Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RNA ; 29(9): 1400-1410, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37279998

RESUMO

Unique chemical and physical properties are introduced by inserting selenocysteine (Sec) at specific sites within proteins. Recombinant and facile production of eukaryotic selenoproteins would benefit from a yeast expression system; however, the selenoprotein biosynthetic pathway was lost in the evolution of the kingdom Fungi as it diverged from its eukaryotic relatives. Based on our previous development of efficient selenoprotein production in bacteria, we designed a novel Sec biosynthesis pathway in Saccharomyces cerevisiae using Aeromonas salmonicida translation components. S. cerevisiae tRNASer was mutated to resemble A. salmonicida tRNASec to allow recognition by S. cerevisiae seryl-tRNA synthetase as well as A. salmonicida selenocysteine synthase (SelA) and selenophosphate synthetase (SelD). Expression of these Sec pathway components was then combined with metabolic engineering of yeast to enable the production of active methionine sulfate reductase enzyme containing genetically encoded Sec. Our report is the first demonstration that yeast is capable of selenoprotein production by site-specific incorporation of Sec.


Assuntos
Saccharomyces cerevisiae , Códon de Terminação/genética , Códon de Terminação/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Aeromonas salmonicida/genética , Engenharia de Proteínas , RNA de Transferência de Cisteína/química , RNA de Transferência de Cisteína/genética , RNA de Transferência de Cisteína/metabolismo , Humanos , Conformação de Ácido Nucleico
2.
RNA ; 29(9): 1379-1387, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37221013

RESUMO

Under certain circumstances, any of the three termination codons can be read through by a near-cognate tRNA; i.e., a tRNA whose two out of three anticodon nucleotides base pair with those of the stop codon. Unless programed to synthetize C-terminally extended protein variants with expanded physiological roles, readthrough represents an undesirable translational error. On the other side of a coin, a significant number of human genetic diseases is associated with the introduction of nonsense mutations (premature termination codons [PTCs]) into coding sequences, where stopping is not desirable. Here, the tRNA's ability to induce readthrough opens up the intriguing possibility of mitigating the deleterious effects of PTCs on human health. In yeast, the UGA and UAR stop codons were described to be read through by four readthrough-inducing rti-tRNAs-tRNATrp and tRNACys, and tRNATyr and tRNAGln, respectively. The readthrough-inducing potential of tRNATrp and tRNATyr was also observed in human cell lines. Here, we investigated the readthrough-inducing potential of human tRNACys in the HEK293T cell line. The tRNACys family consists of two isoacceptors, one with ACA and the other with GCA anticodons. We selected nine representative tRNACys isodecoders (differing in primary sequence and expression level) and tested them using dual luciferase reporter assays. We found that at least two tRNACys can significantly elevate UGA readthrough when overexpressed. This indicates a mechanistically conserved nature of rti-tRNAs between yeast and human, supporting the idea that they could be used in the PTC-associated RNA therapies.


Assuntos
Cisteína , Saccharomyces cerevisiae , Humanos , Códon de Terminação/genética , Cisteína/genética , Cisteína/metabolismo , Células HEK293 , Saccharomyces cerevisiae/genética , RNA de Transferência de Cisteína/metabolismo , RNA de Transferência de Triptofano/metabolismo , RNA de Transferência de Tirosina , RNA de Transferência/genética , RNA de Transferência/metabolismo , Anticódon , Códon sem Sentido/genética , Biossíntese de Proteínas
3.
Nucleic Acids Res ; 50(16): 9453-9469, 2022 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-36039763

RESUMO

In this report, we investigated the molecular mechanism underlying a deafness-associated m.5783C > T mutation that affects the canonical C50-G63 base-pairing of TΨC stem of tRNACys and immediately adjacent to 5' end of light-strand origin of mitochondrial DNA (mtDNA) replication (OriL). Two dimensional agarose gel electrophoresis revealed marked decreases in the replication intermediates including ascending arm of Y-fork arcs spanning OriL in the mutant cybrids bearing m.5783C > T mutation. mtDNA replication alterations were further evidenced by decreased levels of PolγA, Twinkle and SSBP1, newly synthesized mtDNA and mtDNA contents in the mutant cybrids. The m.5783C > T mutation altered tRNACys structure and function, including decreased melting temperature, conformational changes, instability and deficient aminoacylation of mutated tRNACys. The m.5783C > T mutation impaired the 5' end processing efficiency of tRNACys precursors and reduced the levels of tRNACys and downstream tRNATyr. The aberrant tRNA metabolism impaired mitochondrial translation, which was especially pronounced effects in the polypeptides harboring higher numbers of cysteine and tyrosine codons. These alterations led to deficient oxidative phosphorylation including instability and reduced activities of the respiratory chain enzyme complexes I, III, IV and intact supercomplexes overall. Our findings highlight the impact of mitochondrial dysfunction on deafness arising from defects in mitochondrial DNA replication and tRNA metabolism.


Assuntos
DNA Mitocondrial , Surdez , Humanos , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , RNA de Transferência de Cisteína/metabolismo , Surdez/genética , Surdez/metabolismo , Mitocôndrias/metabolismo , Mutação , Replicação do DNA/genética , Proteínas de Ligação a DNA/genética , Proteínas Mitocondriais/metabolismo
4.
Sci Rep ; 12(1): 12848, 2022 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-35896582

RESUMO

Fluorescence reporter groups are important tools to study the structure and dynamics of proteins. Genetic code reprogramming allows for cotranslational incorporation of non-canonical amino acids at any desired position. However, cotranslational incorporation of bulky fluorescence reporter groups is technically challenging and usually inefficient. Here we analyze the bottlenecks for the cotranslational incorporation of NBD-, BodipyFL- and Atto520-labeled Cys-tRNACys into a model protein using a reconstituted in-vitro translation system. We show that the modified Cys-tRNACys can be rejected during decoding due to the reduced ribosome selectivity for the modified aa-tRNA and the competition with native near-cognate aminoacyl-tRNAs. Accommodation of the modified Cys-tRNACys in the A site of the ribosome is also impaired, but can be rescued by one or several Gly residues at the positions -1 to -4 upstream of the incorporation site. The incorporation yield depends on the steric properties of the downstream residue and decreases with the distance from the protein N-terminus to the incorporation site. In addition to the full-length translation product, we find protein fragments corresponding to the truncated N-terminal peptide and the C-terminal fragment starting with a fluorescence-labeled Cys arising from a StopGo-like event due to a defect in peptide bond formation. The results are important for understanding the reasons for inefficient cotranslational protein labeling with bulky reporter groups and for designing new approaches to improve the yield of fluorescence-labeled protein.


Assuntos
Aminoácidos , RNA de Transferência de Cisteína , Aminoácidos/metabolismo , Escherichia coli/genética , Biossíntese de Proteínas , Proteínas/metabolismo , RNA de Transferência/metabolismo , RNA de Transferência de Cisteína/genética , RNA de Transferência de Cisteína/metabolismo , Ribossomos/metabolismo
5.
Proc Natl Acad Sci U S A ; 118(32)2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34362841

RESUMO

The Mycobacterium tuberculosis (Mtb) VapBC4 toxin-antitoxin system is essential for the establishment of Mtb infection. Using a multitier, systems-level approach, we uncovered the sequential molecular events triggered by the VapC4 toxin that activate a circumscribed set of critical stress survival pathways which undoubtedly underlie Mtb virulence. VapC4 exclusively inactivated the sole transfer RNACys (tRNACys) through cleavage at a single site within the anticodon sequence. Depletion of the pool of tRNACys led to ribosome stalling at Cys codons within actively translating messenger RNAs. Genome mapping of these Cys-stalled ribosomes unexpectedly uncovered several unannotated Cys-containing open reading frames (ORFs). Four of these are small ORFs (sORFs) encoding Cys-rich proteins of fewer than 50 amino acids that function as Cys-responsive attenuators that engage ribosome stalling at tracts of Cys codons to control translation of downstream genes. Thus, VapC4 mimics a state of Cys starvation, which then activates Cys attenuation at sORFs to globally redirect metabolism toward the synthesis of free Cys. The resulting newly enriched pool of Cys feeds into the synthesis of mycothiol, the glutathione counterpart in this pathogen that is responsible for maintaining cellular redox homeostasis during oxidative stress, as well as into a circumscribed subset of cellular pathways that enable cells to defend against oxidative and copper stresses characteristically endured by Mtb within macrophages. Our ability to pinpoint activation or down-regulation of pathways that collectively align with Mtb virulence-associated stress responses and the nonreplicating persistent state brings to light a direct and vital role for the VapC4 toxin in mediating these critical pathways.


Assuntos
Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/metabolismo , Cobre/toxicidade , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/fisiologia , Estresse Oxidativo/fisiologia , Proteínas de Bactérias/genética , Toxinas Bacterianas/genética , Uso do Códon , Cisteína/genética , Enzimas/genética , Enzimas/metabolismo , Regulação Bacteriana da Expressão Gênica , Interações Hospedeiro-Patógeno , Mycobacterium tuberculosis/patogenicidade , Fases de Leitura Aberta , Biossíntese de Proteínas , RNA Bacteriano/metabolismo , RNA de Transferência de Cisteína/metabolismo , Ribossomos/genética , Ribossomos/metabolismo , Enxofre/metabolismo
6.
Osteoarthritis Cartilage ; 28(8): 1102-1110, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32407895

RESUMO

OBJECTIVES: Recent studies have shown that tRNA-derived RNA fragments (tRFs) are novel regulators of post-transcriptional gene expression. However, the expression profiles and their role in post-transcriptional gene regulation in chondrocytes is unknown. Here, we determined tRFs expression profile and explored tRF-3003a role in post-transcriptional gene regulation in IL-1ß stimulated chondrocytes. METHODS: We used qPCR arrays to determine tRNAs and tRFs expression in age- and sex-matched primary human OA chondrocytes and TC28/I2 cells stimulated with IL-1ß. Chondrocytes were transfected with tRNA-CysGCA overexpression plasmid or tRF-3003a mimic and 3'UTR luciferase reporter plasmids of mRNAs harboring predicted tRF target "seed sequence". The AGO-RNA-induced silencing complex (AGO-RISC)-dependent repressive activity of tRF-3003a was determined by siRNA-mediated knockdown of AGO2. RESULTS: IL-1ß increased the expression levels of specific tRNAs and of tRF-3003a, a type 3 tRF produced by the cleavage of tRNA-CysGCA. tRF-3003a "seed sequence" was identified in the 3'UTR of JAK3 mRNA and tRNA-CysGCA overexpression or transfection of a tRF-3003a mimic in chondrocytes downregulated JAK3 expression and significantly reduced the activity of the 3'UTR reporter. RIP assay showed enrichment of tRF-3003a into AGO2/RISC in IL-1ß treated chondrocytes. The suppressive effect of tRF-3003a on JAK3 3'UTR reporter was abrogated with siRNA-mediated depletion of AGO2. CONCLUSIONS: We demonstrate that under pathological conditions chondrocytes display perturbations in the expression profile of specific tRNAs and tRFs. Furthermore, a specific tRF namely tRF-3003a can post-transcriptionally regulate JAK3 expression via AGO/RISC formation in chondrocytes. Identification of this novel mechanism may be of value in the design of precision therapies for OA.


Assuntos
Condrócitos/metabolismo , Regulação da Expressão Gênica , Osteoartrite/genética , RNA Mensageiro/metabolismo , Pequeno RNA não Traduzido/genética , RNA de Transferência de Cisteína/genética , Regiões 3' não Traduzidas , Proteínas Argonautas , Linhagem Celular , Condrócitos/efeitos dos fármacos , Humanos , Interleucina-1beta/farmacologia , Janus Quinase 3/genética , Osteoartrite/metabolismo , Cultura Primária de Células , RNA Mensageiro/efeitos dos fármacos , Pequeno RNA não Traduzido/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo , RNA de Transferência de Cisteína/metabolismo
7.
Biochim Biophys Acta Proteins Proteom ; 1868(8): 140438, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32330624

RESUMO

tRNA synthetases are responsible for decoding the molecular information, from codons to amino acids. Seryl-tRNA synthetase (SerRS), besides the five isoacceptors of tRNASer, recognizes tRNA[Ser]Sec for the incorporation of selenocysteine (Sec, U) into selenoproteins. The selenocysteine synthesis pathway is known and is dependent on several protein-protein and protein-RNA interactions. Those interactions are not fully described, in particular, involving tRNA[Ser]Sec and SerRS. Here we describe the molecular interactions between the Escherichia coli Seryl-tRNA synthetase (EcSerRS) and tRNA[Ser]Sec in order to determine their specificity, selectivity and binding order, leading to tRNA aminoacylation. The dissociation constant of EcSerRS and tRNA[Ser]Sec was determined as (126 ± 20) nM. We also demonstrate that EcSerRS binds initially to tRNA[Ser]Sec in the presence of ATP for further recognition by E. coli selenocysteine synthetase (EcSelA) for Ser to Sec conversion. The proposed studies clarify the mechanism of tRNA[Ser]Sec incorporation in Bacteria as well as of other domains of life.


Assuntos
Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , RNA de Transferência Aminoácido-Específico/metabolismo , RNA de Transferência de Cisteína/metabolismo , Serina-tRNA Ligase/metabolismo , Transferases/metabolismo , Trifosfato de Adenosina/metabolismo , Sítios de Ligação , Escherichia coli/genética , Cinética , Modelos Moleculares , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , RNA de Transferência Aminoácido-Específico/genética , RNA de Transferência de Cisteína/genética , Serina-tRNA Ligase/genética , Termodinâmica , Aminoacilação de RNA de Transferência/genética , Transferases/genética
9.
Amino Acids ; 50(9): 1145-1167, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29948343

RESUMO

Selenium (Se) is an essential trace element for several organisms and is mostly present in proteins as L-selenocysteine (Sec or U). Sec is synthesized on its L-seryl-tRNASec to produce Sec-tRNASec molecules by a dedicated selenocysteine synthesis machinery and incorporated into selenoproteins at specified in-frame UGA codons. UGA-Sec insertion is signaled by an mRNA stem-loop structure called the SElenoCysteine Insertion Sequence (SECIS). tRNASec transcription regulation and folding have been described showing its importance to Sec biosynthesis. Here, we discuss structural aspects of Sec-tRNASec and its role in Sec biosynthesis as well as Sec incorporation into selenoproteins. Defects in the Sec biosynthesis or incorporation pathway have been correlated with pathological conditions.


Assuntos
RNA de Transferência de Cisteína/genética , Selenocisteína/biossíntese , Animais , Códon de Terminação/química , Códon de Terminação/genética , Códon de Terminação/metabolismo , Humanos , Biossíntese de Proteínas , RNA Mensageiro/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Transferência de Cisteína/química , RNA de Transferência de Cisteína/metabolismo , Selenocisteína/genética
10.
RNA Biol ; 15(4-5): 471-479, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29879865

RESUMO

In many organisms, the UGA stop codon is recoded to insert selenocysteine (Sec) into proteins. Sec incorporation in bacteria is directed by an mRNA element, known as the Sec-insertion sequence (SECIS), located downstream of the Sec codon. Unlike other aminoacyl-tRNAs, Sec-tRNASec is delivered to the ribosome by a dedicated elongation factor, SelB. We recently identified a series of tRNASec-like tRNA genes distributed across Bacteria that also encode a canonical tRNASec. These tRNAs contain sequence elements generally recognized by cysteinyl-tRNA synthetase (CysRS). While some of these tRNAs contain a UCA Sec anticodon, most have a GCA Cys anticodon. tRNASec with GCA anticodons are known to recode UGA codons. Here we investigate the clostridial Desulfotomaculum nigrificans tRNASec-like tRNACys, and show that this tRNA is acylated by CysRS, recognized by SelB, and capable of UGA recoding with Cys in Escherichia coli. We named this non-canonical group of tRNACys as 'tRNAReC' (Recoding with Cys). We performed a comprehensive survey of tRNAReC genes to establish their phylogenetic distribution, and found that, in a particular lineage of clostridial Pelotomaculum, the Cys identity elements of tRNAReC had mutated. This novel tRNA, which contains a UCA anticodon, is capable of Sec incorporation in E. coli, albeit with lower efficiency relative to Pelotomaculum tRNASec. We renamed this unusual tRNASec derived from tRNAReC as 'tRNAReU' (Recoding with Sec). Together, our results suggest that tRNAReC and tRNAReU may serve as safeguards in the production of selenoproteins and - to our knowledge - they provide the first example of programmed codon-anticodon mispairing in bacteria.


Assuntos
Aminoacil-tRNA Sintetases/genética , Proteínas de Bactérias/genética , Cisteína/metabolismo , Escherichia coli/genética , RNA de Transferência de Cisteína/genética , Selenocisteína/metabolismo , Selenoproteínas/genética , Aminoacil-tRNA Sintetases/metabolismo , Anticódon/genética , Anticódon/metabolismo , Proteínas de Bactérias/metabolismo , Códon de Terminação/química , Códon de Terminação/metabolismo , Desulfotomaculum/genética , Desulfotomaculum/metabolismo , Escherichia coli/metabolismo , Código Genético , Modelos Moleculares , Mutação , Conformação de Ácido Nucleico , Fator Tu de Elongação de Peptídeos/genética , Fator Tu de Elongação de Peptídeos/metabolismo , Peptococcaceae/genética , Peptococcaceae/metabolismo , Biossíntese de Proteínas , RNA de Transferência de Cisteína/metabolismo , Ribossomos/genética , Ribossomos/metabolismo , Selenoproteínas/biossíntese
11.
Nat Commun ; 8(1): 1521, 2017 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-29142195

RESUMO

Cysteine can be synthesized by tRNA-dependent mechanism using a two-step indirect pathway, where O-phosphoseryl-tRNA synthetase (SepRS) catalyzes the ligation of a mismatching O-phosphoserine (Sep) to tRNACys followed by the conversion of tRNA-bounded Sep into cysteine by Sep-tRNA:Cys-tRNA synthase (SepCysS). In ancestral methanogens, a third protein SepCysE forms a bridge between the two enzymes to create a ternary complex named the transsulfursome. By combination of X-ray crystallography, SAXS and EM, together with biochemical evidences, here we show that the three domains of SepCysE each bind SepRS, SepCysS, and tRNACys, respectively, which mediates the dynamic architecture of the transsulfursome and thus enables a global long-range channeling of tRNACys between SepRS and SepCysS distant active sites. This channeling mechanism could facilitate the consecutive reactions of the two-step indirect pathway of Cys-tRNACys synthesis (tRNA-dependent cysteine biosynthesis) to prevent challenge of translational fidelity, and may reflect the mechanism that cysteine was originally added into genetic code.


Assuntos
Aminoacil-tRNA Sintetases/metabolismo , Proteínas Arqueais/metabolismo , Cisteína/metabolismo , RNA de Transferência de Cisteína/metabolismo , Aminoacil-tRNA Sintetases/química , Aminoacil-tRNA Sintetases/genética , Proteínas Arqueais/química , Proteínas Arqueais/genética , Cristalografia por Raios X , Cisteína/química , Cisteína/genética , Código Genético/genética , Methanocaldococcus/genética , Methanocaldococcus/metabolismo , Microscopia Eletrônica , Modelos Moleculares , Mutação , Fosfosserina/química , Fosfosserina/metabolismo , Ligação Proteica , Conformação Proteica , RNA de Transferência de Cisteína/química , RNA de Transferência de Cisteína/genética , Espalhamento a Baixo Ângulo
12.
J Biol Chem ; 292(34): 13904-13913, 2017 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-28696260

RESUMO

RNase P is a universal enzyme that removes 5' leader sequences from tRNA precursors. The enzyme is therefore essential for maturation of functional tRNAs and mRNA translation. RNase P represents a unique example of an enzyme that can occur either as ribonucleoprotein or as protein alone. The latter form of the enzyme, called protein-only RNase P (PRORP), is widespread in eukaryotes in which it can provide organellar or nuclear RNase P activities. Here, we have focused on Arabidopsis nuclear PRORP2 and its interaction with tRNA substrates. Affinity measurements helped assess the respective importance of individual pentatricopeptide repeat motifs in PRORP2 for RNA binding. We characterized the PRORP2 structure by X-ray crystallography and by small-angle X-ray scattering in solution as well as that of its complex with a tRNA precursor by small-angle X-ray scattering. Of note, our study reports the first structural data of a PRORP-tRNA complex. Combined with complementary biochemical and biophysical analyses, our structural data suggest that PRORP2 undergoes conformational changes to accommodate its substrate. In particular, the catalytic domain and the RNA-binding domain can move around a central hinge. Altogether, this work provides a refined model of the PRORP-tRNA complex that illustrates how protein-only RNase P enzymes specifically bind tRNA and highlights the contribution of protein dynamics to achieve this specific interaction.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Modelos Moleculares , Precursores de RNA/metabolismo , Processamento Pós-Transcricional do RNA , RNA de Plantas/metabolismo , RNA de Transferência de Cisteína/metabolismo , Ribonuclease P/metabolismo , Motivos de Aminoácidos , Substituição de Aminoácidos , Arabidopsis/enzimologia , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Fenômenos Biofísicos , Domínio Catalítico , Estabilidade Enzimática , Mutação , Conformação de Ácido Nucleico , Motivos de Nucleotídeos , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , RNA/química , RNA/metabolismo , Precursores de RNA/química , RNA de Plantas/química , RNA de Transferência de Cisteína/química , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Ribonuclease P/química , Ribonuclease P/genética , Solubilidade
13.
mBio ; 8(3)2017 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-28487430

RESUMO

The diversity of the genetic code systems used by microbes on earth is yet to be elucidated. It is known that certain methanogenic archaea employ an alternative system for cysteine (Cys) biosynthesis and encoding; tRNACys is first acylated with phosphoserine (Sep) by O-phosphoseryl-tRNA synthetase (SepRS) and then converted to Cys-tRNACys by Sep-tRNA:Cys-tRNA synthase (SepCysS). In this study, we searched all genomic and metagenomic protein sequence data in the Integrated Microbial Genomes (IMG) system and at the NCBI to reveal new clades of SepRS and SepCysS proteins belonging to diverse archaea in the four major groups (DPANN, Euryarchaeota, TACK, and Asgard) and two groups of bacteria ("Candidatus Parcubacteria" and Chloroflexi). Bacterial SepRS and SepCysS charged bacterial tRNACys species with cysteine in vitro Homologs of SepCysE, a scaffold protein facilitating SepRS⋅SepCysS complex assembly in Euryarchaeota class I methanogens, are found in a few groups of TACK and Asgard archaea, whereas the C-terminally truncated homologs exist fused or genetically coupled with diverse SepCysS species. Investigation of the selenocysteine (Sec)- and pyrrolysine (Pyl)-utilizing traits in SepRS-utilizing archaea and bacteria revealed that the archaea carrying full-length SepCysE employ Sec and that SepRS is often found in Pyl-utilizing archaea and Chloroflexi bacteria. We discuss possible contributions of the SepRS-SepCysS system for sulfur assimilation, methanogenesis, and other metabolic processes requiring large amounts of iron-sulfur enzymes or Pyl-containing enzymes.IMPORTANCE Comprehensive analyses of all genomic and metagenomic protein sequence data in public databases revealed the distribution and evolution of an alternative cysteine-encoding system in diverse archaea and bacteria. The finding that the SepRS-SepCysS-SepCysE- and the selenocysteine-encoding systems are shared by the Euryarchaeota class I methanogens, the Crenarchaeota AK8/W8A-19 group, and an Asgard archaeon suggests that ancient archaea may have used both systems. In contrast, bacteria may have obtained the SepRS-SepCysS system from archaea. The SepRS-SepCysS system sometimes coexists with a pyrrolysine-encoding system in both archaea and bacteria. Our results provide additional bioinformatic evidence for the contribution of the SepRS-SepCysS system for sulfur assimilation and diverse metabolisms which require vast amounts of iron-sulfur enzymes and proteins. Among these biological activities, methanogenesis, methylamine metabolism, and organohalide respiration may have local and global effects on earth. Taken together, uncultured bacteria and archaea provide an expanded record of the evolution of the genetic code.


Assuntos
Archaea/genética , Bactérias/genética , Cisteína/biossíntese , RNA Arqueal/metabolismo , RNA Bacteriano/metabolismo , Aminoacil-RNA de Transferência/metabolismo , RNA de Transferência de Cisteína/metabolismo , Aminoacil-tRNA Sintetases/metabolismo , Archaea/metabolismo , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Bactérias/metabolismo , Biologia Computacional , Cristalografia por Raios X , Código Genético , Genoma Arqueal , Genoma Bacteriano , Fosfosserina/metabolismo , Ligação Proteica , Biossíntese de Proteínas , Enxofre/metabolismo
14.
Biomolecules ; 7(1)2017 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-28117687

RESUMO

Oxidative stress occurs when cells are exposed to elevated levels of reactive oxygen species that can damage biological molecules. One bacterial response to oxidative stress involves disulfide bond formation either between protein thiols or between protein thiols and low-molecular-weight (LMW) thiols. Bacillithiol was recently identified as a major low-molecular-weight thiol in Bacillus subtilis and related Firmicutes. Four genes (bshA, bshB1, bshB2, and bshC) are involved in bacillithiol biosynthesis. The bshA and bshB1 genes are part of a seven-gene operon (ypjD), which includes the essential gene cca, encoding CCA-tRNA nucleotidyltransferase. The inclusion of cca in the operon containing bacillithiol biosynthetic genes suggests that the integrity of the 3' terminus of tRNAs may also be important in oxidative stress. The addition of the 3' terminal CCA sequence by CCA-tRNA nucleotidyltransferase to give rise to a mature tRNA and functional molecules ready for aminoacylation plays an essential role during translation and expression of the genetic code. Any defects in these processes, such as the accumulation of shorter and defective tRNAs under oxidative stress, might exert a deleterious effect on cells. This review summarizes the physiological link between tRNACys regulation and oxidative stress in Bacillus.


Assuntos
Bacillus subtilis/genética , RNA Nucleotidiltransferases/metabolismo , RNA de Transferência de Cisteína/metabolismo , Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Cisteína/análogos & derivados , Cisteína/biossíntese , Dissulfetos/metabolismo , Glucosamina/análogos & derivados , Glucosamina/biossíntese , Modelos Moleculares , Estresse Oxidativo , RNA Bacteriano/metabolismo , RNA de Transferência de Cisteína/química
15.
Nucleic Acids Res ; 45(5): 2776-2785, 2017 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-28076288

RESUMO

We report the identification of novel tRNA species with 12-base pair amino-acid acceptor branches composed of longer acceptor stem and shorter T-stem. While canonical tRNAs have a 7/5 configuration of the branch, the novel tRNAs have either 8/4 or 9/3 structure. They were found during the search for selenocysteine tRNAs in terabytes of genome, metagenome and metatranscriptome sequences. Certain bacteria and their phages employ the 8/4 structure for serine and histidine tRNAs, while minor cysteine and selenocysteine tRNA species may have a modified 8/4 structure with one bulge nucleotide. In Acidobacteria, tRNAs with 8/4 and 9/3 structures may function as missense and nonsense suppressor tRNAs and/or regulatory noncoding RNAs. In δ-proteobacteria, an additional cysteine tRNA with an 8/4 structure mimics selenocysteine tRNA and may function as opal suppressor. We examined the potential translation function of suppressor tRNA species in Escherichia coli; tRNAs with 8/4 or 9/3 structures efficiently inserted serine, alanine and cysteine in response to stop and sense codons, depending on the identity element and anticodon sequence of the tRNA. These findings expand our view of how tRNA, and possibly the genetic code, is diversified in nature.


Assuntos
RNA Bacteriano/química , RNA de Transferência/química , Anticódon , Bactérias/genética , Toxinas Bacterianas/genética , Conformação de Ácido Nucleico , Biossíntese de Proteínas , RNA de Transferência Aminoácido-Específico/química , RNA de Transferência de Cisteína/química , RNA de Transferência de Cisteína/metabolismo
16.
Acta Crystallogr F Struct Biol Commun ; 72(Pt 7): 569-72, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27380375

RESUMO

In most organisms, Cys-tRNA(Cys) is directly synthesized by cysteinyl-tRNA synthetase (CysRS). Many methanogenic archaea, however, use a two-step, indirect pathway to synthesize Cys-tRNA(Cys) owing to a lack of CysRS and cysteine-biosynthesis systems. This reaction is catalyzed by O-phosphoseryl-tRNA synthetase (SepRS), Sep-tRNA:Cys-tRNA synthase (SepCysS) and SepRS/SepCysS pathway enhancer (SepCysE) as the transsulfursome, in which SepCysE connects both SepRS and SepCysS. On the transsulfursome, SepRS first ligates an O-phosphoserine to tRNA(Cys), and the mischarged intermediate Sep-tRNA(Cys) is then transferred to SepCysS, where it is further modified to Cys-tRNA(Cys). In this study, a subcomplex of the transsulfursome with tRNA(Cys) (SepCysS-SepCysE-tRNA(Cys)), which is involved in the second reaction step of the indirect pathway, was constructed and then crystallized. The crystals diffracted X-rays to a resolution of 2.6 Šand belonged to space group P6522, with unit-cell parameters a = b = 107.2, c = 551.1 Å. The structure determined by molecular replacement showed that the complex consists of a SepCysS dimer, a SepCysE dimer and one tRNA(Cys) in the asymmetric unit.


Assuntos
Aminoacil-tRNA Sintetases/química , Proteínas Arqueais/química , Methanocaldococcus/química , RNA de Transferência de Cisteína/química , Sequência de Aminoácidos , Aminoacil-tRNA Sintetases/genética , Aminoacil-tRNA Sintetases/metabolismo , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Clonagem Molecular , Cristalização , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Methanocaldococcus/enzimologia , Plasmídeos/química , Plasmídeos/metabolismo , RNA de Transferência de Cisteína/genética , RNA de Transferência de Cisteína/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Difração de Raios X
17.
Sci Rep ; 5: 13050, 2015 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-26278626

RESUMO

Kallmann syndrome (KS) is an inherited developmental disorder defined as the association of hypogonadotropic hypogonadism and anosmia or hyposmia. KS has been shown to be a genetically heterogeneous disease with different modes of inheritance. However, variants in any of the causative genes identified so far are only found in approximately one third of KS patients, thus indicating that other genes or pathways remain to be discovered. Here, we report a large Han Chinese family with inherited KS which harbors two novel variants, KAL1 c.146G>T (p.Cys49Phe) and mitochondrial tRNA(cys) (m.5800A>G). Although two variants can't exert obvious effects on the migration of GnRH neurons, they show the synergistic effect, which can account for the occurrence of the disorder in this family. Furthermore, the disturbance of the mitochondrial cysteinyl-tRNA pathway can significantly affect the migration of GnRH cells in vitro and in vivo by influencing the chemomigration function of anosmin-1. Our work highlights a new mode of inheritance underlay the genetic etiology of KS and provide valuable clues to understand the disease development.


Assuntos
DNA Mitocondrial/genética , Proteínas da Matriz Extracelular/genética , Síndrome de Kallmann/patologia , Proteínas do Tecido Nervoso/genética , RNA de Transferência de Cisteína/genética , Aminoacil-tRNA Sintetases/antagonistas & inibidores , Aminoacil-tRNA Sintetases/genética , Aminoacil-tRNA Sintetases/metabolismo , Animais , Povo Asiático/genética , Sequência de Bases , Movimento Celular , China , DNA Mitocondrial/química , Proteínas da Matriz Extracelular/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Células HEK293 , Humanos , Síndrome de Kallmann/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Conformação de Ácido Nucleico , Linhagem , Fenótipo , Mutação Puntual , Interferência de RNA , RNA de Transferência de Cisteína/metabolismo , Peixe-Zebra/metabolismo
18.
J Struct Funct Genomics ; 16(1): 25-41, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25618148

RESUMO

The putative translation elongation factor Mbar_A0971 from the methanogenic archaeon Methanosarcina barkeri was proposed to be the pyrrolysine-specific paralogue of EF-Tu ("EF-Pyl"). In the present study, the crystal structures of its homologue from Methanosarcina mazei (MM1309) were determined in the GMPPNP-bound, GDP-bound, and apo forms, by the single-wavelength anomalous dispersion phasing method. The three MM1309 structures are quite similar (r.m.s.d. < 0.1 Å). The three domains, corresponding to domains 1, 2, and 3 of EF-Tu/SelB/aIF2γ, are packed against one another to form a closed architecture. The MM1309 structures resemble those of bacterial/archaeal SelB, bacterial EF-Tu in the GTP-bound form, and archaeal initiation factor aIF2γ, in this order. The GMPPNP and GDP molecules are visible in their co-crystal structures. Isothermal titration calorimetry measurements of MM1309·GTP·Mg(2+), MM1309·GDP·Mg(2+), and MM1309·GMPPNP·Mg(2+) provided dissociation constants of 0.43, 26.2, and 222.2 µM, respectively. Therefore, the affinities of MM1309 for GTP and GDP are similar to those of SelB rather than those of EF-Tu. Furthermore, the switch I and II regions of MM1309 are involved in domain-domain interactions, rather than nucleotide binding. The putative binding pocket for the aminoacyl moiety on MM1309 is too small to accommodate the pyrrolysyl moiety, based on a comparison of the present MM1309 structures with that of the EF-Tu·GMPPNP·aminoacyl-tRNA ternary complex. A hydrolysis protection assay revealed that MM1309 binds cysteinyl (Cys)-tRNA(Cys) and protects the aminoacyl bond from non-enzymatic hydrolysis. Therefore, we propose that MM1309 functions as either a guardian protein that protects the Cys moiety from oxidation or an alternative translation factor for Cys-tRNA(Cys).


Assuntos
Proteínas Arqueais/química , Guanosina Trifosfato/química , Methanosarcina/química , RNA de Transferência de Cisteína/química , Sequência de Aminoácidos , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Calorimetria , Cristalografia por Raios X , Guanosina Difosfato/química , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Guanilil Imidodifosfato/química , Guanilil Imidodifosfato/metabolismo , Cinética , Methanosarcina/genética , Methanosarcina/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Molecular , Conformação de Ácido Nucleico , Fator Tu de Elongação de Peptídeos/química , Fator Tu de Elongação de Peptídeos/genética , Fator Tu de Elongação de Peptídeos/metabolismo , Fatores de Alongamento de Peptídeos/química , Fatores de Alongamento de Peptídeos/genética , Fatores de Alongamento de Peptídeos/metabolismo , Fatores de Iniciação de Peptídeos/química , Fatores de Iniciação de Peptídeos/genética , Fatores de Iniciação de Peptídeos/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , RNA de Transferência de Cisteína/metabolismo , Homologia de Sequência de Aminoácidos
19.
Proc Natl Acad Sci U S A ; 111(29): 10520-5, 2014 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-25002468

RESUMO

Methanogenic archaea lack cysteinyl-tRNA synthetase; they synthesize Cys-tRNA and cysteine in a tRNA-dependent manner. Two enzymes are required: Phosphoseryl-tRNA synthetase (SepRS) forms phosphoseryl-tRNA(Cys) (Sep-tRNA(Cys)), which is converted to Cys-tRNA(Cys) by Sep-tRNA:Cys-tRNA synthase (SepCysS). This represents the ancestral pathway of Cys biosynthesis and coding in archaea. Here we report a translation factor, SepCysE, essential for methanococcal Cys biosynthesis; its deletion in Methanococcus maripaludis causes Cys auxotrophy. SepCysE acts as a scaffold for SepRS and SepCysS to form a stable high-affinity complex for tRNA(Cys) causing a 14-fold increase in the initial rate of Cys-tRNA(Cys) formation. Based on our crystal structure (2.8-Šresolution) of a SepCysS⋅SepCysE complex, a SepRS⋅SepCysE⋅SepCysS structure model suggests that this ternary complex enables substrate channeling of Sep-tRNA(Cys). A phylogenetic analysis suggests coevolution of SepCysE with SepRS and SepCysS in the last universal common ancestral state. Our findings suggest that the tRNA-dependent Cys biosynthesis proceeds in a multienzyme complex without release of the intermediate and this mechanism may have facilitated the addition of Cys to the genetic code.


Assuntos
Archaea/metabolismo , Proteínas Arqueais/metabolismo , Cisteína/biossíntese , Mathanococcus/metabolismo , Fatores de Iniciação de Peptídeos/metabolismo , RNA de Transferência de Cisteína/metabolismo , Acetilação , Proteínas Arqueais/química , Sequência Conservada , Cristalografia por Raios X , Cinética , Modelos Moleculares , Fatores de Iniciação de Peptídeos/química , Ligação Proteica , Estrutura Terciária de Proteína , RNA de Transferência de Cisteína/química
20.
Metallomics ; 5(4): 398-403, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23529473

RESUMO

RNA processing is an essential pathway in the regulation of genetic expression in the cell. In this work, Bacillus subtilis was used to understand the effects of mercury on the mechanism of tRNA metabolism. The CVAAS (cold vapor atomic absorption spectroscopy) method revealed that from the addition of HgCl2 (0.75 µg ml(-1)) during the bacterial exponential phase, ca. 48% of the added mercury was taken up by the cells. This led to an immediate reduction in the rate of cell division. During this response, we observed accumulation of species shorter than mature tRNA(Cys) over a 10 h period. We did not observe this accumulation for another five tRNAs analyzed. tRNA processing is largely dependent on RNase R and PNPase in B. subtilis. Thus, when the exonuclease PNPase was absent, we found that the shorter tRNA(Cys) species increased and mature tRNA(Cys) decreased after mercury addition, but this proportion changed during the time analyzed. However, in the absence of RNase R and PNPase the accumulation of the shorter tRNA(Cys) was more pronounced and the mature form was not recovered. In the single rnr mutant strain the shorter tRNA(Cys) was not observed. All together, we provide in vivo evidence that PNPase and RNase R are indispensable in controlling tRNA(Cys) quality in the presence of mercury.


Assuntos
Bacillus subtilis/efeitos dos fármacos , Bacillus subtilis/metabolismo , Cloreto de Mercúrio/toxicidade , RNA Bacteriano/metabolismo , RNA de Transferência de Cisteína/metabolismo , Bacillus subtilis/crescimento & desenvolvimento , Northern Blotting , Mutação/genética , Processamento Pós-Transcricional do RNA/efeitos dos fármacos , RNA Bacteriano/genética , RNA de Transferência de Cisteína/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...