase I, with which it associates. Renaturation of polypeptides excised from sodium dodecyl sulfate-polyacrylamide gels showed that a 141-kDa polypeptide possesses all the known activities of TIF-IE.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas Pol1 do Complexo de Iniciação de Transcrição , RNA Polimerase I/metabolismo , RNA Ribossômico/genética , Fatores de Transcrição/metabolismo , Acanthamoeba/genética , Acanthamoeba/metabolismo , Animais , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/isolamento & purificação , Genes de Protozoários , Substâncias Macromoleculares , Regiões Promotoras Genéticas , Estrutura Quaternária de Proteína , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo , RNA Polimerase I/química , RNA Polimerase I/isolamento & purificação , RNA de Protozoário/genética , Fatores de Transcrição/química , Fatores de Transcrição/isolamento & purificação
17.
Plant Mol Biol ; 47(3): 449-59, 2001 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-11587515

RESUMO

In eukaryotes, RNA polymerase I (pol I) transcribes the tandemly repeated genes that encode the precursor of 18S, 5.8S and 25S ribosomal RNAs. In plants and animals, the pol I enzyme can be purified in a holoenzyme form that is self-sufficient for promoter binding and accurate, promoter-dependent transcription in a cell-free system. In this report, we show that a casein kinase 2 (CK2)-like protein kinase co-purifies with pol I holoenzyme activity purified from broccoli (Brassica oleracea). Using an immobilized template assay, we show that the CK2-like activity is part of the protein-DNA complex that results upon binding of the holoenzyme to the rRNA gene promoter. The CK2 activity phosphorylates a similar set of holoenzyme proteins both before and after promoter binding. These data provide further evidence that pol I holoenzyme activity can be attributed to a single, multi-protein complex self-sufficient for promoter association and accurate, promoter-dependent transcription.


Assuntos
DNA de Plantas/metabolismo , Regiões Promotoras Genéticas/genética , Proteínas Serina-Treonina Quinases/metabolismo , RNA Polimerase I/metabolismo , Brassica/enzimologia , Brassica/genética , Caseína Quinase II , DNA de Plantas/genética , Holoenzimas/isolamento & purificação , Holoenzimas/metabolismo , Ligação Proteica , Proteínas Serina-Treonina Quinases/isolamento & purificação , RNA Polimerase I/isolamento & purificação , RNA Ribossômico/genética , Especificidade por Substrato , Transcrição Gênica
19.
Nucleic Acids Res ; 27(18): 3720-7, 1999 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-10471742

RESUMO

Traditional models for transcription initiation by RNA polymerase I include a stepwise assembly of basic transcription factors/regulatory proteins on the core promoter to form a preinitiation complex. In contrast, we have identified a preassembled RNA polymerase I (RPI) complex that contains all the factors necessary and sufficient to initiate transcription from the rDNA promoter in vitro. The purified RPI holoenzyme contains the RPI homolog of TFIID, SL-1 and the rDNA transcription terminator factor (TTF-1), but lacks UBF, an activator of rDNA transcription. Certain components of the DNA repair/replication system, including Ku70/80, DNA topoisomerase I and PCNA, are also associated with the RPI complex. We have found that the holo-enzyme supported specific transcription and that specific transcription was stimulated by the RPI transcription activator UBF. These results support the hypothesis that a fraction of the RPI exists as a preassembled, transcriptionally competent complex that is readily recruited to the rDNA promoter, i.e. as a holoenzyme, and provide important new insights into the mechanisms governing initiation by RPI.


Assuntos
Antígenos Nucleares , DNA Helicases , Reparo do DNA , Replicação do DNA , Complexos Multienzimáticos/química , Proteínas Pol1 do Complexo de Iniciação de Transcrição , RNA Polimerase I/química , RNA Polimerase I/isolamento & purificação , Fatores de Transcrição/isolamento & purificação , Animais , Reparo do DNA/genética , Replicação do DNA/genética , DNA Topoisomerases Tipo I/isolamento & purificação , DNA Topoisomerases Tipo I/metabolismo , DNA Ribossômico/genética , Proteínas de Ligação a DNA/análise , Proteínas de Ligação a DNA/isolamento & purificação , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/farmacologia , Holoenzimas/química , Holoenzimas/isolamento & purificação , Holoenzimas/metabolismo , Autoantígeno Ku , Peso Molecular , Complexos Multienzimáticos/isolamento & purificação , Complexos Multienzimáticos/metabolismo , Proteínas Nucleares/isolamento & purificação , Proteínas Nucleares/metabolismo , Antígeno Nuclear de Célula em Proliferação/isolamento & purificação , Antígeno Nuclear de Célula em Proliferação/metabolismo , Regiões Promotoras Genéticas/genética , Ligação Proteica , RNA Polimerase I/metabolismo , Ratos , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/metabolismo , Fatores de Transcrição/análise , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Fatores de Transcrição/farmacologia , Transcrição Gênica/efeitos dos fármacos , Transcrição Gênica/genética , Células Tumorais Cultivadas
20.
Mol Cell Biol ; 19(1): 796-806, 1999 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-9858602

RESUMO

Mounting evidence suggests that eukaryotic RNA polymerases preassociate with multiple transcription factors in the absence of DNA, forming RNA polymerase holoenzyme complexes. We have purified an apparent RNA polymerase I (Pol I) holoenzyme from Xenopus laevis cells by sequential chromatography on five columns: DEAE-Sepharose, Biorex 70, Sephacryl S300, Mono Q, and DNA-cellulose. Single fractions from every column programmed accurate promoter-dependent transcription. Upon gel filtration chromatography, the Pol I holoenzyme elutes at a position overlapping the peak of Blue Dextran, suggesting a molecular mass in the range of approximately 2 MDa. Consistent with its large mass, Coomassie blue-stained sodium dodecyl sulfate-polyacrylamide gels reveal approximately 55 proteins in fractions purified to near homogeneity. Western blotting shows that TATA-binding protein precisely copurifies with holoenzyme activity, whereas the abundant Pol I transactivator upstream binding factor does not. Also copurifying with the holoenzyme are casein kinase II and a histone acetyltransferase activity with a substrate preference for histone H3. These results extend to Pol I the suggestion that signal transduction and chromatin-modifying activities are associated with eukaryotic RNA polymerases.


Assuntos
Acetiltransferases/metabolismo , Holoenzimas/metabolismo , Proteínas Pol1 do Complexo de Iniciação de Transcrição , Regiões Promotoras Genéticas , Proteínas Quinases/metabolismo , RNA Polimerase I/metabolismo , Proteínas de Saccharomyces cerevisiae , Transcrição Gênica , Acetiltransferases/isolamento & purificação , Animais , Fracionamento Celular , Proteínas de Ligação a DNA/isolamento & purificação , Histona Acetiltransferases , Holoenzimas/isolamento & purificação , Proteínas Quinases/isolamento & purificação , RNA Polimerase I/isolamento & purificação , Proteína de Ligação a TATA-Box , Fatores de Transcrição/isolamento & purificação , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...