Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.123
Filtrar
1.
J Mater Chem B ; 12(25): 6203-6220, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38833304

RESUMO

RNA-based therapeutics have exhibited remarkable potential in targeting genetic factors for disease intervention, exemplified by recent mRNA vaccines for COVID-19. Nevertheless, the intrinsic instability of RNA and challenges related to its translational efficiency remain significant obstacles to the development of RNA as therapeutics. This study introduces an innovative RNA delivery approach using a silk fibroin (SF) and positively charged gelatin (Gel) hydrogel matrix to enhance RNA stability for controlled release. As a proof of concept, whole-cell RNA was incorporated into the hydrogel to enhance interactions with RNA molecules. Additionally, molecular modeling studies were conducted to explore the interactions between SF, collagen, chitosan (Chi), and the various RNA species including ribosomal RNAs (28S, 18S, 8.5S, and 5S rRNAs), transfer RNAs (tRNA-ALA, tRNA-GLN, and tRNA-Leu), as well as messenger RNAs (mRNA-GAPDH, mRNA-ß actin, and mRNA-Nanog), shedding light on the RNA-polymer interaction and RNA stability; SF exhibits a more robust interaction with RNA compared to collagen/gel and chitosan. We confirmed the molecular interactions of SF and RNA by FTIR and Raman spectroscopy, which were further supported by AFM and contact angle measurement. This research introduces a novel RNA delivery platform and insights into biopolymer-RNA interactions, paving the way for tailored RNA delivery systems in therapeutics and biomedical applications.


Assuntos
Gelatina , Hidrogéis , Gelatina/química , Hidrogéis/química , Humanos , Fibroínas/química , Portadores de Fármacos/química , Seda/química , Quitosana/química , Animais , RNA Mensageiro/química , RNA Mensageiro/genética , RNA de Transferência/química , RNA de Transferência/genética , RNA/química , Estabilidade de RNA , COVID-19 , SARS-CoV-2/genética
2.
Nat Commun ; 15(1): 4683, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38824131

RESUMO

The human mitochondrial genome is transcribed into two RNAs, containing mRNAs, rRNAs and tRNAs, all dedicated to produce essential proteins of the respiratory chain. The precise excision of tRNAs by the mitochondrial endoribonucleases (mt-RNase), P and Z, releases all RNA species from the two RNA transcripts. The tRNAs then undergo 3'-CCA addition. In metazoan mitochondria, RNase P is a multi-enzyme assembly that comprises the endoribonuclease PRORP and a tRNA methyltransferase subcomplex. The requirement for this tRNA methyltransferase subcomplex for mt-RNase P cleavage activity, as well as the mechanisms of pre-tRNA 3'-cleavage and 3'-CCA addition, are still poorly understood. Here, we report cryo-EM structures that visualise four steps of mitochondrial tRNA maturation: 5' and 3' tRNA-end processing, methylation and 3'-CCA addition, and explain the defined sequential order of the tRNA processing steps. The methyltransferase subcomplex recognises the pre-tRNA in a distinct mode that can support tRNA-end processing and 3'-CCA addition, likely resulting from an evolutionary adaptation of mitochondrial tRNA maturation complexes to the structurally-fragile mitochondrial tRNAs. This subcomplex can also ensure a tRNA-folding quality-control checkpoint before the sequential docking of the maturation enzymes. Altogether, our study provides detailed molecular insight into RNA-transcript processing and tRNA maturation in human mitochondria.


Assuntos
Mitocôndrias , RNA de Transferência , Ribonuclease P , tRNA Metiltransferases , Humanos , RNA de Transferência/metabolismo , RNA de Transferência/genética , RNA de Transferência/química , Mitocôndrias/metabolismo , Ribonuclease P/metabolismo , Ribonuclease P/genética , Ribonuclease P/química , tRNA Metiltransferases/metabolismo , tRNA Metiltransferases/genética , tRNA Metiltransferases/química , Processamento Pós-Transcricional do RNA , Microscopia Crioeletrônica , RNA Mitocondrial/metabolismo , RNA Mitocondrial/genética , RNA Mitocondrial/química , Metilação , Conformação de Ácido Nucleico , Modelos Moleculares , Precursores de RNA/metabolismo , Precursores de RNA/genética
3.
Sci Rep ; 14(1): 14253, 2024 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902339

RESUMO

The antibiotic fusidic acid (FA) is used to treat Staphylococcus aureus infections. It inhibits protein synthesis by binding to elongation factor G (EF-G) and preventing its release from the ribosome after translocation. While FA, due to permeability issues, is only effective against gram-positive bacteria, the available structures of FA-inhibited complexes are from gram-negative model organisms. To fill this knowledge gap, we solved cryo-EM structures of the S. aureus ribosome in complex with mRNA, tRNA, EF-G and FA to 2.5 Å resolution and the corresponding complex structures with the recently developed FA derivative FA-cyclopentane (FA-CP) to 2.0 Å resolution. With both FA variants, the majority of the ribosomal particles are observed in chimeric state and only a minor population in post-translocational state. As expected, FA binds in a pocket between domains I, II and III of EF-G and the sarcin-ricin loop of 23S rRNA. FA-CP binds in an identical position, but its cyclopentane moiety provides additional contacts to EF-G and 23S rRNA, suggesting that its improved resistance profile towards mutations in EF-G is due to higher-affinity binding. These high-resolution structures reveal new details about the S. aureus ribosome, including confirmation of many rRNA modifications, and provide an optimal starting point for future structure-based drug discovery on an important clinical drug target.


Assuntos
Microscopia Crioeletrônica , Ciclopentanos , Ácido Fusídico , Fator G para Elongação de Peptídeos , Ribossomos , Staphylococcus aureus , Ácido Fusídico/farmacologia , Ácido Fusídico/química , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/metabolismo , Ribossomos/metabolismo , Ribossomos/efeitos dos fármacos , Ciclopentanos/farmacologia , Ciclopentanos/química , Fator G para Elongação de Peptídeos/metabolismo , Fator G para Elongação de Peptídeos/química , Antibacterianos/farmacologia , Antibacterianos/química , Modelos Moleculares , RNA de Transferência/metabolismo , RNA de Transferência/química
4.
Structure ; 32(6): 647-649, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38848680

RESUMO

In this issue of Structure, Yin et al.1 present the CryoEM structure of the HisRS-like domain of human GCN2 and demonstrate that it is a pseudoenzyme, which binds uncharged tRNA in a different manner than HisRS and does not bind histidine and ATP.


Assuntos
Trifosfato de Adenosina , Humanos , Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/química , Microscopia Crioeletrônica , RNA de Transferência/metabolismo , RNA de Transferência/química , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/química , Catálise , Modelos Moleculares , Histidina/química , Histidina/metabolismo
5.
Chem Rev ; 124(12): 7712-7730, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38829723

RESUMO

The introduction of noncanonical amino acids into proteins has enabled researchers to modify fundamental physicochemical and functional properties of proteins. While the alteration of the genetic code, via the introduction of orthogonal aminoacyl-tRNA synthetase:tRNA pairs, has driven many of these efforts, the various components involved in the process of translation are important for the development of new genetic codes. In this review, we will focus on recent advances in engineering ribosomal machinery for noncanonical amino acid incorporation and genetic code modification. The engineering of the ribosome itself will be considered, as well as the many factors that interact closely with the ribosome, including both tRNAs and accessory factors, such as the all-important EF-Tu. Given the success of genome re-engineering efforts, future paths for radical alterations of the genetic code will require more expansive alterations in the translation machinery.


Assuntos
Aminoácidos , Código Genético , RNA de Transferência , Ribossomos , Aminoácidos/metabolismo , Aminoácidos/química , Ribossomos/metabolismo , RNA de Transferência/metabolismo , RNA de Transferência/genética , RNA de Transferência/química , Biossíntese de Proteínas , Engenharia de Proteínas , Aminoacil-tRNA Sintetases/metabolismo , Aminoacil-tRNA Sintetases/genética
6.
Methods Mol Biol ; 2726: 169-207, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38780732

RESUMO

Nucleotide modifications are occurrent in all types of RNA and play an important role in RNA structure formation and stability. Modified bases not only possess the ability to shift the RNA structure ensemble towards desired functional confirmations. By changes in the base pairing partner preference, they may even enlarge or reduce the conformational space, i.e., the number and types of structures the RNA molecule can adopt. However, most methods to predict RNA secondary structure do not provide the means to include the effect of modifications on the result. With the help of a heavily modified transfer RNA (tRNA) molecule, this chapter demonstrates how to include the effect of different base modifications into secondary structure prediction using the ViennaRNA Package. The constructive approach demonstrated here allows for the calculation of minimum free energy structure and suboptimal structures at different levels of modified base support. In particular we, show how to incorporate the isomerization of uridine to pseudouridine ( Ψ ) and the reduction of uridine to dihydrouridine (D).


Assuntos
Conformação de Ácido Nucleico , RNA , RNA/química , RNA de Transferência/química , RNA de Transferência/metabolismo , Nucleotídeos/química , Pareamento de Bases , Biologia Computacional/métodos , Termodinâmica , Software , Uridina/química , Modelos Moleculares , Pseudouridina/química
7.
Nat Commun ; 15(1): 4272, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38769321

RESUMO

The mitoribosome translates mitochondrial mRNAs and regulates energy conversion that is a signature of aerobic life forms. We present a 2.2 Å resolution structure of human mitoribosome together with validated mitoribosomal RNA (rRNA) modifications, including aminoacylated CP-tRNAVal. The structure shows how mitoribosomal proteins stabilise binding of mRNA and tRNA helping to align it in the decoding center, whereas the GDP-bound mS29 stabilizes intersubunit communication. Comparison between different states, with respect to tRNA position, allowed us to characterize a non-canonical L1 stalk, and molecular dynamics simulations revealed how it facilitates tRNA transitions in a way that does not require interactions with rRNA. We also report functionally important polyamines that are depleted when cells are subjected to an antibiotic treatment. The structural, biochemical, and computational data illuminate the principal functional components of the translation mechanism in mitochondria and provide a description of the structure and function of the human mitoribosome.


Assuntos
Ribossomos Mitocondriais , RNA de Transferência , Humanos , RNA de Transferência/metabolismo , RNA de Transferência/química , RNA de Transferência/genética , Ribossomos Mitocondriais/metabolismo , Ribossomos Mitocondriais/química , Ligantes , Simulação de Dinâmica Molecular , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Mitocôndrias/metabolismo , RNA Ribossômico/metabolismo , RNA Ribossômico/química , Proteínas Ribossômicas/metabolismo , Proteínas Ribossômicas/química , Guanosina Difosfato/metabolismo , Poliaminas/metabolismo , Poliaminas/química , Ligação Proteica
8.
Protein Sci ; 33(6): e5028, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38757396

RESUMO

Prolyl-tRNA synthetase (ProRS), belonging to the family of aminoacyl-tRNA synthetases responsible for pairing specific amino acids with their respective tRNAs, is categorized into two distinct types: the eukaryote/archaeon-like type (E-type) and the prokaryote-like type (P-type). Notably, these types are specific to their corresponding cognate tRNAs. In an intriguing paradox, Thermus thermophilus ProRS (TtProRS) aligns with the E-type ProRS but selectively charges the P-type tRNAPro, featuring the bacterium-specific acceptor-stem elements G72 and A73. This investigation reveals TtProRS's notable resilience to the inhibitor halofuginone, a synthetic derivative of febrifugine emulating Pro-A76, resembling the characteristics of the P-type ProRS. Furthermore, akin to the P-type ProRS, TtProRS identifies its cognate tRNA through recognition of the acceptor-stem elements G72/A73, along with the anticodon elements G35/G36. However, in contrast to the P-type ProRS, which relies on a strictly conserved R residue within the bacterium-like motif 2 loop for recognizing G72/A73, TtProRS achieves this through a non-conserved sequence, RTR, within the otherwise non-interacting eukaryote-like motif 2 loop. This investigation sheds light on the adaptive capacity of a typically conserved housekeeping enzyme to accommodate a novel substrate.


Assuntos
Aminoacil-tRNA Sintetases , Thermus thermophilus , Thermus thermophilus/enzimologia , Thermus thermophilus/genética , Aminoacil-tRNA Sintetases/metabolismo , Aminoacil-tRNA Sintetases/química , Aminoacil-tRNA Sintetases/genética , Especificidade por Substrato , Evolução Molecular , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Quinazolinonas/química , Quinazolinonas/metabolismo , RNA de Transferência/metabolismo , RNA de Transferência/química , RNA de Transferência/genética , Piperidinas
9.
Nat Commun ; 15(1): 4094, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750017

RESUMO

tRNA modifications affect ribosomal elongation speed and co-translational folding dynamics. The Elongator complex is responsible for introducing 5-carboxymethyl at wobble uridine bases (cm5U34) in eukaryotic tRNAs. However, the structure and function of human Elongator remain poorly understood. In this study, we present a series of cryo-EM structures of human ELP123 in complex with tRNA and cofactors at four different stages of the reaction. The structures at resolutions of up to 2.9 Å together with complementary functional analyses reveal the molecular mechanism of the modification reaction. Our results show that tRNA binding exposes a universally conserved uridine at position 33 (U33), which triggers acetyl-CoA hydrolysis. We identify a series of conserved residues that are crucial for the radical-based acetylation of U34 and profile the molecular effects of patient-derived mutations. Together, we provide the high-resolution view of human Elongator and reveal its detailed mechanism of action.


Assuntos
Microscopia Crioeletrônica , RNA de Transferência , Humanos , RNA de Transferência/metabolismo , RNA de Transferência/química , RNA de Transferência/genética , Uridina/química , Uridina/metabolismo , Mutação , Acetilcoenzima A/metabolismo , Acetilcoenzima A/química , Modelos Moleculares , Acetilação , Histona Acetiltransferases/metabolismo , Histona Acetiltransferases/química , Histona Acetiltransferases/genética , Ligação Proteica
10.
Nature ; 630(8017): 769-776, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38718836

RESUMO

Angiogenin, an RNase-A-family protein, promotes angiogenesis and has been implicated in cancer, neurodegenerative diseases and epigenetic inheritance1-10. After activation during cellular stress, angiogenin cleaves tRNAs at the anticodon loop, resulting in translation repression11-15. However, the catalytic activity of isolated angiogenin is very low, and the mechanisms of the enzyme activation and tRNA specificity have remained a puzzle3,16-23. Here we identify these mechanisms using biochemical assays and cryogenic electron microscopy (cryo-EM). Our study reveals that the cytosolic ribosome is the activator of angiogenin. A cryo-EM structure features angiogenin bound in the A site of the 80S ribosome. The C-terminal tail of angiogenin is rearranged by interactions with the ribosome to activate the RNase catalytic centre, making the enzyme several orders of magnitude more efficient in tRNA cleavage. Additional 80S-angiogenin structures capture how tRNA substrate is directed by the ribosome into angiogenin's active site, demonstrating that the ribosome acts as the specificity factor. Our findings therefore suggest that angiogenin is activated by ribosomes with a vacant A site, the abundance of which increases during cellular stress24-27. These results may facilitate the development of therapeutics to treat cancer and neurodegenerative diseases.


Assuntos
Microscopia Crioeletrônica , Ribonuclease Pancreático , Ribossomos , Humanos , Anticódon/química , Anticódon/genética , Anticódon/metabolismo , Anticódon/ultraestrutura , Domínio Catalítico , Citosol/metabolismo , Ativação Enzimática , Modelos Moleculares , Ribonuclease Pancreático/química , Ribonuclease Pancreático/metabolismo , Ribonuclease Pancreático/ultraestrutura , Ribossomos/metabolismo , Ribossomos/química , Ribossomos/ultraestrutura , Clivagem do RNA , RNA de Transferência/química , RNA de Transferência/metabolismo , Especificidade por Substrato , Sítios de Ligação , Estresse Fisiológico
11.
Chem Rev ; 124(12): 7976-8008, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38801719

RESUMO

Transfer ribonucleic acid (tRNA) therapeutics will provide personalized and mutation specific medicines to treat human genetic diseases for which no cures currently exist. The tRNAs are a family of adaptor molecules that interpret the nucleic acid sequences in our genes into the amino acid sequences of proteins that dictate cell function. Humans encode more than 600 tRNA genes. Interestingly, even healthy individuals contain some mutant tRNAs that make mistakes. Missense suppressor tRNAs insert the wrong amino acid in proteins, and nonsense suppressor tRNAs read through premature stop signals to generate full length proteins. Mutations that underlie many human diseases, including neurodegenerative diseases, cancers, and diverse rare genetic disorders, result from missense or nonsense mutations. Thus, specific tRNA variants can be strategically deployed as therapeutic agents to correct genetic defects. We review the mechanisms of tRNA therapeutic activity, the nature of the therapeutic window for nonsense and missense suppression as well as wild-type tRNA supplementation. We discuss the challenges and promises of delivering tRNAs as synthetic RNAs or as gene therapies. Together, tRNA medicines will provide novel treatments for common and rare genetic diseases in humans.


Assuntos
RNA de Transferência , Humanos , RNA de Transferência/genética , RNA de Transferência/metabolismo , RNA de Transferência/química , Animais , Terapia Genética/métodos , Doenças Genéticas Inatas/terapia , Doenças Genéticas Inatas/genética
12.
Curr Opin Struct Biol ; 86: 102804, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38569462

RESUMO

Molecular dynamics simulations have emerged as a powerful set of tools to unravel the intricate dynamics of ribosomes during protein synthesis. Recent advancements in this field have enabled simulations to delve deep into the conformational rearrangements of ribosomes and associated factors, providing invaluable insights into the intricacies of translation. Emphasis on simulations has recently been on translation elongation, such as tRNA selection, translocation, and ribosomal head-swivel motions. These studies have offered crucial structural interpretations of how genetic information is faithfully translated into proteins. This review outlines recent discoveries concerning ribosome conformational changes occurring during translation elongation, as elucidated through molecular dynamics simulations.


Assuntos
Simulação de Dinâmica Molecular , Elongação Traducional da Cadeia Peptídica , Ribossomos , Ribossomos/metabolismo , Ribossomos/química , RNA de Transferência/metabolismo , RNA de Transferência/química , Humanos
13.
Chimia (Aarau) ; 78(4): 200-204, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38676609

RESUMO

RNA, widely recognized as an information-carrier molecule, is capable of catalyzing essential biological processes through ribozymes. Despite their ubiquity, specific functions in a biological context and phenotypes based on the ribozymes' activity are often unknown. Here, we present the discovery of a subgroup of minimal HDV-like ribozymes, which reside 3' to viral tRNAs and appear to cleave the 3'-trailers of viral premature tRNA transcripts. This proposed tRNA-processing function is unprecedented for any ribozymes, thus, we designate this subgroup as theta ribozymes. Most theta ribozymes were identified in Caudoviricetes bacteriophages, the main constituent (>90%) of the mammalian gut virome. Intriguingly, our findings further suggest the involvement of theta ribozymes in the transition of certain bacteriophages between distinct genetic codes, thus possibly contributing to the phage lysis trigger. Our discovery expands the limited repertoire of biological functions attributed to HDV-like ribozymes and provides insights into the fascinating world of RNA catalysis.


Assuntos
RNA Catalítico , RNA Catalítico/metabolismo , RNA Catalítico/química , RNA Viral/metabolismo , RNA Viral/genética , RNA de Transferência/metabolismo , RNA de Transferência/genética , RNA de Transferência/química , Bacteriófagos/genética , Vírus Delta da Hepatite/genética , Vírus Delta da Hepatite/enzimologia
14.
J Biol Chem ; 300(5): 107258, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38582448

RESUMO

Mitochondria are membrane-bound organelles of endosymbiotic origin with limited protein-coding capacity. The import of nuclear-encoded proteins and nucleic acids is required and essential for maintaining organelle mass, number, and activity. As plant mitochondria do not encode all the necessary tRNA types required, the import of cytosolic tRNA is vital for organelle maintenance. Recently, two mitochondrial outer membrane proteins, named Tric1 and Tric2, for tRNA import component, were shown to be involved in the import of cytosolic tRNA. Tric1/2 binds tRNAalavia conserved residues in the C-terminal Sterile Alpha Motif (SAM) domain. Here we report the X-ray crystal structure of the Tric1 SAM domain. We identified the ability of the SAM domain to form a helical superstructure with six monomers per helical turn and key amino acid residues responsible for its formation. We determined that the oligomerization of the Tric1 SAM domain may play a role in protein function whereby mutation of Gly241 introducing a larger side chain at this position disrupted the oligomer and resulted in the loss of RNA binding capability. Furthermore, complementation of Arabidopsis thaliana Tric1/2 knockout lines with a mutated Tric1 failed to restore the defective plant phenotype. AlphaFold2 structure prediction of both the SAM domain and Tric1 support a cyclic pentameric or hexameric structure. In the case of a hexameric structure, a pore of sufficient dimensions to transfer tRNA across the mitochondrial membrane is observed. Our results highlight the importance of oligomerization of Tric1 for protein function.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas Mitocondriais , Domínios Proteicos , RNA de Transferência , Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Cristalografia por Raios X , Mitocôndrias/metabolismo , Mitocôndrias/genética , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/química , Proteínas Mitocondriais/genética , Transporte de RNA , RNA de Transferência/metabolismo , RNA de Transferência/química , RNA de Transferência/genética
15.
Nucleic Acids Res ; 52(9): 5226-5240, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38613394

RESUMO

RNA acetylation is a universal post-transcriptional modification that occurs in various RNAs. Transfer RNA (tRNA) acetylation is found at position 34 (ac4C34) in bacterial tRNAMet and position 12 (ac4C12) in eukaryotic tRNASer and tRNALeu. The biochemical mechanism, structural basis and functional significance of ac4C34 are well understood; however, despite being discovered in the 1960s and identification of Kre33/NAT10 and Tan1/THUMPD1 as modifying apparatuses, ac4C12 modification activity has never been reconstituted for nearly six decades. Here, we successfully reconstituted the ac4C12 modification activity of yeast Kre33 and Tan1. Biogenesis of ac4C12 is primarily dependent on a minimal set of elements, including a canonical acceptor stem, the presence of the 11CCG13 motif and correct D-arm orientation, indicating a molecular ruler mechanism. A single A13G mutation conferred ac4C12 modification to multiple non-substrate tRNAs. Moreover, we were able to introduce ac4C modifications into small RNAs. ac4C12 modification contributed little to tRNA melting temperature and aminoacylation in vitro and in vivo. Collectively, our results realize in vitro activity reconstitution, delineate tRNA substrate selection mechanism for ac4C12 biogenesis and develop a valuable system for preparing acetylated tRNAs as well as non-tRNA RNA species, which will advance the functional interpretation of the acetylation in RNA structures and functions.


Assuntos
RNA de Transferência , Proteínas de Ligação a RNA , Proteínas de Saccharomyces cerevisiae , Acetilação , Mutação , Conformação de Ácido Nucleico , Processamento Pós-Transcricional do RNA , RNA de Transferência/metabolismo , RNA de Transferência/genética , RNA de Transferência/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Ligação a RNA/metabolismo
16.
Trends Genet ; 40(6): 511-525, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38641471

RESUMO

Ribonucleases (RNases) play important roles in supporting canonical and non-canonical roles of tRNAs by catalyzing the cleavage of the tRNA phosphodiester backbone. Here, we highlight how recent advances in cryo-electron microscopy (cryo-EM), protein structure prediction, reconstitution experiments, tRNA sequencing, and other studies have revealed new insight into the nucleases that process tRNA. This represents a very diverse group of nucleases that utilize distinct mechanisms to recognize and cleave tRNA during different stages of a tRNA's life cycle including biogenesis, fragmentation, surveillance, and decay. In this review, we provide a synthesis of the structure, mechanism, regulation, and modes of tRNA recognition by tRNA nucleases, along with open questions for future investigation.


Assuntos
Microscopia Crioeletrônica , RNA de Transferência , Ribonucleases , RNA de Transferência/genética , RNA de Transferência/química , Ribonucleases/genética , Ribonucleases/química , Ribonucleases/metabolismo , Humanos , Conformação de Ácido Nucleico
17.
Nucleic Acids Res ; 52(11): 6586-6595, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38572748

RESUMO

Ribosomal incorporation of ß-amino acids into nascent peptides is much less efficient than that of the canonical α-amino acids. To overcome this, we have engineered a tRNA chimera bearing T-stem of tRNAGlu and D-arm of tRNAPro1, referred to as tRNAPro1E2, which efficiently recruits EF-Tu and EF-P. Using tRNAPro1E2 indeed improved ß-amino acid incorporation. However, multiple/consecutive incorporations of ß-amino acids are still detrimentally poor. Here, we attempted fine-tuning of the anticodon arm of tRNAPro1E2 aiming at further enhancement of ß-amino acid incorporation. By screening various mutations introduced into tRNAPro1E2, C31G39/C28G42 mutation showed an approximately 3-fold enhancement of two consecutive incorporation of ß-homophenylglycine (ßPhg) at CCG codons. The use of this tRNA made it possible for the first time to elongate up to ten consecutive ßPhg's. Since the enhancement effect of anticodon arm mutations differs depending on the codon used for ß-amino acid incorporation, we optimized anticodon arm sequences for five codons (CCG, CAU, CAG, ACU and UGG). Combination of the five optimal tRNAs for these codons made it possible to introduce five different kinds of ß-amino acids and analogs simultaneously into model peptides, including a macrocyclic scaffold. This strategy would enable ribosomal synthesis of libraries of macrocyclic peptides containing multiple ß-amino acids.


Assuntos
Aminoácidos , Anticódon , Anticódon/genética , Anticódon/química , Aminoácidos/química , Aminoácidos/genética , RNA de Transferência/genética , RNA de Transferência/química , RNA de Transferência/metabolismo , Mutação , Códon/genética , Ribossomos/metabolismo , Ribossomos/genética , Biossíntese de Proteínas , RNA de Transferência de Prolina/genética , RNA de Transferência de Prolina/metabolismo , RNA de Transferência de Prolina/química , Conformação de Ácido Nucleico , Fator Tu de Elongação de Peptídeos/genética , Fator Tu de Elongação de Peptídeos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo
18.
Life Sci Alliance ; 7(6)2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38599770

RESUMO

Translational regulation by non-coding RNAs is a mechanism commonly used by cells to fine-tune gene expression. A fragment derived from an archaeal valine tRNA (Val-tRF) has been previously identified to bind the small subunit of the ribosome and inhibit translation in Haloferax volcanii Here, we present three cryo-electron microscopy structures of Val-tRF bound to the small subunit of Sulfolobus acidocaldarius ribosomes at resolutions between 4.02 and 4.53 Å. Within these complexes, Val-tRF was observed to bind to conserved RNA-interacting sites, including the ribosomal decoding center. The binding of Val-tRF destabilizes helices h24, h44, and h45 and the anti-Shine-Dalgarno sequence of 16S rRNA. The binding position of this molecule partially overlaps with the translation initiation factor aIF1A and occludes the mRNA P-site codon. Moreover, we found that the binding of Val-tRF is associated with steric hindrance of the H69 base of 23S rRNA in the large ribosome subunit, thereby preventing 70S assembly. Our data exemplify how tRNA-derived fragments bind to ribosomes and provide new insights into the mechanisms underlying translation inhibition by Val-tRFs.


Assuntos
RNA de Transferência , Ribossomos , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/análise , RNA Ribossômico 16S/metabolismo , Microscopia Crioeletrônica , Ribossomos/genética , RNA de Transferência/genética , RNA de Transferência/química , RNA de Transferência/metabolismo , Valina/análise , Valina/metabolismo
19.
Chem Rev ; 124(10): 6444-6500, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38688034

RESUMO

Ribosome-dependent protein biosynthesis is an essential cellular process mediated by transfer RNAs (tRNAs). Generally, ribosomally synthesized proteins are limited to the 22 proteinogenic amino acids (pAAs: 20 l-α-amino acids present in the standard genetic code, selenocysteine, and pyrrolysine). However, engineering tRNAs for the ribosomal incorporation of non-proteinogenic monomers (npMs) as building blocks has led to the creation of unique polypeptides with broad applications in cellular biology, material science, spectroscopy, and pharmaceuticals. Ribosomal polymerization of these engineered polypeptides presents a variety of challenges for biochemists, as translation efficiency and fidelity is often insufficient when employing npMs. In this Review, we will focus on the methodologies for engineering tRNAs to overcome these issues and explore recent advances both in vitro and in vivo. These efforts include increasing orthogonality, recruiting essential translation factors, and creation of expanded genetic codes. After our review on the biochemical optimizations of tRNAs, we provide examples of their use in genetic code manipulation, with a focus on the in vitro discovery of bioactive macrocyclic peptides containing npMs. Finally, an analysis of the current state of tRNA engineering is presented, along with existing challenges and future perspectives for the field.


Assuntos
Biossíntese de Proteínas , RNA de Transferência , Ribossomos , RNA de Transferência/metabolismo , RNA de Transferência/química , RNA de Transferência/genética , Ribossomos/metabolismo , Ribossomos/genética , Código Genético , Humanos
20.
Curr Protoc ; 4(3): e1010, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38516989

RESUMO

Serine-proline (Ser-Pro) backbone-modified dipeptide analogues are powerful tools to investigate the role of cis-trans isomerization in the regulation of the cell cycle and transcription. These studies have previously been limited to synthetic peptides, whose synthesis is a challenge for larger peptides due to the compounding yield loss incurred in each step. We now introduce a method for the aminoacylation of tRNA with dipeptides and dipeptide analogs to permit the installation of cis- and trans-locked Ser-Pro analogues into full-length proteins. To that end, we synthesized the 3,5-dinitrobenzyl (DNB)-activated esters of a native Ser-Pro dipeptide and its cis- and trans-locked alkene analogs. Murakami et al. created the DNB flexizyme (dFx), a ribozyme that acylates tRNA with DNB esters of amino acids to permit unnatural amino acids to be incorporated into proteins. A tRNA from yeast that recognizes the amber stop codon, along with the dFx flexizyme, were generated by in vitro transcription with T7 RNA polymerase. dFx was used to successfully catalyze the chemical misacylation of truncated amber tRNA with the Ser-Pro-DNB activated dipeptide. This method allows the introduction of non-native Ser-Pro dipeptide mimics into full-length proteins by in vitro transcription-translation. © 2024 Wiley Periodicals LLC. Basic Protocol 1: Synthesis of 3,5-dinitrobenzyl activated esters of Ser-Pro Basic Protocol 2: Preparation of truncated amber tRNA Basic Protocol 3: Acylation of amber-tRNA by the dFx flexizyme Basic Protocol 4: PAGE electrophoresis of tRNASerPro.


Assuntos
Prolina , Serina , Prolina/química , RNA de Transferência/química , RNA de Transferência/genética , RNA de Transferência/metabolismo , Aminoácidos/química , Aminoácidos/metabolismo , Dipeptídeos , Peptídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...