Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Wiley Interdiscip Rev RNA ; 15(4): e1868, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38973000

RESUMO

Pericentromeric heterochromatin is mainly composed of satellite DNA sequences. Although being historically associated with transcriptional repression, some pericentromeric satellite DNA sequences are transcribed. The transcription events of pericentromeric satellite sequences occur in highly flexible biological contexts. Hence, the apparent randomness of pericentromeric satellite transcription incites the discussion about the attribution of biological functions. However, pericentromeric satellite RNAs have clear roles in the organization of nuclear structure. Silencing pericentromeric heterochromatin depends on pericentromeric satellite RNAs, that, in a feedback mechanism, contribute to the repression of pericentromeric heterochromatin. Moreover, pericentromeric satellite RNAs can also act as scaffolding molecules in condensate subnuclear structures (e.g., nuclear stress bodies). Since the formation/dissociation of nuclear condensates provides cell adaptability, pericentromeric satellite RNAs can be an epigenetic platform for regulating (sub)nuclear structure. We review current knowledge about pericentromeric satellite RNAs that, irrespective of the meaning of biological function, should be functionally addressed in regular and disease settings. This article is categorized under: RNA Methods > RNA Analyses in Cells RNA in Disease and Development > RNA in Disease.


Assuntos
Heterocromatina , RNA Satélite , RNA Satélite/metabolismo , RNA Satélite/genética , Humanos , Heterocromatina/metabolismo , Heterocromatina/genética , Animais , Núcleo Celular/metabolismo , Núcleo Celular/genética , Centrômero/metabolismo , Centrômero/genética , DNA Satélite/metabolismo , DNA Satélite/genética
2.
J Cell Biol ; 223(7)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38625077

RESUMO

The centromere is a fundamental higher-order structure in chromosomes ensuring their faithful segregation upon cell division. Centromeric transcripts have been described in several species and suggested to participate in centromere function. However, low sequence conservation of centromeric repeats appears inconsistent with a role in recruiting highly conserved centromeric proteins. Here, we hypothesized that centromeric transcripts may function through a secondary structure rather than sequence conservation. Using mouse embryonic stem cells (ESCs), we show that an imbalance in the levels of forward or reverse minor satellite (MinSat) transcripts leads to severe chromosome segregation defects. We further show that MinSat RNA adopts a stem-loop secondary structure, which is conserved in human α-satellite transcripts. We identify an RNA binding region in CENPC and demonstrate that MinSat transcripts function through the structured region of the RNA. Importantly, mutants that disrupt MinSat secondary structure do not cause segregation defects. We propose that the conserved role of centromeric transcripts relies on their secondary RNA structure.


Assuntos
Segregação de Cromossomos , RNA Satélite , Animais , Humanos , Camundongos , Divisão Celular , Células-Tronco Embrionárias Murinas , RNA Satélite/química , RNA Satélite/metabolismo , Centrômero/metabolismo
3.
PLoS Pathog ; 20(4): e1012174, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38630801

RESUMO

As a type of parasitic agent, satellite RNAs (satRNAs) rely on cognate helper viruses to achieve their replication and transmission. During the infection of satRNAs, helper virus RNAs serve as templates for synthesizing viral proteins, including the replication proteins essential for satRNA replication. However, the role of non-template functions of helper virus RNAs in satRNA replication remains unexploited. Here we employed the well-studied model that is composed of cucumber mosaic virus (CMV) and its associated satRNA. In the experiments employing the CMV trans-replication system, we observed an unexpected phenomenon the replication proteins of the mild strain LS-CMV exhibited defective in supporting satRNA replication, unlike those of the severe strain Fny-CMV. Independent of translation products, all CMV genomic RNAs could enhance satRNA replication, when combined with the replication proteins of CMV. This enhancement is contingent upon the recruitment and complete replication of helper virus RNAs. Using the method developed for analyzing the satRNA recruitment, we observed a markedly distinct ability of the replication proteins from both CMV strains to recruit the positive-sense satRNA-harboring RNA3 mutant for replication. This is in agreement with the differential ability of both 1a proteins in binding satRNAs in plants. The discrepancies provide a convincing explanation for the variation of the replication proteins of both CMV strains in replicating satRNAs. Taken together, our work provides compelling evidence that the non-template functions of helper virus RNAs create an optimal replication environment to enhance satRNA proliferation.


Assuntos
Cucumovirus , Vírus Auxiliares , RNA Satélite , RNA Viral , Replicação Viral , Vírus Auxiliares/genética , Vírus Auxiliares/fisiologia , Cucumovirus/genética , Cucumovirus/metabolismo , Cucumovirus/fisiologia , RNA Satélite/metabolismo , RNA Satélite/genética , RNA Viral/genética , RNA Viral/metabolismo , Doenças das Plantas/virologia , Nicotiana/virologia , Nicotiana/metabolismo , Nicotiana/genética , Proteínas Virais/metabolismo , Proteínas Virais/genética
4.
FEBS Open Bio ; 13(11): 2005-2019, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37596957

RESUMO

Y-satellite RNA (Y-sat) of cucumber mosaic virus upregulates the expression of the aphid ABCG4 gene, which promotes aphid wing formation. We used ABCG4 virus-induced gene silencing (VIGS) to prevent the wing-induction mechanism of Y-sat and thus inhibited aphid wing formation. Of the aphids on plants with VIGS of ABCG4, only about 30% had wings, and 60-70% of the winged aphids were small and likely impaired in flying ability. In addition, we showed that double-stranded RNAs (dsRNAs) and small RNAs were transferred from the plant to the aphid to adequately silence aphid genes. Supplying ABCG4 dsRNA by VIGS to aphids is thus a potential strategy to inhibit aphid wing formation.


Assuntos
Afídeos , Cucumovirus , Animais , RNA Satélite/metabolismo , Afídeos/genética , Cucumovirus/genética , RNA de Cadeia Dupla/genética , RNA de Cadeia Dupla/metabolismo
5.
Elife ; 92020 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-33174837

RESUMO

Although originally thought to be silent chromosomal regions, centromeres are instead actively transcribed. However, the behavior and contributions of centromere-derived RNAs have remained unclear. Here, we used single-molecule fluorescence in-situ hybridization (smFISH) to detect alpha-satellite RNA transcripts in intact human cells. We find that alpha-satellite RNA-smFISH foci levels vary across cell lines and over the cell cycle, but do not remain associated with centromeres, displaying localization consistent with other long non-coding RNAs. Alpha-satellite expression occurs through RNA polymerase II-dependent transcription, but does not require established centromere or cell division components. Instead, our work implicates centromere-nucleolar interactions as repressing alpha-satellite expression. The fraction of nucleolar-localized centromeres inversely correlates with alpha-satellite transcripts levels across cell lines and transcript levels increase substantially when the nucleolus is disrupted. The control of alpha-satellite transcripts by centromere-nucleolar contacts provides a mechanism to modulate centromere transcription and chromatin dynamics across diverse cell states and conditions.


Assuntos
Nucléolo Celular/genética , Centrômero/metabolismo , RNA Satélite/genética , Transcrição Gênica , Linhagem Celular , Nucléolo Celular/metabolismo , Centrômero/genética , Cromatina/genética , Cromatina/metabolismo , Humanos , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Satélite/metabolismo
6.
EMBO J ; 39(16): e103614, 2020 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-32677148

RESUMO

MIWI, a murine member of PIWI proteins mostly expressed during male meiosis, is crucial for piRNA biogenesis, post-transcriptional regulation, and spermiogenesis. However, its meiotic function remains unknown. Here, we report that MIWI deficiency alters meiotic kinetochore assembly, significantly increases chromosome misalignment at the meiosis metaphase I plate, and causes chromosome mis-segregation. Consequently, Miwi-deficient mice show elevated aneuploidy in metaphase II and spermatid death. Furthermore, in Miwi-null and Miwi slicer-deficient mutants, major and minor satellite RNAs from centromeric and pericentromeric satellite repeats accumulate in excess. Over-expression of satellite repeats in wild-type spermatocytes also causes elevated chromosome misalignment, whereas reduction of both strands of major or minor satellite RNAs results in lower frequencies of chromosome misalignment. We show that MIWI, guided by piRNA, cleaves major satellite RNAs, generating RNA fragments that may form substrates for subsequent Dicer cleavage. Furthermore, Dicer cleaves all satellite RNAs in conjunction with MIWI. These findings reveal a novel mechanism in which MIWI- and Dicer-mediated cleavage of the satellite RNAs prevents the over-expression of satellite RNAs, thus ensuring proper kinetochore assembly and faithful chromosome segregation during meiosis.


Assuntos
Aneuploidia , Proteínas Argonautas/metabolismo , Segregação de Cromossomos , Cromossomos de Mamíferos/metabolismo , Meiose , Estabilidade de RNA , RNA Satélite/metabolismo , Animais , Proteínas Argonautas/genética , Cromossomos de Mamíferos/genética , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Cinetocoros/metabolismo , Camundongos , Camundongos Transgênicos , RNA Satélite/genética , Ribonuclease III/genética , Ribonuclease III/metabolismo
7.
Cell Mol Life Sci ; 77(7): 1371-1386, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31346634

RESUMO

FA-SAT is a highly conserved satellite DNA sequence transcribed in many Bilateria species. To disclose the cellular and functional profile of FA-SAT non-coding RNAs, a comprehensive experimental approach, including the transcripts location in the cell and in the cell cycle, the identification of its putative protein interactors, and silencing/ectopic expression phenotype analysis, was performed. FA-SAT non-coding RNAs play a nuclear function at the G1 phase of the cell cycle and the interactomic assay showed that the PKM2 protein is the main interactor. The disruption of the FA-SAT non-coding RNA/PKM2 protein complex, by the depletion of either FA-SAT or PKM2, results in the same phenotype-apoptosis, and the ectopic overexpression of FA-SAT did not affect the cell-cycle progression, but promotes the PKM2 nuclear accumulation. Overall, our data first describe the importance of this ribonucleoprotein complex in apoptosis and cell-cycle progression, what foresees a promising novel candidate molecular target for cancer therapy and diagnosis.


Assuntos
Apoptose , Proteínas de Transporte/metabolismo , Proteínas de Membrana/metabolismo , RNA não Traduzido/metabolismo , Hormônios Tireóideos/metabolismo , Animais , Gatos , Núcleo Celular/metabolismo , Proliferação de Células , Células HeLa , Humanos , Modelos Biológicos , Fenótipo , Ligação Proteica , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , RNA Satélite/genética , RNA Satélite/metabolismo , RNA não Traduzido/genética , Proteínas de Ligação a Hormônio da Tireoide
8.
J Cell Biochem ; 120(9): 14700-14710, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31090102

RESUMO

Oncogenesis involves continuous genetic alterations that lead to compromised cellular integrity and immortal cell fate. The cells remain under excessive stress due to endo- and exogenous influences. Human Satellite III long noncoding RNA (SatIII lncRNA) is a key regulator of the global cellular stress response, although its function is poorly explained in cancers. The principal regulator of cancer meshwork is tumor protein p53, which if altered may result in chemoresistance. The heat shock factor 1 (HSF1) being a common molecule between the oncogenic control and global cellular stress acts as an oncogene as well as transcribes SatIII upon heat shock. This prompted us to determine the structure of SatIII RNA and establish the association between SatIII-HSF1-p53. We determined the most stable structure of SatIII RNA with the least energy of - 115.7 kcal/mol. Also, we observed a possible interaction of p53 with SatIII and HSF1 using support vector machine (SVM) algorithm for predicting RNA-protein interaction (RPI). Further, we employ the STRING database to understand if p53 is an interacting component of the nuclear stress bodies (nSBs). A precise inference was drawn from molecular docking which confirmed the interaction of SatIII-HSF1-p53, where a mutated p53 resulted in an altered DNA-binding property with the SatIII molecule. This study being first of its kind infers p53 to be a possible integral component of the nSBs, which may regulate cellular stress response during cancer progression in the presence of HSF1 and SatIII. An extended research on the regulations of SatIII and p53 may open new avenues in the field of apoptosis in cancer and the early approach of molecular targeting.


Assuntos
Carcinogênese/patologia , Núcleo Celular/genética , Fatores de Transcrição de Choque Térmico/metabolismo , RNA Longo não Codificante/metabolismo , RNA Satélite/metabolismo , Estresse Fisiológico , Proteína Supressora de Tumor p53/metabolismo , Carcinogênese/genética , Carcinogênese/metabolismo , Células HeLa , Fatores de Transcrição de Choque Térmico/química , Fatores de Transcrição de Choque Térmico/genética , Resposta ao Choque Térmico , Humanos , Simulação de Acoplamento Molecular , Conformação de Ácido Nucleico , Conformação Proteica , RNA Longo não Codificante/química , RNA Longo não Codificante/genética , RNA Satélite/química , RNA Satélite/genética , Transcrição Gênica , Proteína Supressora de Tumor p53/química , Proteína Supressora de Tumor p53/genética
9.
Curr Opin Virol ; 33: 55-65, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30081358

RESUMO

Many fungal viruses or mycoviruses have multi-segmented, rather than single-segmented, genomes. This multi-segment nature is frequently possessed by double-stranded RNA viruses, which include members of the Chrysoviridae, Quadriviridae, Megabirnaviridae, Partitiviridae, and Reoviridae families, and unassigned groups. Their genome segments are often packaged separately with the exception of mycoreoviruses, which are multi-segmented but mono-particulate viruses. These multi-segmented fungal dsRNA viruses, as exemplified by reoviruses, have been extensively studied among structural biologists, and contributed to discoveries of novel virion structures. Multi-component systems, interactions of viruses with subviral agents such as satellite and defective RNAs as typified by the yeast killer, and the rule-breaking neo-virus lifestyle exhibited by a capsidless single-stranded RNA virus hosted in an unrelated double-stranded RNA virus are also discussed. Fungal multi-segmented viruses and multicomponent virus systems would continue to provide virologists with interesting future challenges.


Assuntos
Micovírus/genética , Micovírus/fisiologia , Genoma Viral , Vírus de RNA/genética , Vírus de RNA/fisiologia , Montagem de Vírus , Replicação Viral , Capsídeo/metabolismo , RNA Satélite/genética , RNA Satélite/metabolismo , RNA Viral/metabolismo
10.
Viruses ; 10(9)2018 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-30142955

RESUMO

Peanut stunt virus (PSV) is a widespread disease infecting legumes. The PSV strains are classified into four subgroups and some are defined by the association of satellite RNAs (satRNAs). In the case of PSV, the presence of satRNAs alters the symptoms of disease in infected plants. In this study, we elucidated the plant response to PSV-G strain, which occurs in natural conditions without satRNA. However, it was found that it might easily acquire satRNA, which exacerbated pathogenesis in Nicotiana benthamiana. To explain the mechanisms underlying PSV infection and symptoms exacerbation caused by satRNA, we carried out transcriptome profiling of N. benthamiana challenged by PSV-G and satRNA using species-specific microarrays. Co-infection of plants with PSV-G + satRNA increased the number of identified differentially expressed genes (DEGs) compared with the number identified in PSV-G-infected plants. In both treatments, the majority of up-regulated DEGs were engaged in translation, ribosome biogenesis, RNA metabolism, and response to stimuli, while the down-regulated DEGs were required for photosynthesis. The presence of satRNA in PSV-G-infected plants caused different trends in expression of DEGs associated with phosphorylation, ATP binding, and plasma membrane.


Assuntos
Cucumovirus/crescimento & desenvolvimento , Nicotiana/imunologia , Nicotiana/virologia , Doenças das Plantas/imunologia , Doenças das Plantas/virologia , RNA Satélite/metabolismo , Perfilação da Expressão Gênica , Interações Hospedeiro-Patógeno , Análise em Microsséries
11.
Mol Cell ; 70(5): 842-853.e7, 2018 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-29861157

RESUMO

Heterochromatic repetitive satellite RNAs are extensively transcribed in a variety of human cancers, including BRCA1 mutant breast cancer. Aberrant expression of satellite RNAs in cultured cells induces the DNA damage response, activates cell cycle checkpoints, and causes defects in chromosome segregation. However, the mechanism by which satellite RNA expression leads to genomic instability is not well understood. Here we provide evidence that increased levels of satellite RNAs in mammary glands induce tumor formation in mice. Using mass spectrometry, we further show that genomic instability induced by satellite RNAs occurs through interactions with BRCA1-associated protein networks required for the stabilization of DNA replication forks. Additionally, de-stabilized replication forks likely promote the formation of RNA-DNA hybrids in cells expressing satellite RNAs. These studies lay the foundation for developing novel therapeutic strategies that block the effects of non-coding satellite RNAs in cancer cells.


Assuntos
Proteína BRCA1/genética , Neoplasias da Mama/genética , Transformação Celular Neoplásica/genética , Dano ao DNA , Instabilidade Genômica , Heterocromatina/genética , RNA Neoplásico/genética , RNA Satélite/genética , Animais , Proteína BRCA1/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proliferação de Células , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Feminino , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Heterocromatina/metabolismo , Humanos , Células MCF-7 , Camundongos , Ligação Proteica , RNA Neoplásico/metabolismo , RNA Satélite/metabolismo , Carga Tumoral
12.
Mol Cancer Res ; 16(8): 1255-1262, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29748382

RESUMO

Highly repetitive tandem arrays such as satellite sequences in the centromeric and pericentromeric regions of chromosomes, which were previously considered to be silent, are actively transcribed in various biological processes, including cancers. In the pancreas, this aberrant expression occurs even in Kras-mutated pancreatic intraepithelial neoplasia (PanIN) tissues, which are precancerous lesions. To determine the biological role of satellite RNAs in carcinogenesis in vivo, we constructed mouse major satellite (MajSAT) RNA-expressing transgenic mice. However, these transgenic mice did not show spontaneous malignant tumor formation under normal breeding. Importantly, however, DNA damage was increased in pancreatic tissues induced by caerulein treatment or high-fat diet, which may be due to impaired nuclear localization of Y-Box Binding Protein 1 (YBX1), a component of the DNA damage repair machinery. In addition, when crossed with pancreas-specific Kras-mutant mice, MajSAT RNA expression resulted in an earlier increase in PanIN formation. These results suggest that aberrant MajSAT RNA expression accelerates oncogenesis by increasing the probability of a second driver mutation, thus accelerating cells to exit from the breakthrough phase to the expansion phase.Implications: Aberrant expression of satellite RNAs accelerates oncogenesis through a mechanism involving increased DNA damage. Mol Cancer Res; 16(8); 1255-62. ©2018 AACR.


Assuntos
Adenocarcinoma/genética , Carcinoma Ductal Pancreático/genética , Dano ao DNA/genética , RNA Satélite/genética , RNA Satélite/metabolismo , Adenocarcinoma/patologia , Animais , Carcinoma Ductal Pancreático/patologia , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Transgênicos
13.
Virology ; 514: 182-191, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29197268

RESUMO

Panicum mosaic virus (PMV) is a helper RNA virus for satellite RNAs (satRNAs) and a satellite virus (SPMV). Here, we describe modifications that occur at the 3'-end of a satRNA of PMV, satS. Co-infections of PMV+satS result in attenuation of the disease symptoms induced by PMV alone in Brachypodium distachyon and proso millet. The 375 nt satS acquires ~100-200 nts from the 3'-end of PMV during infection and is associated with decreased abundance of the PMV RNA and capsid protein in millet. PMV-satS chimera RNAs were isolated from native infections of St. Augustinegrass and switchgrass. Phylogenetic analyses revealed that the chimeric RNAs clustered according to the host species from which they were isolated. Additionally, the chimera satRNAs acquired non-viral "linker" sequences in a host-specific manner. These results highlight the dynamic regulation of viral pathogenicity by satellites, and the selective host-dependent, sequence-based pressures for driving satRNA generation and genome compositions.


Assuntos
Vírus Auxiliares , Especificidade de Hospedeiro , Doenças das Plantas , RNA Satélite , Vírus Satélites , Tombusviridae , Brachypodium/virologia , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Genoma Viral , Vírus Auxiliares/genética , Vírus Auxiliares/fisiologia , Panicum/virologia , Filogenia , Doenças das Plantas/virologia , Poaceae/virologia , Recombinação Genética , RNA Satélite/genética , RNA Satélite/metabolismo , Vírus Satélites/genética , Vírus Satélites/fisiologia , Tombusviridae/genética , Tombusviridae/fisiologia
14.
Virus Res ; 240: 87-93, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28673868

RESUMO

Over six decades ago, panicum mosaic virus (PMV) was identified as the first viral pathogen of cultivated switchgrass (Panicum virgatum). Subsequently, PMV was demonstrated to support the replication of both a satellite RNA virus (SPMV) and satellite RNA (satRNA) agents during natural infections of host grasses. In this study, we report the isolation and full-length sequences of two PMV satRNAs identified in 1988 from St. Augustinegrass (Stenotaphrum secundatum) and centipedegrass (Eremochloa ophiuroides) hosts. Each of these satellites have sequence relatedness at their 5'- and 3'-ends. In addition, satC has a region of ∼100 nt complementary to the 3'-end of the PMV genome. These agents are associated with purified virions of SPMV infections. Additionally, satS and satC RNAs contain conserved in-frame open reading frames in the complementary-sense sequences that could potentially generate 6.6- and 7.9-kDa proteins, respectively. In protoplasts and plants satS is infectious, when co-inoculated with the PMV RNA alone or PMV+SPMV RNAs, and negatively affects their accumulation.


Assuntos
Panicum/virologia , Pennisetum/virologia , Doenças das Plantas/virologia , RNA Satélite/genética , RNA Viral/genética , Tombusviridae/genética , Vírion/genética , Sequência de Aminoácidos , Sequência de Bases , Genoma Viral , Dados de Sequência Molecular , Fases de Leitura Aberta , RNA Satélite/metabolismo , RNA Viral/metabolismo , Tombusviridae/classificação , Tombusviridae/isolamento & purificação , Vírion/classificação , Vírion/isolamento & purificação
15.
RNA Biol ; 14(8): 985-991, 2017 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-28448743

RESUMO

A new family of non-autonomous retrotransposons with self-cleaving hammerhead ribozymes, the so called retrozymes, has recently been found encoded in diverse plant genomes. These retroelements can be actively transcribed, and their RNAs accumulate in the cells as abundant non-coding circular RNAs (circRNAs) of small size (600-1000 nt). Related circRNAs with self-cleaving ribozymes had already been described in plants, and belong to a group of infectious RNA agents with an uncertain origin: the viroids and viroid-like satellites of plant RNA viruses. These pathogenic circRNAs show many structural similarities with retrozyme circRNAs, and both have been found to occur in flowering plants as heterogeneous RNA molecules of positive and negative polarities. Taking all these data together, we hypothesize that circRNAs encoded by genomic retrozymes could have given origin to infectious circRNAs with self-cleaving ribozymes. Moreover, we propose that retrozymes in time could have evolved from the ancient family of Penelope-like retroelements, which also harbour hammerhead ribozymes. Putative retrozyme sequences with hammerhead ribozymes have been detected as well in metazoan genomes, opening the door to a common occurrence of circRNAs with self-cleaving motifs among eukaryotes.


Assuntos
RNA Catalítico/genética , RNA de Plantas/genética , RNA Viral/genética , RNA/genética , Retroelementos , Animais , Pareamento de Bases , Sequência de Bases , Humanos , Conformação de Ácido Nucleico , Plantas/virologia , RNA/química , RNA/metabolismo , RNA Catalítico/química , RNA Catalítico/metabolismo , RNA Circular , RNA de Plantas/metabolismo , RNA Satélite/genética , RNA Satélite/metabolismo , RNA Viral/metabolismo , Sequências Repetidas Terminais , Viroides/genética , Viroides/metabolismo
16.
J Gen Virol ; 97(6): 1453-1457, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26916424

RESUMO

The satellite RNAs of cucumber mosaic virus (CMV) that induce systemic necrosis in tomato plants (N-satRNA) multiply to high levels in the infected host while severely depressing CMV accumulation and, hence, its aphid transmission efficiency. As N-satRNAs are transmitted into CMV particles, the conditions for N-satRNA emergence are not obvious. Model analyses with realistic parameter values have predicted that N-satRNAs would invade CMV populations only when transmission rates are high. Here, we tested this hypothesis experimentally by passaging CMV or CMV+N-satRNAs at low or high aphid densities (2 or 8 aphids/plant). As predicted, high aphid densities were required for N-satRNA emergence. The results showed that at low aphid densities, random effects due to population bottlenecks during transmission dominate the epidemiological dynamics of CMV/CMV+N-satRNA. The results suggest that maintaining aphid populations at low density will prevent the emergence of highly virulent CMV+N-satRNA isolates.


Assuntos
Afídeos/crescimento & desenvolvimento , Afídeos/virologia , Cucumovirus/crescimento & desenvolvimento , Insetos Vetores , RNA Satélite/metabolismo , Animais , Solanum lycopersicum/virologia , Doenças das Plantas/virologia , Densidade Demográfica
17.
Drug Dev Res ; 76(2): 61-71, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25847616

RESUMO

The import of nuclear transcribed RNAs into mitochondria is an emerging area that presents a tremendous opportunity to develop human metabolic therapeutics. However, our knowledge base is quite limited. Much remains to be discovered regarding specific RNA localization and mechanisms of import. To identify novel RNAs imported into mitochondria, all RNAs within the mitochondria were characterized using next generation sequencing technology. Several nuclear transcribed RNAs were found within mitochondrial RNA (mtRNA) samples, including nuclear ribosomal RNAs, gamma satellite RNA and VL30 retroelement RNA. The presence of these RNAs within mitochondria coupled with RNA sequencing data from other laboratories investigating mtRNA processing, lead us to hypothesize that nuclease treatment of mitoplasts is insufficient for removing contaminating cytoplasmic RNAs. In contrast to traditional methodology, mitochondrial import was evaluated by qRT-PCR after stepwise removal of the outer mitochondrial membrane and subsequent lysis of mitochondria. This allowed identification of RNAs lost from the mitochondria with the same kinetics as mitochondrial DNA-transcribed RNAs. This approach provided an improved evaluation of nuclear RNA enrichment within mitochondrial membranes to characterize nuclease protection and mitochondrial import and identify false-positive detection errors. qRT-PCR results confirmed the presence of VL30 retroelement RNA within mitochondria and question the hypothesis that the RNA component of RNase P is imported. These results illustrate a reliable approach for evaluating the presence of RNAs within mitochondria and open new avenues of investigation relating to mtRNA biology and in targeting mitochondrial based therapeutics.


Assuntos
Mitocôndrias/genética , Transporte de RNA , RNA/metabolismo , Animais , Núcleo Celular/genética , Descoberta de Drogas , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Camundongos , Mitocôndrias/fisiologia , RNA/análise , RNA/isolamento & purificação , RNA Mitocondrial , RNA Ribossômico/metabolismo , RNA Satélite/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Retroelementos , Ribonucleases/metabolismo , Análise de Sequência de RNA
18.
Methods Mol Biol ; 1296: 73-83, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25791592

RESUMO

RNA FISH is a powerful method to detect specific RNAs in fixed cells. It allows both localization and quantification of RNA molecules within individual cells and tissues. Refined RNA FISH methods have also been developed to determine RNA transcription and degradation rates. This chapter describes an RNA FISH protocol that we developed in order to study the expression and localization of satellite III RNAs. This specific class of non-coding RNAs is expressed in response to various cellular stresses including heat shock. This protocol is based on the use of a biotinylated LNA probe subsequently detected by a streptavidin-Alexa Fluor(®) 488 conjugate. A protocol allowing efficient coupling of RNA FISH and protein detection by immunofluorescence is also described in this chapter.


Assuntos
Hibridização in Situ Fluorescente/métodos , Proteínas/análise , RNA Satélite/genética , Pequeno RNA não Traduzido/genética , Imunofluorescência , Hidrazinas , Estrutura Molecular , RNA Satélite/química , RNA Satélite/metabolismo , Pequeno RNA não Traduzido/química , Pequeno RNA não Traduzido/metabolismo , Estreptavidina
19.
Mol Plant Pathol ; 14(7): 693-707, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23675895

RESUMO

Plant genetic engineering has broadened the options for plant virus resistance and is mostly based on pathogen-derived resistance. Previously, we have shown that interfering satellite RNA (satRNA) of Bamboo mosaic virus (satBaMV) greatly reduces Bamboo mosaic virus (BaMV) accumulation and BaMV-induced symptoms in co-inoculated plants. Here, we generated a nonviral source of virus-resistant transgenic Nicotiana benthamiana and Arabidopsis thaliana by introducing interfering satBaMV. Asymptomatic transgenic N. benthamiana lines were highly resistant to BaMV virion and viral RNA infection, and the expression of the transgene BSL6 was higher in asymptomatic than mildly symptomatic lines. In addition, BaMV- and satBaMV-specific small RNAs were detectable only after BaMV challenge, and their levels were associated with genomic viral RNA or satRNA levels. By transcriptomic analysis, the salicylic acid (SA) signalling pathway was not induced in satBaMV transgenic A. thaliana in mock conditions, suggesting that two major antiviral mechanisms, RNA silencing and SA-mediated resistance, are not involved directly in transgenic satBaMV-mediated BaMV interference. In contrast, resistance is associated with the level of the interfering satBaMV transgene. We propose satBaMV-mediated BaMV interference in transgenic plants by competition for replicase with BaMV.


Assuntos
Arabidopsis/virologia , Resistência à Doença/imunologia , Vírus do Mosaico/fisiologia , Nicotiana/virologia , Doenças das Plantas/imunologia , Doenças das Plantas/virologia , RNA Satélite/metabolismo , Arabidopsis/genética , Resistência à Doença/genética , Regulação Bacteriana da Expressão Gênica , Interações Hospedeiro-Patógeno/genética , Modelos Biológicos , Fenótipo , Plantas Geneticamente Modificadas , RNA Satélite/genética , RNA Viral/genética , RNA Viral/metabolismo , Nicotiana/genética , Transcriptoma/genética , Vírion/metabolismo , Replicação Viral
20.
Proteomics ; 13(14): 2162-75, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23580405

RESUMO

Peanut stunt virus (PSV), which belongs to the Cucumovirus genus, is a pathogen of legumes. Certain PSV strains associated with a satellite RNA (satRNA) modify the symptoms of infected plants and interfere with plant metabolism. We used PSV-P genomic transcripts (GTs) with and without PSV-P satRNA and a comparative proteomic 2D-DIGE/MS study to assess their effects on Nicotiana benthamiana infection. When the proteomes of the PSV-P genomic transcripts-infected (no satRNA present) and mock-inoculated plants were compared 29 differentially regulated proteins were found. When comparisons were made for plants infected with PSV-P-GT in the presence or absence of satRNA, and for mock-infected plants and those infected with the satRNA-associated PSV-P-GT, 40 and 60 such proteins, respectively, were found. The presence of satRNA mostly decreased the amounts of the affected host proteins. Proteins involved in photosynthesis and carbohydrate metabolism, for example ferredoxin-NADP-reductase and malate dehydrogenase, are among the identified affected proteins in all comparisons. Proteins involved in protein synthesis and degradation were also affected. Such proteins include chaperonin 60ß--whose abundance of the proteins changed for all comparisons--and aminopeptidase that is a satRNA- or PSV-P-GT/satRNA-responsive protein. Additionally, the levels of the stress-related proteins superoxide dismutase and acidic endochitinase Q increased in the PSV-P-GT- and PSV-P-GT/satRNA-infected plants. This study appears to be the first report on plant proteome changes in response to a satRNA presence during viral infection and, as such, may provide a reference for future studies concerning the influence of satRNAs during viral infections.


Assuntos
Nicotiana/metabolismo , Nicotiana/virologia , Doenças das Plantas/virologia , Vírus de Plantas/genética , Proteoma/metabolismo , RNA Satélite/metabolismo , RNA Viral/metabolismo , Eletroforese em Gel Bidimensional , Interações Hospedeiro-Patógeno , Doenças das Plantas/genética , Proteínas de Plantas/metabolismo , Vírus de Plantas/metabolismo , Proteômica/métodos , RNA Satélite/genética , RNA Viral/genética , Nicotiana/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...