Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 134
Filtrar
1.
Int J Mol Sci ; 22(13)2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34206573

RESUMO

Processing of the RNA polymerase I pre-rRNA transcript into the mature 18S, 5.8S, and 25S rRNAs requires removing the "spacer" sequences. The canonical pathway for the removal of the ITS1 spacer involves cleavages at the 3' end of 18S rRNA and at two sites inside ITS1. The process can generate either a long or a short 5.8S rRNA that differs in the number of ITS1 nucleotides retained at the 5.8S 5' end. Here we document a novel pathway to the long 5.8S, which bypasses cleavage within ITS1. Instead, the entire ITS1 is degraded from its 5' end by exonuclease Xrn1. Mutations in RNase MRP increase the accumulation of long relative to short 5.8S rRNA. Traditionally this is attributed to a decreased rate of RNase MRP cleavage at its target in ITS1, called A3. However, results from this work show that the MRP-induced switch between long and short 5.8S rRNA formation occurs even when the A3 site is deleted. Based on this and our published data, we propose that the link between RNase MRP and 5.8S 5' end formation involves RNase MRP cleavage at unknown sites elsewhere in pre-rRNA or in RNA molecules other than pre-rRNA.


Assuntos
RNA Ribossômico 5,8S/genética , RNA Ribossômico 5,8S/metabolismo , DNA Espaçador Ribossômico , Endorribonucleases , Regulação Fúngica da Expressão Gênica , Conformação de Ácido Nucleico , Processamento Pós-Transcricional do RNA , RNA Fúngico , RNA Ribossômico 5,8S/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Deleção de Sequência
2.
Protein Cell ; 10(2): 120-130, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-29557065

RESUMO

Assembly of eukaryotic ribosome is a complicated and dynamic process that involves a series of intermediates. It is unknown how the highly intertwined structure of 60S large ribosomal subunits is established. Here, we report the structure of an early nucleolar pre-60S ribosome determined by cryo-electron microscopy at 3.7 Å resolution, revealing a half-assembled subunit. Domains I, II and VI of 25S/5.8S rRNA pack tightly into a native-like substructure, but domains III, IV and V are not assembled. The structure contains 12 assembly factors and 19 ribosomal proteins, many of which are required for early processing of large subunit rRNA. The Brx1-Ebp2 complex would interfere with the assembly of domains IV and V. Rpf1, Mak16, Nsa1 and Rrp1 form a cluster that consolidates the joining of domains I and II. Our structure reveals a key intermediate on the path to establishing the global architecture of 60S subunits.


Assuntos
RNA Ribossômico 5,8S/química , RNA Ribossômico/química , Proteínas Ribossômicas/química , Subunidades Ribossômicas Maiores de Eucariotos/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Microscopia Crioeletrônica , Modelos Moleculares , Conformação Molecular , Domínios Proteicos
3.
Folia Microbiol (Praha) ; 64(2): 161-170, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30109569

RESUMO

Neoscytalidium (or N.) dimidiatum and N. novaehollandiae are two aggressive plant pathogenic species that affect several agricultural crops. Early detection and identification of these fungi are of critical importance to bring about the effective minimization to the threat they pose to the infected plants. Herein, two species of Neoscytalidium were rapidly discriminated by utilizing the rRNA internal transcribed (ITS4-5.8S-ITS5) PCR primers. A total of 100 isolates of Neoscytalidium species, which were isolated from Iraqi canker-infected fig trees, were included in this study. Two discrete electrophoretic PCR bands were observed in Neoscytalidium isolates-A-variants were about 546 bp, while B-variants were about 993 bp in length. The comprehensive phylogenetic analysis of both DNA variants revealed that A-variants resided between N. novaehollandiae and N. hyalinum, while B-variants were closely related to N. dimidiatum. Furthermore, the highly specific re-constructed tree of both electrophoretic variants demonstrated that B-variants share a high similarity with N. novaehollandiae. Additionally, the secondary structures for both variants were predicted computationally to reveal the structural patterns that each variant follows. In conclusion, a small rRNA locus comprising 22 nucleotides that differs in the two variants is potentially responsible for this species-specific classification. The main divergence in the amplified loci led to the classification of these fungal variants into two main species, namely N. dimidiatum and N. novaehollandiae, demonstrating that the amplification by ITS4-ITS5 rRNA fragment is a beneficial strategy that can be employed for the assessment of Neoscytalidium diversity in the natural ecosystems.


Assuntos
Ascomicetos/classificação , Ascomicetos/genética , DNA Fúngico/genética , DNA Espaçador Ribossômico/genética , Eletroforese em Gel de Ágar , Variação Genética , Ascomicetos/isolamento & purificação , DNA Espaçador Ribossômico/química , Ficus/microbiologia , Filogenia , Doenças das Plantas/microbiologia , Reação em Cadeia da Polimerase , RNA Ribossômico 5,8S/química , RNA Ribossômico 5,8S/genética , Análise de Sequência de DNA , Especificidade da Espécie
4.
RNA ; 25(1): 147-157, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30341176

RESUMO

Many biological functions performed by RNAs arise from their in vivo structures. The structure of the same RNA can differ in vitro and in vivo owing in part to the influence of molecules ranging from protons to secondary metabolites to proteins. Chemical reagents that modify the Watson-Crick (WC) face of unprotected RNA bases report on the absence of base-pairing and so are of value to determining structures adopted by RNAs. Reagents have thus been sought that can report on the native RNA structures that prevail in living cells. Dimethyl sulfate (DMS) and glyoxal penetrate cell membranes and inform on RNA secondary structure in vivo through modification of adenine (A), cytosine (C), and guanine (G) bases. Uracil (U) bases, however, have thus far eluded characterization in vivo. Herein, we show that the water-soluble carbodiimide 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) is capable of modifying the WC face of U and G in vivo, favoring the former nucleobase by a factor of ∼1.5, and doing so in the eukaryote rice, as well as in the Gram-negative bacterium Escherichia coli While both EDC and glyoxal target Gs, EDC reacts with Gs in their typical neutral state, while glyoxal requires Gs to populate the rare anionic state. EDC may thus be more generally useful; however, comparison of the reactivity of EDC and glyoxal may allow the identification of Gs with perturbed pKas in vivo and genome-wide. Overall, use of EDC with DMS allows in vivo probing of the base-pairing status of all four RNA bases.


Assuntos
Etildimetilaminopropil Carbodi-Imida , RNA/química , Pareamento de Bases , Sequência de Bases , Escherichia coli/química , Escherichia coli/genética , Glioxal , Guanina/química , Indicadores e Reagentes , Técnicas de Sonda Molecular , Sondas Moleculares , Estrutura Molecular , Conformação de Ácido Nucleico , Oryza/química , Oryza/genética , RNA/genética , RNA Bacteriano/química , RNA Bacteriano/genética , RNA de Plantas/química , RNA de Plantas/genética , RNA Ribossômico 16S/química , RNA Ribossômico 16S/genética , RNA Ribossômico 5,8S/química , RNA Ribossômico 5,8S/genética , Uracila/química
5.
Biomolecules ; 8(4)2018 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-30380771

RESUMO

In eukaryotes, 18S, 5.8S, and 28S rRNAs are transcribed as precursor molecules that undergo extensive modification and nucleolytic processing to form the mature rRNA species. Central in the process are the small nucleolar RNAs (snoRNAs). The majority of snoRNAs guide site specific chemical modifications but a few are involved in defining pre-rRNA cleavages. Here, we describe an unusual snoRNA (TtnuCD32) belonging to the box C/D subgroup from the ciliate Tetrahymena thermophila. We show that TtnuCD32 is unlikely to function as a modification guide snoRNA and that it is critical for cell viability. Cell lines with genetic knock-down of TtnuCD32 were impaired in growth and displayed two novel and apparently unrelated phenotypes. The most prominent phenotype is the accumulation of processing intermediates of 5.8S rRNA. The second phenotype is the decrease in abundance of a ~100 nt 26S rRNA fragment of unknown function. Sequence analysis demonstrated that TtnuCD32 share features with the essential snoRNA U14 but an alternative candidate (TtnuCD25) was more closely related to other U14 sequences. This, together with the fact that the observed rRNA processing phenotypes were not similar to what has been observed in U14 depleted cells, suggests that TtnuCD32 is a U14 homolog that has gained novel functions.


Assuntos
Técnicas de Silenciamento de Genes , Processamento Pós-Transcricional do RNA/genética , RNA Ribossômico 5,8S/genética , RNA Ribossômico/genética , RNA Nucleolar Pequeno/genética , Tetrahymena/genética , Sequência de Bases , Sobrevivência Celular , Sequência Conservada , Regulação da Expressão Gênica , Genoma , Metilação , Conformação de Ácido Nucleico , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo , RNA Guia de Cinetoplastídeos/metabolismo , RNA Ribossômico/química , RNA Ribossômico 5,8S/química , RNA Nucleolar Pequeno/química
6.
Science ; 360(6385): 219-222, 2018 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-29519915

RESUMO

The RNA exosome complex processes and degrades a wide range of transcripts, including ribosomal RNAs (rRNAs). We used cryo-electron microscopy to visualize the yeast nuclear exosome holocomplex captured on a precursor large ribosomal subunit (pre-60S) during 7S-to-5.8S rRNA processing. The cofactors of the nuclear exosome are sandwiched between the ribonuclease core complex (Exo-10) and the remodeled "foot" structure of the pre-60S particle, which harbors the 5.8S rRNA precursor. The exosome-associated helicase Mtr4 recognizes the preribosomal substrate by docking to specific sites on the 25S rRNA, captures the 3' extension of the 5.8S rRNA, and channels it toward Exo-10. The structure elucidates how the exosome forms a structural and functional unit together with its massive pre-60S substrate to process rRNA during ribosome maturation.


Assuntos
Complexo Multienzimático de Ribonucleases do Exossomo/química , Exossomos/química , Ribossomos/química , Ribossomos/metabolismo , Saccharomyces cerevisiae/metabolismo , Núcleo Celular/química , Núcleo Celular/ultraestrutura , Microscopia Crioeletrônica , RNA Helicases DEAD-box/química , RNA Helicases DEAD-box/ultraestrutura , Complexo Multienzimático de Ribonucleases do Exossomo/ultraestrutura , Exossomos/ultraestrutura , Conformação Proteica , Precursores de RNA/química , Precursores de RNA/ultraestrutura , RNA Ribossômico/química , RNA Ribossômico/ultraestrutura , RNA Ribossômico 5,8S/química , RNA Ribossômico 5,8S/ultraestrutura , Ribossomos/ultraestrutura , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/ultraestrutura
7.
Mol Biochem Parasitol ; 219: 42-51, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29175581

RESUMO

Selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) is a versatile sequence independent method to probe RNA structure in vivo and in vitro. It has so far been tried mainly with model organisms. We show that cells of Entamoeba histolytica, a protozoan parasite of humans are hyper-sensitive to the in vivo SHAPE reagent, NAI, and show rapid loss of viability and RNA integrity. We optimized treatment conditions with 5.8S rRNA and Eh_U3 snoRNA to obtain NAI-modification while retaining RNA integrity. The modification patterns were highly reproducible. The in vivo folding was different from in vitro and correlated well with known interactions of 5.8S rRNA with proteins in vivo. The Eh_U3 snoRNA also showed many differences in its in vivo versus in vitro folding, which correlated with conserved interactions of this RNA with 18S rRNA and 5'-ETS. Further, Eh_U3 snoRNA obtained from serum-starved cells showed an open 3'-hinge structure, indicating disruption of 5'-ETS interaction. This could contribute to the observed slow processing of pre-rRNA in starved cells. Our work shows the applicability of SHAPE to study in vivo RNA folding in a parasite and will encourage the use of this reagent for RNA structure analysis in other such organisms.


Assuntos
Entamoeba histolytica/química , Dobramento de RNA , RNA de Protozoário/química , RNA de Protozoário/metabolismo , Análise por Conglomerados , DNA de Protozoário/química , DNA de Protozoário/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Entamoeba histolytica/metabolismo , Filogenia , RNA Ribossômico 18S/química , RNA Ribossômico 18S/metabolismo , RNA Ribossômico 5,8S/química , RNA Ribossômico 5,8S/metabolismo , RNA Nucleolar Pequeno/química , RNA Nucleolar Pequeno/metabolismo , Análise de Sequência de DNA
8.
Mol Phylogenet Evol ; 118: 357-368, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29107619

RESUMO

The genus Candidula (Geomitridae), consisting of 28 species in Western Europe as currently described, has a disjunct distribution in the Iberian Peninsula, Italy, the Balkans, the Aegean Islands, and one species on the Canary Islands. Although the genus is seemingly well defined by characters of the reproductive system, the relationships within the genus are still unclear and some authors have indicated a possible subgeneric division based on the internal morphology of the dart sac. Despite substantial phylogenetic incongruence, we present a well-resolved molecular phylogeny of Candidula based on two mitochondrial genes (COI and 16S rRNA), the nuclear rDNA region (5.8S rNRA + ITS2 + 28S rRNA) and seven additional nuclear DNA regions developed specifically for this genus (60SL13, 60SL17, 60SL7, RPL14, 40SS6, 60SL9, 60SL13a), in total 5595 bp. Six reciprocally monophyletic entities including Candidula species were recovered, grouping into two major clades. The incorporation of additional geomitrid genera allowed us to unequivocally demonstrate the polyphyly of the genus Candidula. One major clade grouped species from southern France and Italy with the widely distributed species C. unifasciata. The second major clade grouped all the species from the Iberian Peninsula, including C. intersecta and C. gigaxii. Candidula ultima from the Canary Islands was recovered as separated lineage within the latter clade and related to African taxa. The six monophyla were defined as six new genera belonging to different tribes within the Helicellinae. Thus, we could show that similar structures of the stimulatory apparatus of the genital system in different taxa do not necessarily indicate a close phylogenetic relationship in the Geomitridae. More genera of the family are needed to clarify their evolutionary relationships, and to fully understand the evolution of the stimulatory apparatus of the genital system within the Geomitridae.


Assuntos
Núcleo Celular/genética , Mitocôndrias/genética , Caramujos/classificação , Animais , Sequência de Bases , Complexo IV da Cadeia de Transporte de Elétrons/química , Complexo IV da Cadeia de Transporte de Elétrons/genética , Evolução Molecular , Filogenia , RNA Ribossômico 16S/química , RNA Ribossômico 16S/genética , RNA Ribossômico 28S/química , RNA Ribossômico 28S/genética , RNA Ribossômico 5,8S/química , RNA Ribossômico 5,8S/genética , Alinhamento de Sequência , Análise de Sequência de DNA , Caramujos/genética
10.
Nat Commun ; 8(1): 714, 2017 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-28959008

RESUMO

While the protein composition of various yeast 60S ribosomal subunit assembly intermediates has been studied in detail, little is known about ribosomal RNA (rRNA) structural rearrangements that take place during early 60S assembly steps. Using a high-throughput RNA structure probing method, we provide nucleotide resolution insights into rRNA structural rearrangements during nucleolar 60S assembly. Our results suggest that many rRNA-folding steps, such as folding of 5.8S rRNA, occur at a very specific stage of assembly, and propose that downstream nuclear assembly events can only continue once 5.8S folding has been completed. Our maps of nucleotide flexibility enable making predictions about the establishment of protein-rRNA interactions, providing intriguing insights into the temporal order of protein-rRNA as well as long-range inter-domain rRNA interactions. These data argue that many distant domains in the rRNA can assemble simultaneously during early 60S assembly and underscore the enormous complexity of 60S synthesis.Ribosome biogenesis is a dynamic process that involves the ordered assembly of ribosomal proteins and numerous RNA structural rearrangements. Here the authors apply ChemModSeq, a high-throughput RNA structure probing method, to quantitatively measure changes in RNA flexibility during the nucleolar stages of 60S assembly in yeast.


Assuntos
Sondas RNA/genética , RNA Fúngico/química , RNA Fúngico/metabolismo , RNA Ribossômico/química , RNA Ribossômico/metabolismo , Subunidades Ribossômicas/metabolismo , Saccharomyces cerevisiae/metabolismo , Conformação de Ácido Nucleico , Dobramento de RNA , Sondas RNA/química , Sondas RNA/metabolismo , RNA Fúngico/genética , RNA Ribossômico/genética , RNA Ribossômico 5,8S/química , RNA Ribossômico 5,8S/genética , RNA Ribossômico 5,8S/metabolismo , Subunidades Ribossômicas/química , Subunidades Ribossômicas/genética , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
11.
PLoS One ; 12(7): e0179405, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28686620

RESUMO

Yeast large ribosomal subunit (LSU) precursors are subject to substantial changes in protein composition during their maturation due to coordinated transient interactions with a large number of ribosome biogenesis factors and due to the assembly of ribosomal proteins. These compositional changes go along with stepwise processing of LSU rRNA precursors and with specific rRNA folding events, as revealed by recent cryo-electron microscopy analyses of late nuclear and cytoplasmic LSU precursors. Here we aimed to analyze changes in the spatial rRNA surrounding of selected ribosomal proteins during yeast LSU maturation. For this we combined a recently developed tethered tertiary structure probing approach with both targeted and high throughput readout strategies. Several structural features of late LSU precursors were faithfully detected by this procedure. In addition, the obtained data let us suggest that early rRNA precursor processing events are accompanied by a global transition from a flexible to a spatially restricted rRNA conformation. For intermediate LSU precursors a number of structural hallmarks could be addressed which include the fold of the internal transcribed spacer between 5.8S rRNA and 25S rRNA, the orientation of the central protuberance and the spatial organization of the interface between LSU rRNA domains I and III.


Assuntos
RNA Ribossômico 5,8S/ultraestrutura , RNA Ribossômico/ultraestrutura , Subunidades Ribossômicas Maiores/ultraestrutura , Ribossomos/genética , Microscopia Crioeletrônica , Conformação de Ácido Nucleico , Biogênese de Organelas , RNA Ribossômico/química , RNA Ribossômico/genética , RNA Ribossômico 5,8S/química , RNA Ribossômico 5,8S/genética , Proteínas Ribossômicas/química , Proteínas Ribossômicas/genética , Subunidades Ribossômicas Maiores/química , Subunidades Ribossômicas Maiores/genética , Ribossomos/química , Ribossomos/ultraestrutura , Saccharomyces cerevisiae/genética
12.
Nucleic Acids Res ; 45(8): 4958-4971, 2017 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-28334755

RESUMO

Chemical modification was used to quantitatively determine the flexibility of nearly the entire rRNA component of the yeast ribosome through 8 discrete stages of translational elongation, revealing novel observations at the gross and fine-scales. These include (i) the bulk transfer of energy through the intersubunit bridges from the large to the small subunit after peptidyltransfer, (ii) differences in the interaction of the sarcin ricin loop with the two elongation factors and (iii) networked information exchange pathways that may functionally facilitate intra- and intersubunit coordination, including the 5.8S rRNA. These analyses reveal hot spots of fluctuations that set the stage for large-scale conformational changes essential for translocation and enable the first molecular dynamics simulation of an 80S complex. Comprehensive datasets of rRNA base flexibilities provide a unique resource to the structural biology community that can be computationally mined to complement ongoing research toward the goal of understanding the dynamic ribosome.


Assuntos
Elongação Traducional da Cadeia Peptídica , RNA Ribossômico 5,8S/química , Ribossomos/genética , Sítios de Ligação , Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico , Fatores de Alongamento de Peptídeos/química , Fatores de Alongamento de Peptídeos/genética , Biossíntese de Proteínas/genética , RNA Ribossômico/química , RNA Ribossômico/genética , RNA Ribossômico 5,8S/genética , Ribossomos/química , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética
13.
Sci Rep ; 7: 41052, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28145468

RESUMO

Small RNAs derived from ribosomal RNAs (srRNAs) are rarely explored in the high-throughput data of plant systems. Here, we analyzed srRNAs from the deep-sequenced small RNA libraries of Piper nigrum, a unique magnoliid plant. The 5' end of the putative long form of 5.8S rRNA (5.8SLrRNA) was identified as the site for biogenesis of highly abundant srRNAs that are unique among the Piperaceae family of plants. A subsequent comparative analysis of the ninety-seven sRNAomes of diverse plants successfully uncovered the abundant existence and precise cleavage of unique rRF signature small RNAs upstream of a novel 5' consensus sequence of the 5.8S rRNA. The major cleavage process mapped identically among the different tissues of the same plant. The differential expression and cleavage of 5'5.8S srRNAs in Phytophthora capsici infected P. nigrum tissues indicated the critical biological functions of these srRNAs during stress response. The non-canonical short hairpin precursor structure, the association with Argonaute proteins, and the potential targets of 5'5.8S srRNAs reinforced their regulatory role in the RNAi pathway in plants. In addition, this novel lineage specific small RNAs may have tremendous biological potential in the taxonomic profiling of plants.


Assuntos
Piper nigrum/genética , RNA de Plantas/metabolismo , RNA Ribossômico 5,8S/genética , RNA Nuclear Pequeno/metabolismo , Proteínas Argonautas/genética , Sequência de Bases , Biblioteca Gênica , Conformação de Ácido Nucleico , Phytophthora/patogenicidade , Piper nigrum/metabolismo , Piper nigrum/parasitologia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/parasitologia , Plantas/genética , Plantas/metabolismo , Clivagem do RNA , Interferência de RNA , RNA de Plantas/genética , RNA Ribossômico 5,8S/química , RNA Nuclear Pequeno/genética , Alinhamento de Sequência
14.
Nature ; 524(7563): 54-8, 2015 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-26222026

RESUMO

The eukaryotic exosome is a conserved RNA-degrading complex that functions in RNA surveillance, turnover and processing. How the same machinery can either completely degrade or precisely trim RNA substrates has long remained unexplained. Here we report the crystal structures of a yeast nuclear exosome containing the 9-subunit core, the 3'-5' RNases Rrp44 and Rrp6, and the obligate Rrp6-binding partner Rrp47 in complex with different RNAs. The combined structural and biochemical data of this 12-subunit complex reveal how a single-stranded RNA can reach the Rrp44 or Rrp6 active sites directly or can bind Rrp6 and be threaded via the central channel towards the distal RNase Rrp44. When a bulky RNA is stalled at the entrance of the channel, Rrp6-Rrp47 swings open. The results suggest how the same molecular machine can coordinate processive degradation and partial trimming in an RNA-dependent manner by a concerted swinging mechanism of the two RNase subunits.


Assuntos
Complexo Multienzimático de Ribonucleases do Exossomo/química , Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , Estabilidade de RNA , Saccharomyces cerevisiae/enzimologia , Cristalografia por Raios X , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Modelos Moleculares , Movimento , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Conformação de Ácido Nucleico , Conformação Proteica , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , RNA/química , RNA/metabolismo , RNA Ribossômico 5,8S/química , RNA Ribossômico 5,8S/genética , RNA Ribossômico 5,8S/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Relação Estrutura-Atividade
15.
Nat Commun ; 4: 2971, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24336128

RESUMO

RNA structure plays important roles in diverse biological processes. However, the structures of all but the few most abundant RNAs are presently unknown in vivo. Here we introduce DMS/SHAPE-LMPCR to query the in vivo structures of low-abundance transcripts. DMS/SHAPE-LMPCR achieves attomole sensitivity, a 100,000-fold improvement over conventional methods. We probe the structure of low-abundance U12 small nuclear RNA (snRNA) in Arabidopsis thaliana and provide in vivo evidence supporting our derived phylogenetic structure. Interestingly, in contrast to mammalian U12 snRNAs, the loop of the SLIIb in U12 snRNA is variable among plant species, and DMS/SHAPE-LMPCR determines it to be unstructured. We reveal the effects of proteins on 25S rRNA, 5.8S rRNA and U12 snRNA structure, illustrating the critical importance of mapping RNA structure in vivo. Our universally applicable method opens the door to identifying and exploring the specific structure-function relationships of the multitude of low-abundance RNAs that prevail in living cells.


Assuntos
Arabidopsis/genética , Conformação de Ácido Nucleico , RNA Nuclear Pequeno/química , Animais , Sequência de Bases , Cloroplastos/genética , Evolução Molecular , Perfilação da Expressão Gênica , Técnicas Genéticas , Humanos , Íntrons , Dados de Sequência Molecular , Filogenia , Splicing de RNA , RNA Mensageiro/química , RNA Ribossômico/química , RNA Ribossômico 5,8S/química , Homologia de Sequência do Ácido Nucleico , Especificidade da Espécie
16.
Exp Parasitol ; 135(2): 426-9, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23954260

RESUMO

Advanced molecular biology techniques are currently used to develop new effective strategies against fasciolosis. Assessment of the quality of extracted total RNA is an important step prior to commencing many molecular biology methods such as transcriptomics. However, RNA quality assessment is complicated for some organisms, including Fasciola hepatica, by the absence of a 28S rRNA peak/band, when assessed with modern protocols. In this study, electrophoretic profiles of F. hepatica ribosomal RNAs were evaluated using microfluidics capillary based and conventional non-denaturing gel electrophoresis methods. An important modification to recommended protocols, the exclusion of heat-denaturation step, in the microfluidics capillary based electrophoresis is critical to visualise the expected 28S rRNA and obtain an RNA integrity number (RIN). The intensity of the 28S rRNA band is reduced by the effect of non-denaturing gel electrophoresis.


Assuntos
Fasciola hepatica/genética , RNA de Helmintos/análise , RNA Ribossômico 28S/isolamento & purificação , RNA Ribossômico/análise , Animais , Bovinos , Eletroforese em Gel de Ágar , Eletroforese Capilar/métodos , Eletroforese Capilar/normas , Temperatura Alta , Microfluídica , RNA de Helmintos/química , RNA de Helmintos/isolamento & purificação , RNA Ribossômico/química , RNA Ribossômico/isolamento & purificação , RNA Ribossômico 18S/química , RNA Ribossômico 18S/isolamento & purificação , RNA Ribossômico 28S/química , RNA Ribossômico 5,8S/química , RNA Ribossômico 5,8S/isolamento & purificação
17.
Nucleic Acids Res ; 41(16): 7889-904, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23788678

RESUMO

Ribosome biogenesis requires ∼200 assembly factors in Saccharomyces cerevisiae. The pre-ribosomal RNA (rRNA) processing defects associated with depletion of most of these factors have been characterized. However, how assembly factors drive the construction of ribonucleoprotein neighborhoods and how structural rearrangements are coupled to pre-rRNA processing are not understood. Here, we reveal ATP-independent and ATP-dependent roles of the Has1 DEAD-box RNA helicase in consecutive pre-rRNA processing and maturation steps for construction of 60S ribosomal subunits. Has1 associates with pre-60S ribosomes in an ATP-independent manner. Has1 binding triggers exonucleolytic trimming of 27SA3 pre-rRNA to generate the 5' end of 5.8S rRNA and drives incorporation of ribosomal protein L17 with domain I of 5.8S/25S rRNA. ATP-dependent activity of Has1 promotes stable association of additional domain I ribosomal proteins that surround the polypeptide exit tunnel, which are required for downstream processing of 27SB pre-rRNA. Furthermore, in the absence of Has1, aberrant 27S pre-rRNAs are targeted for irreversible turnover. Thus, our data support a model in which Has1 helps to establish domain I architecture to prevent pre-rRNA turnover and couples domain I folding with consecutive pre-rRNA processing steps.


Assuntos
RNA Helicases DEAD-box/metabolismo , Processamento Pós-Transcricional do RNA , RNA Ribossômico/metabolismo , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Trifosfato de Adenosina/metabolismo , RNA Helicases DEAD-box/fisiologia , Conformação de Ácido Nucleico , Precursores de RNA/metabolismo , RNA Ribossômico/química , RNA Ribossômico 5,8S/química , RNA Ribossômico 5,8S/metabolismo , Proteínas Ribossômicas/metabolismo , Subunidades Ribossômicas Maiores de Eucariotos/química , Proteínas de Saccharomyces cerevisiae/fisiologia
18.
J Vet Med Sci ; 74(4): 413-7, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22104396

RESUMO

Tritrichomonas suis (=T. foetus) has recently been reported to be a causative agent of chronic large-bowel diarrhea in cats. While the disease was previously attributed to Pentatrichomonas hominis, the etiologic agent for feline trichomonal diarrhea was identified as T. suis. Although feline trichomonosis due to T. suis has been reported at prevalences ranging from 14 to 31% in Europe and the U.S., no reports of the pathogen have been published to date in Japan. In 2008, however, we encountered a case of feline trichomonosis at the Veterinary Teaching Hospital of Hokkaido University. The parasite was identified as T. suis by nested PCR amplification of partial internal transcribed spacer region 1 and 5.8S ribosomal RNA gene sequences with T. suis-specific primers and DNA sequencing of the amplified products. We then conducted surveys for feline trichomonosis in three different animal hospitals using either cultivation and/or PCR-based assays. The results revealed that 13 of 147 samples (8.8%) were positive for T. suis, and that 5 of the 13 infected cats, which ranged between 1 month and 7.5 years-old, showed chronic diarrhea. Seven of the infected cats were purebred and 6 were mixed breed. These findings suggested that feline trichomonosis is prevalent in Japan, and that T. suis may play a role as a causative agent of feline chronic diarrhea.


Assuntos
Doenças do Gato/parasitologia , Diarreia/veterinária , Infecções Protozoárias em Animais/parasitologia , Tritrichomonas foetus/isolamento & purificação , Animais , Doenças do Gato/epidemiologia , Gatos , DNA de Protozoário/química , DNA de Protozoário/genética , DNA Espaçador Ribossômico/química , DNA Espaçador Ribossômico/genética , Diarreia/epidemiologia , Diarreia/parasitologia , Fezes/parasitologia , Japão/epidemiologia , Reação em Cadeia da Polimerase/veterinária , Prevalência , Infecções Protozoárias em Animais/epidemiologia , RNA Ribossômico 5,8S/química , RNA Ribossômico 5,8S/genética , Tritrichomonas foetus/genética
19.
Science ; 334(6058): 941-8, 2011 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-22052974

RESUMO

Protein synthesis in all organisms is catalyzed by ribosomes. In comparison to their prokaryotic counterparts, eukaryotic ribosomes are considerably larger and are subject to more complex regulation. The large ribosomal subunit (60S) catalyzes peptide bond formation and contains the nascent polypeptide exit tunnel. We present the structure of the 60S ribosomal subunit from Tetrahymena thermophila in complex with eukaryotic initiation factor 6 (eIF6), cocrystallized with the antibiotic cycloheximide (a eukaryotic-specific inhibitor of protein synthesis), at a resolution of 3.5 angstroms. The structure illustrates the complex functional architecture of the eukaryotic 60S subunit, which comprises an intricate network of interactions between eukaryotic-specific ribosomal protein features and RNA expansion segments. It reveals the roles of eukaryotic ribosomal protein elements in the stabilization of the active site and the extent of eukaryotic-specific differences in other functional regions of the subunit. Furthermore, it elucidates the molecular basis of the interaction with eIF6 and provides a structural framework for further studies of ribosome-associated diseases and the role of the 60S subunit in the initiation of protein synthesis.


Assuntos
Fatores de Iniciação em Eucariotos/química , Proteínas Ribossômicas/química , Subunidades Ribossômicas Maiores de Eucariotos/química , Tetrahymena thermophila/química , Antibacterianos/metabolismo , Sequência de Bases , Sítios de Ligação , Cristalização , Cristalografia por Raios X , Cicloeximida/metabolismo , Fatores de Iniciação em Eucariotos/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Iniciação Traducional da Cadeia Peptídica , Conformação Proteica , Estrutura Secundária de Proteína , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo , RNA de Protozoário/química , RNA de Protozoário/metabolismo , RNA Ribossômico/química , RNA Ribossômico/metabolismo , RNA Ribossômico 5,8S/química , RNA Ribossômico 5,8S/metabolismo , Proteínas Ribossômicas/metabolismo , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , Subunidades Ribossômicas Maiores de Eucariotos/ultraestrutura , Tetrahymena thermophila/metabolismo
20.
Vet Parasitol ; 178(3-4): 293-9, 2011 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-21324600

RESUMO

Anisakids from 5 different species of cetacean, Kogia breviceps, Peponocephala electra, Stenella clymene, Stenella longirostris and Steno bredanensis, were submitted to genetic analysis. Adults and larvae fixed in ethanol-formalin-acetic acid or in 70% ethanol for periods ranging from 10 months to 10 years were isolated from 9 cetaceans stranded on Ceará coast, Northeast Brazil. The 18S rDNA gene, ITS1, and specific Anisakis typica ITS regions were amplified by PCR. 18S rDNA and ITS1 region confirmed Anisakis sp. morphological identification but also detected the presence of Aspergillus sp. in longer preserved samples. All samples were identified as A. typica by ITS species-specific PCR. The study report three new definitive hosts of A. typica from the Brazilian Atlantic coast by genetic analysis: P. electra, K. breviceps, and S. clymene.


Assuntos
Anisaquíase/veterinária , Anisakis/isolamento & purificação , Cetáceos/parasitologia , Variação Genética/genética , Polimorfismo de Nucleotídeo Único/genética , Animais , Anisaquíase/parasitologia , Anisakis/anatomia & histologia , Anisakis/genética , Sequência de Bases , Brasil , DNA de Helmintos/química , DNA de Helmintos/genética , DNA Espaçador Ribossômico/química , DNA Espaçador Ribossômico/genética , Dados de Sequência Molecular , Filogenia , Reação em Cadeia da Polimerase/veterinária , RNA Ribossômico 5,8S/química , RNA Ribossômico 5,8S/genética , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...