Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 618(7966): 842-848, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37258671

RESUMO

Nonsense mutations are the underlying cause of approximately 11% of all inherited genetic diseases1. Nonsense mutations convert a sense codon that is decoded by tRNA into a premature termination codon (PTC), resulting in an abrupt termination of translation. One strategy to suppress nonsense mutations is to use natural tRNAs with altered anticodons to base-pair to the newly emerged PTC and promote translation2-7. However, tRNA-based gene therapy has not yielded an optimal combination of clinical efficacy and safety and there is presently no treatment for individuals with nonsense mutations. Here we introduce a strategy based on altering native tRNAs into  efficient suppressor tRNAs (sup-tRNAs) by individually fine-tuning their sequence to the physico-chemical properties of the amino acid that they carry. Intravenous and intratracheal lipid nanoparticle (LNP) administration of sup-tRNA in mice restored the production of functional proteins with nonsense mutations. LNP-sup-tRNA formulations caused no discernible readthrough at endogenous native stop codons, as determined by ribosome profiling. At clinically important PTCs in the cystic fibrosis transmembrane conductance regulator gene (CFTR), the sup-tRNAs re-established expression and function in cell systems and patient-derived nasal epithelia and restored airway volume homeostasis. These results provide a framework for the development of tRNA-based therapies with a high molecular safety profile and high efficacy in targeted PTC suppression.


Assuntos
Códon sem Sentido , Regulador de Condutância Transmembrana em Fibrose Cística , RNA de Transferência , Animais , Camundongos , Aminoácidos/genética , Códon sem Sentido/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , RNA de Transferência/administração & dosagem , RNA de Transferência/genética , RNA de Transferência/uso terapêutico , Pareamento de Bases , Anticódon/genética , Biossíntese de Proteínas , Mucosa Nasal/metabolismo , Perfil de Ribossomos
2.
Annu Rev Microbiol ; 77: 111-129, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37018842

RESUMO

Infections caused by malaria parasites place an enormous burden on the world's poorest communities. Breakthrough drugs with novel mechanisms of action are urgently needed. As an organism that undergoes rapid growth and division, the malaria parasite Plasmodium falciparum is highly reliant on protein synthesis, which in turn requires aminoacyl-tRNA synthetases (aaRSs) to charge tRNAs with their corresponding amino acid. Protein translation is required at all stages of the parasite life cycle; thus, aaRS inhibitors have the potential for whole-of-life-cycle antimalarial activity. This review focuses on efforts to identify potent plasmodium-specific aaRS inhibitors using phenotypic screening, target validation, and structure-guided drug design. Recent work reveals that aaRSs are susceptible targets for a class of AMP-mimicking nucleoside sulfamates that target the enzymes via a novel reaction hijacking mechanism. This finding opens up the possibility of generating bespoke inhibitors of different aaRSs, providing new drug leads.


Assuntos
Aminoacil-tRNA Sintetases , Antimaláricos , Malária , Humanos , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Aminoacil-tRNA Sintetases/química , Aminoacil-tRNA Sintetases/genética , Aminoacil-tRNA Sintetases/metabolismo , Plasmodium falciparum/genética , Malária/tratamento farmacológico , RNA de Transferência/genética , RNA de Transferência/metabolismo , RNA de Transferência/uso terapêutico
3.
Artigo em Inglês | MEDLINE | ID: mdl-36063700

RESUMO

Chronic heart failure (CHF) is the end stage of many severe heart diseases. Fuzi decoction (FZD) originates from Zhang Zhongjing's Treatise on Febrile Diseases and is widely used in the treatment of CHF in the clinic, but the potential mechanism of FZD in CHF is unclear. In this study, an integrated approach combining network pharmacology and metabolomics was adopted to explore the mechanism of FZD in CHF. Network pharmacological studies indicated that the most significant signaling pathway was the HIF-1 signaling pathway. Untargeted metabolomics indicated abnormalities in serum metabolism in CHF rats, and FZD treatment significantly improved the metabolic abnormalities and altered the levels of 30 metabolites. A pathway enrichment analysis showed that FZD was mainly involved in glycine, serine and threonine metabolism, aminoacyl-tRNA biosynthesis, ß-alanine metabolism, pantothenate and CoA biosynthesis, glyoxylate and dicarboxylate metabolism and other metabolic pathways. A correlation analysis showed that pyruvate and lactate were strongly correlated with the heart failure index, and a targeted metabolomics study showed that FZD restored the balance of the pyruvate-lactate axis that was disrupted due to CHF. Therefore, the mechanism of FZD against CHF may be related to regulate HIF-1 signaling pathway, pyruvate-lactate axis and glycine, serine and threonine metabolism.


Assuntos
Medicamentos de Ervas Chinesas , Insuficiência Cardíaca , Animais , Doença Crônica , Coenzima A/uso terapêutico , Diterpenos , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Glicina , Glioxilatos , Insuficiência Cardíaca/tratamento farmacológico , Lactatos/uso terapêutico , Metabolômica , Farmacologia em Rede , Piruvatos/uso terapêutico , RNA de Transferência/uso terapêutico , Ratos , Serina/uso terapêutico , Treonina/uso terapêutico , beta-Alanina
4.
Phytomedicine ; 102: 154168, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35623157

RESUMO

BACKGROUND: Xuefu Zhuyu Decoction (XFZYD), a well-known traditional Chinese medicine prescription, has been widely used to treat traumatic brain injury (TBI). However, the underlying mechanisms involved in XFZYD therapy remain unclear. AIM OF THE STUDY: We explored new therapeutic targets of XFZYD in TBI by the tsRNA-sequencing (tsRNA-seq) method. MATERIAL AND METHODS: High-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) was used to assess the quality of XFZYD. Male Sprague-Dawley rats were randomly categorized into three groups: sham, TBI, and XFZYD. The protective effects of XFZYD were investigated in vivo by using the Morris water maze (MWM), modified neurological severity score (mNSS) tests, hematoxylin-eosin (H&E) staining, and Nissl staining. tsRNA-seq was applied to analyze the expression of tsRNAs in the rat cortex. Four tsRNAs were validated by qRT-PCR. The biological function of putative tsRNAs was investigated using bioinformatics techniques. The functions of tsRNAs targeting mRNAs were verified in vitro. RESULTS: The mNSS and MWM indicated that XFZYD notably improved neurological deficits and cognitive function after TBI (p < 0.05). H&E staining and Nissl staining demonstrated that XFZYD suppressed damage and neuronal loss in the TBI rat cortex. We evaluated the dysregulated expression of 732 tsRNAs (128 tsRNAs were significantly altered in the TBI/sham group (fold change > 2 and p < 0.05), and 97 tsRNAs were dysregulated in the XFZYD/TBI group (fold change > 2 and p < 0.05)) in the TBI rat cortex. Interestingly, 41 tsRNAs were distinctly regulated by XFZYD. The qRT-PCR results of the four randomly chosen tsRNAs (tRF-54-75-Glu-TTC-2, tRF-55-75-Gln-CTG-2-M2, tRF-55-76-Val-TAC-1, tRF-64-85-Leu-AAG-1-M4) exhibited trends similar to those of the tsRNA-seq data. We certified the possible targets of tsRNAs and suggested the crosscurrent in the expression trend of the target genes. Bioinformatics analysis showed that XFZYD-related tsRNAs could contribute to regulating insulin resistance, the calcium signaling pathway, autophagy, and axon guidance. CONCLUSIONS: The current research implies that tsRNAs are putative therapeutic targets of XFYZD for TBI treatment. This research provides new insight into the therapeutic targets of XFZYD in treating TBI.


Assuntos
Lesões Encefálicas Traumáticas , Espectrometria de Massas em Tandem , Animais , Lesões Encefálicas Traumáticas/tratamento farmacológico , Medicamentos de Ervas Chinesas , Masculino , RNA de Transferência/uso terapêutico , Ratos , Ratos Sprague-Dawley
5.
Cell Death Dis ; 12(6): 548, 2021 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-34039958

RESUMO

Transfer RNAs (tRNAs) mainly function as adapter molecules that decode messenger RNAs (mRNAs) during protein translation by delivering amino acids to the ribosome. Traditionally, tRNAs are considered as housekeepers without additional functions. Nevertheless, it has become apparent from biological research that tRNAs are involved in various physiological and pathological processes. Aging is a form of gradual decline in physiological function that ultimately leads to increased vulnerability to multiple chronic diseases and death. Interestingly, tRNA metabolism is closely associated with aging and lifespan. In this review, we summarize the emerging roles of tRNA-associated metabolism, such as tRNA transcription, tRNA molecules, tRNA modifications, tRNA aminoacylation, and tRNA derivatives, in aging and lifespan, aiming to provide new ideas for developing therapeutics and ultimately extending lifespan in humans.


Assuntos
Envelhecimento/genética , RNA de Transferência/uso terapêutico , Humanos , Longevidade
8.
J Gen Virol ; 36(2): 351-5, 1977 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-197205

RESUMO

Periodate or nitrous acid treatment greatly decreases the ability of unfractionated Escherichia coli transfer RNA (tRNA) to be aminoacylated by tRNA-synthetases but these treatments do not affect their antiviral activity against encephalomyocarditis virus infection of mice. Bisulphite treatment of E. coli tRNA reduces its ability to be aminoacylated by 20% and has no effect on antiviral activity. Bromine water treatment of tRNA under conditions causing extensive base modifications eliminates aminoacylation and the antiviral activity of E. coli tRNA. Periodate treatment of yeast tRNA does not affect its antiviral activity and nitrous acid treatment increases its antiviral activity to that of E. coli tRNA. The ability to be aminoacylated does not therefore appear to be essential for antiviral activity of tRNA but extensive modification (bromine water treatment) does destroy antiviral activity.


Assuntos
Infecções por Enterovirus/prevenção & controle , Escherichia coli , RNA Bacteriano/uso terapêutico , RNA de Transferência/uso terapêutico , Acilação , Animais , Bromo/farmacologia , Vírus da Encefalomiocardite , Feminino , Injeções Intraperitoneais , Camundongos , Ácido Nitroso/farmacologia , Ácido Periódico/farmacologia , RNA Bacteriano/metabolismo , RNA de Transferência/metabolismo , Sulfitos/farmacologia
10.
J Gen Virol ; 34(1): 73-85, 1977 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-188982

RESUMO

Preparations of bacterial transfer RNA (tRNA), give dose-dependent protection of mice against encephalomyocarditis (EMC) virus infection at up to I mg tRNA per mouse with maximum response when the tRNA is administered around 6 h before infection. Protection occurs with intraperitoneally and intravenously administered tRNA against infections by both these routes. In some experiments significant protection occurs by single treatments of tRNA up to 24 h after infection with virus doses of I X LD100. Some tRNA preparations of eukaryotic origin do not give significant protection. Protection is not a feature of all species of bacterial tRNA; partially purified valine, tyrosine and phenylalanine tRNAs from Escherichia coli are not protective. tRNA treatment does not induce circulating interferon nor does it 'hypo-reactivate' the protective effect of poly (I).poly (C) treatment of mice. Humoral and cell mediated immune responses do not seem to be involved in tRNA mediated protection since first, cytosine arabinoside treatment does not affect protection by tRNA; second, serum from mice treated with tRNA and an EMC vaccine does not protect other mice against infection, and third, mice that survive normally lethal infections as a result of tRNA treatment are generally just as susceptible to re-infection as previously untreated, uninfected mice. Silica treatment abolishes protection of mice by tRNA implying that macrophages are necessary. However, tRNA does not seem to act by clearance of virus particles since vaccination of mice by inactivated EMC virus is not affected by tRNA treatment. These results are considered in relation to the presence of a tRNA-like structure in EMC virus RNA and protection of mice by other single stranded polynucleotides.


Assuntos
Infecções por Enterovirus/prevenção & controle , RNA Bacteriano/uso terapêutico , RNA de Transferência/uso terapêutico , Animais , Citarabina/farmacologia , Vírus da Encefalomiocardite , Infecções por Enterovirus/imunologia , Escherichia coli , Feminino , Imunoglobulinas/biossíntese , Injeções Intraperitoneais , Injeções Intravenosas , Interferons/biossíntese , Macrófagos/efeitos dos fármacos , Camundongos , RNA Bacteriano/administração & dosagem , RNA de Transferência/administração & dosagem , Dióxido de Silício/farmacologia , Vacinas Virais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...