Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 145
Filtrar
1.
Nucleic Acids Res ; 52(11): 6586-6595, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38572748

RESUMO

Ribosomal incorporation of ß-amino acids into nascent peptides is much less efficient than that of the canonical α-amino acids. To overcome this, we have engineered a tRNA chimera bearing T-stem of tRNAGlu and D-arm of tRNAPro1, referred to as tRNAPro1E2, which efficiently recruits EF-Tu and EF-P. Using tRNAPro1E2 indeed improved ß-amino acid incorporation. However, multiple/consecutive incorporations of ß-amino acids are still detrimentally poor. Here, we attempted fine-tuning of the anticodon arm of tRNAPro1E2 aiming at further enhancement of ß-amino acid incorporation. By screening various mutations introduced into tRNAPro1E2, C31G39/C28G42 mutation showed an approximately 3-fold enhancement of two consecutive incorporation of ß-homophenylglycine (ßPhg) at CCG codons. The use of this tRNA made it possible for the first time to elongate up to ten consecutive ßPhg's. Since the enhancement effect of anticodon arm mutations differs depending on the codon used for ß-amino acid incorporation, we optimized anticodon arm sequences for five codons (CCG, CAU, CAG, ACU and UGG). Combination of the five optimal tRNAs for these codons made it possible to introduce five different kinds of ß-amino acids and analogs simultaneously into model peptides, including a macrocyclic scaffold. This strategy would enable ribosomal synthesis of libraries of macrocyclic peptides containing multiple ß-amino acids.


Assuntos
Aminoácidos , Anticódon , Anticódon/genética , Anticódon/química , Aminoácidos/química , Aminoácidos/genética , RNA de Transferência/genética , RNA de Transferência/química , RNA de Transferência/metabolismo , Mutação , Códon/genética , Ribossomos/metabolismo , Ribossomos/genética , Biossíntese de Proteínas , RNA de Transferência de Prolina/genética , RNA de Transferência de Prolina/metabolismo , RNA de Transferência de Prolina/química , Conformação de Ácido Nucleico , Fator Tu de Elongação de Peptídeos/genética , Fator Tu de Elongação de Peptídeos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo
2.
Nucleic Acids Res ; 49(21): 12467-12485, 2021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-34761260

RESUMO

The tRNA modification m1G37, introduced by the tRNA methyltransferase TrmD, is thought to be essential for growth in bacteria because it suppresses translational frameshift errors at proline codons. However, because bacteria can tolerate high levels of mistranslation, it is unclear why loss of m1G37 is not tolerated. Here, we addressed this question through experimental evolution of trmD mutant strains of Escherichia coli. Surprisingly, trmD mutant strains were viable even if the m1G37 modification was completely abolished, and showed rapid recovery of growth rate, mainly via duplication or mutation of the proline-tRNA ligase gene proS. Growth assays and in vitro aminoacylation assays showed that G37-unmodified tRNAPro is aminoacylated less efficiently than m1G37-modified tRNAPro, and that growth of trmD mutant strains can be largely restored by single mutations in proS that restore aminoacylation of G37-unmodified tRNAPro. These results show that inefficient aminoacylation of tRNAPro is the main reason for growth defects observed in trmD mutant strains and that proS may act as a gatekeeper of translational accuracy, preventing the use of error-prone unmodified tRNAPro in translation. Our work shows the utility of experimental evolution for uncovering the hidden functions of essential genes and has implications for the development of antibiotics targeting TrmD.


Assuntos
Proteínas de Escherichia coli/genética , Escherichia coli/genética , Mutação , Processamento Pós-Transcricional do RNA , RNA de Transferência de Prolina/genética , tRNA Metiltransferases/genética , Adaptação Fisiológica/genética , Aminoacilação , Evolução Molecular Direcionada/métodos , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Óperon/genética , Plasmídeos/genética , Plasmídeos/metabolismo , RNA de Transferência de Prolina/metabolismo , tRNA Metiltransferases/deficiência , tRNA Metiltransferases/metabolismo
3.
Nucleic Acids Res ; 49(20): 11883-11899, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34718744

RESUMO

In neurodegenerative diseases, including pathologies with well-known causative alleles, genetic factors that modify severity or age of onset are not entirely understood. We recently documented the unexpected prevalence of transfer RNA (tRNA) mutants in the human population, including variants that cause amino acid mis-incorporation. We hypothesized that a mistranslating tRNA will exacerbate toxicity and modify the molecular pathology of Huntington's disease-causing alleles. We characterized a tRNAPro mutant that mistranslates proline codons with alanine, and tRNASer mutants, including a tRNASerAGA G35A variant with a phenylalanine anticodon (tRNASerAAA) found in ∼2% of the population. The tRNAPro mutant caused synthetic toxicity with a deleterious huntingtin poly-glutamine (polyQ) allele in neuronal cells. The tRNASerAAA variant showed synthetic toxicity with proteasome inhibition but did not enhance toxicity of the huntingtin allele. Cells mistranslating phenylalanine or proline codons with serine had significantly reduced rates of protein synthesis. Mistranslating cells were slow but effective in forming insoluble polyQ aggregates, defective in protein and aggregate degradation, and resistant to the neuroprotective integrated stress response inhibitor (ISRIB). Our findings identify mistranslating tRNA variants as genetic factors that slow protein aggregation kinetics, inhibit aggregate clearance, and increase drug resistance in cellular models of neurodegenerative disease.


Assuntos
Proteína Huntingtina/biossíntese , Doença de Huntington/genética , RNA de Transferência de Prolina/genética , Acetamidas/farmacologia , Animais , Linhagem Celular Tumoral , Códon/genética , Cicloexilaminas/farmacologia , Humanos , Proteína Huntingtina/química , Proteína Huntingtina/genética , Mutação , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fármacos Neuroprotetores/farmacologia , Células PC12 , Peptídeos/toxicidade , Proteólise , RNA de Transferência de Prolina/metabolismo , Ratos
4.
Commun Biol ; 4(1): 589, 2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-34002016

RESUMO

The speed of mRNA translation depends in part on the amino acid to be incorporated into the nascent chain. Peptide bond formation is especially slow with proline and two adjacent prolines can even cause ribosome stalling. While previous studies focused on how the amino acid context of a Pro-Pro motif determines the stalling strength, we extend this question to the mRNA level. Bioinformatics analysis of the Escherichia coli genome revealed significantly differing codon usage between single and consecutive prolines. We therefore developed a luminescence reporter to detect ribosome pausing in living cells, enabling us to dissect the roles of codon choice and tRNA selection as well as to explain the genome scale observations. Specifically, we found a strong selective pressure against CCC/U-C, a sequon causing ribosomal frameshifting even under wild-type conditions. On the other hand, translation efficiency as positive evolutionary driving force led to an overrepresentation of CCG. This codon is not only translated the fastest, but the corresponding prolyl-tRNA reaches almost saturating levels. By contrast, CCA, for which the cognate prolyl-tRNA amounts are limiting, is used to regulate pausing strength. Thus, codon selection both in discrete positions but especially in proline codon pairs can tune protein copy numbers.


Assuntos
Códon , Escherichia coli/genética , Elongação Traducional da Cadeia Peptídica , Prolina/genética , Biossíntese de Proteínas , RNA de Transferência de Prolina/genética , Ribossomos/fisiologia , Seleção Genética , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo
5.
Sci Rep ; 8(1): 2708, 2018 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-29426903

RESUMO

Establishing true phylogenetic relationships between populations is a critical consideration when sourcing individuals for translocation. This presents huge difficulties with threatened and endangered species that have become extirpated from large areas of their former range. We utilise ancient DNA (aDNA) to reconstruct the phylogenetic relationships of a keystone species which has become extinct in Britain, the Eurasian beaver Castor fiber. We sequenced seventeen 492 bp partial tRNAPro and control region sequences from Late Pleistocene and Holocene age beavers and included these in network, demographic and genealogy analyses. The mode of postglacial population expansion from refugia was investigated by employing tests of neutrality and a pairwise mismatch distribution analysis. We found evidence of a pre-Late Glacial Maximum ancestor for the Western C. fiber clade which experienced a rapid demographic expansion during the terminal Pleistocene to early Holocene period. Ancient British beavers were found to originate from the Western phylogroup but showed no phylogenetic affinity to any one modern relict population over another. Instead, we find that they formed part of a large, continuous, pan-Western European clade that harbored little internal substructure. Our study highlights the utility of aDNA in reconstructing population histories of extirpated species which has real-world implications for conservation planning.


Assuntos
Recuperação e Remediação Ambiental , RNA de Transferência de Prolina/genética , Roedores/classificação , Roedores/genética , Animais , DNA Antigo , Variação Genética , Filogenia , Análise de Sequência de DNA , Reino Unido
6.
Nucleic Acids Res ; 46(7): e37, 2018 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-29361055

RESUMO

Active tRNAs are extensively post-transcriptionally modified, particularly at the wobble position 34 and the position 37 on the 3'-side of the anticodon. The 5-carboxy-methoxy modification of U34 (cmo5U34) is present in Gram-negative tRNAs for six amino acids (Ala, Ser, Pro, Thr, Leu and Val), four of which (Ala, Ser, Pro and Thr) have a terminal methyl group to form 5-methoxy-carbonyl-methoxy-uridine (mcmo5U34) for higher reading-frame accuracy. The molecular basis for the selective terminal methylation is not understood. Many cmo5U34-tRNAs are essential for growth and cannot be substituted for mutational analysis. We show here that, with a novel genetic approach, we have created and isolated mutants of Escherichia coli tRNAPro and tRNAVal for analysis of the selective terminal methylation. We show that substitution of G35 in the anticodon of tRNAPro inactivates the terminal methylation, whereas introduction of G35 to tRNAVal confers it, indicating that G35 is a major determinant for the selectivity. We also show that, in tRNAPro, the terminal methylation at U34 is dependent on the primary m1G methylation at position 37 but not vice versa, indicating a hierarchical ranking of modifications between positions 34 and 37. We suggest that this hierarchy provides a mechanism to ensure top performance of a tRNA inside of cells.


Assuntos
Anticódon/genética , Conformação de Ácido Nucleico , RNA de Transferência de Prolina/genética , RNA de Transferência/genética , Sequência de Bases , Códon/genética , Escherichia coli/genética , Metilação , RNA Bacteriano/genética , Uridina/análogos & derivados , Uridina/genética
7.
RNA Biol ; 15(4-5): 567-575, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28933646

RESUMO

High-fidelity translation and a strictly accurate proteome were originally assumed as essential to life and cellular viability. Yet recent studies in bacteria and eukaryotic model organisms suggest that proteome-wide mistranslation can provide selective advantages and is tolerated in the cell at higher levels than previously thought (one error in 6.9 × 10-4 in yeast) with a limited impact on phenotype. Previously, we selected a tRNAPro containing a single mutation that induces mistranslation with alanine at proline codons in yeast. Yeast tolerate the mistranslation by inducing a heat-shock response and through the action of the proteasome. Here we found a homologous human tRNAPro (G3:U70) mutant that is not aminoacylated with proline, but is an efficient alanine acceptor. In live human cells, we visualized mistranslation using a green fluorescent protein reporter that fluoresces in response to mistranslation at proline codons. In agreement with measurements in yeast, quantitation based on the GFP reporter suggested a mistranslation rate of up to 2-5% in HEK 293 cells. Our findings suggest a stress-dependent phenomenon where mistranslation levels increased during nutrient starvation. Human cells did not mount a detectable heat-shock response and tolerated this level of mistranslation without apparent impact on cell viability. Because humans encode ∼600 tRNA genes and the natural population has greater tRNA sequence diversity than previously appreciated, our data also demonstrate a cell-based screen with the potential to elucidate mutations in tRNAs that may contribute to or alleviate disease.


Assuntos
Alanina/metabolismo , Aminoacil-tRNA Sintetases/genética , Mutação , Prolina/metabolismo , Biossíntese de Proteínas , Processamento Pós-Transcricional do RNA , RNA de Transferência de Prolina/genética , Alanina/genética , Aminoacil-tRNA Sintetases/metabolismo , Aminoacilação , Anticódon/química , Anticódon/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Códon/química , Códon/metabolismo , Meios de Cultura/farmacologia , Escherichia coli/genética , Escherichia coli/metabolismo , Genes Reporter , Glucose/deficiência , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Plasmídeos/química , Plasmídeos/metabolismo , Prolina/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , RNA de Transferência de Prolina/metabolismo , Transfecção
8.
RNA Biol ; 15(4-5): 576-585, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28737471

RESUMO

Accuracy in protein biosynthesis is maintained through multiple pathways, with a critical checkpoint occurring at the tRNA aminoacylation step catalyzed by aminoacyl-tRNA synthetases (ARSs). In addition to the editing functions inherent to some synthetases, single-domain trans-editing factors, which are structurally homologous to ARS editing domains, have evolved as alternative mechanisms to correct mistakes in aminoacyl-tRNA synthesis. To date, ARS-like trans-editing domains have been shown to act on specific tRNAs that are mischarged with genetically encoded amino acids. However, structurally related non-protein amino acids are ubiquitous in cells and threaten the proteome. Here, we show that a previously uncharacterized homolog of the bacterial prolyl-tRNA synthetase (ProRS) editing domain edits a known ProRS aminoacylation error, Ala-tRNAPro, but displays even more robust editing of tRNAs misaminoacylated with the non-protein amino acid α-aminobutyrate (2-aminobutyrate, Abu) in vitro and in vivo. Our results indicate that editing by trans-editing domains such as ProXp-x studied here may offer advantages to cells, especially under environmental conditions where concentrations of non-protein amino acids may challenge the substrate specificity of ARSs.


Assuntos
Aminoacil-tRNA Sintetases/genética , Aminobutiratos/metabolismo , Prolina/metabolismo , Processamento Pós-Transcricional do RNA , RNA de Transferência de Prolina/genética , Aminoacilação de RNA de Transferência , Alanina/genética , Alanina/metabolismo , Aminoacil-tRNA Sintetases/química , Aminoacil-tRNA Sintetases/metabolismo , Aminobutiratos/química , Anticódon/química , Anticódon/metabolismo , Sítios de Ligação , Códon/química , Códon/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Cinética , Simulação de Acoplamento Molecular , Mutação , Conformação de Ácido Nucleico , Prolina/genética , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , RNA de Transferência de Prolina/química , RNA de Transferência de Prolina/metabolismo , Rodopseudomonas/genética , Rodopseudomonas/metabolismo , Especificidade por Substrato
9.
Nucleic Acids Res ; 45(22): 12601-12610, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-29155943

RESUMO

A bacterial translation factor EF-P alleviates ribosomal stalling caused by polyproline sequence by accelerating Pro-Pro formation. EF-P recognizes a specific D-arm motif found in tRNAPro isoacceptors, 9-nt D-loop closed by a stable D-stem sequence, for Pro-selective peptidyl-transfer acceleration. It is also known that the T-stem sequence on aminoacyl-tRNAs modulates strength of the interaction with EF-Tu, giving enhanced incorporation of non-proteinogenic amino acids such as some N-methyl amino acids. Based on the above knowledge, we logically engineered tRNA's D-arm and T-stem sequences to investigate a series of tRNAs for the improvement of consecutive incorporation of d-amino acids and an α, α-disubstituted amino acid. We have devised a chimera of tRNAPro1 and tRNAGluE2, referred to as tRNAPro1E2, in which T-stem of tRNAGluE2 was engineered into tRNAPro1. The combination of EF-P with tRNAPro1E2NNN pre-charged with d-Phe, d-Ser, d-Ala, and/or d-Cys has drastically enhanced expression level of not only linear peptides but also a thioether-macrocyclic peptide consisting of the four consecutive d-amino acids over the previous method using orthogonal tRNAs.


Assuntos
Aminoácidos/genética , DNA Recombinante/genética , Aminoacil-RNA de Transferência/genética , RNA de Transferência/genética , Sequência de Aminoácidos , Aminoácidos/metabolismo , Sequência de Bases , Conformação de Ácido Nucleico , Fator Tu de Elongação de Peptídeos/metabolismo , Fatores de Alongamento de Peptídeos/metabolismo , Ligação Proteica , RNA de Transferência/química , RNA de Transferência/metabolismo , Aminoacil-RNA de Transferência/metabolismo , RNA de Transferência de Ácido Glutâmico/química , RNA de Transferência de Ácido Glutâmico/genética , RNA de Transferência de Ácido Glutâmico/metabolismo , RNA de Transferência de Prolina/química , RNA de Transferência de Prolina/genética , RNA de Transferência de Prolina/metabolismo
10.
Proc Natl Acad Sci U S A ; 114(33): E6774-E6783, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28768811

RESUMO

Molecular sieves ensure proper pairing of tRNAs and amino acids during aminoacyl-tRNA biosynthesis, thereby avoiding detrimental effects of mistranslation on cell growth and viability. Mischarging errors are often corrected through the activity of specialized editing domains present in some aminoacyl-tRNA synthetases or via single-domain trans-editing proteins. ProXp-ala is a ubiquitous trans-editing enzyme that edits Ala-tRNAPro, the product of Ala mischarging by prolyl-tRNA synthetase, although the structural basis for discrimination between correctly charged Pro-tRNAPro and mischarged Ala-tRNAAla is unclear. Deacylation assays using substrate analogs reveal that size discrimination is only one component of selectivity. We used NMR spectroscopy and sequence conservation to guide extensive site-directed mutagenesis of Caulobacter crescentus ProXp-ala, along with binding and deacylation assays to map specificity determinants. Chemical shift perturbations induced by an uncharged tRNAPro acceptor stem mimic, microhelixPro, or a nonhydrolyzable mischarged Ala-microhelixPro substrate analog identified residues important for binding and deacylation. Backbone 15N NMR relaxation experiments revealed dynamics for a helix flanking the substrate binding site in free ProXp-ala, likely reflecting sampling of open and closed conformations. Dynamics persist on binding to the uncharged microhelix, but are attenuated when the stably mischarged analog is bound. Computational docking and molecular dynamics simulations provide structural context for these findings and predict a role for the substrate primary α-amine group in substrate recognition. Overall, our results illuminate strategies used by a trans-editing domain to ensure acceptance of only mischarged Ala-tRNAPro, including conformational selection by a dynamic helix, size-based exclusion, and optimal positioning of substrate chemical groups.


Assuntos
Aminoacil-tRNA Sintetases/genética , Proteínas de Bactérias/genética , Caulobacter crescentus/genética , Biossíntese de Proteínas/genética , RNA de Transferência de Prolina/genética , Aminoácidos/genética , Aminoácidos/metabolismo , Aminoacil-tRNA Sintetases/química , Aminoacil-tRNA Sintetases/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sítios de Ligação/genética , Caulobacter crescentus/metabolismo , Cristalografia por Raios X , Modelos Moleculares , Mutagênese Sítio-Dirigida , Conformação de Ácido Nucleico , Conformação Proteica , Edição de RNA , RNA de Transferência de Prolina/química , RNA de Transferência de Prolina/metabolismo , Especificidade por Substrato
11.
Genetics ; 206(4): 1865-1879, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28576863

RESUMO

The genetic code converts information from nucleic acid into protein. The genetic code was thought to be immutable, yet many examples in nature indicate that variations to the code provide a selective advantage. We used a sensitive selection system involving suppression of a deleterious allele (tti2-L187P) in Saccharomyces cerevisiae to detect mistranslation and identify mechanisms that allow genetic code evolution. Though tRNASer containing a proline anticodon (UGG) is toxic, using our selection system we identified four tRNASerUGG variants, each with a single mutation, that mistranslate at a tolerable level. Mistranslating tRNALeuUGG variants were also obtained, demonstrating the generality of the approach. We characterized two of the tRNASerUGG variants. One contained a G26A mutation, which reduced cell growth to 70% of the wild-type rate, induced a heat shock response, and was lost in the absence of selection. The reduced toxicity of tRNASerUGG-G26A is likely through increased turnover of the tRNA, as lack of methylation at G26 leads to degradation via the rapid tRNA decay pathway. The second tRNASerUGG variant, with a G9A mutation, had minimal effect on cell growth, was relatively stable in cells, and gave rise to less of a heat shock response. In vitro, the G9A mutation decreases aminoacylation and affects folding of the tRNA. Notably, the G26A and G9A mutations were phenotypically neutral in the context of an otherwise wild-type tRNASer These experiments reveal a model for genetic code evolution in which tRNA anticodon mutations and mistranslation evolve through phenotypically ambivalent intermediates that reduce tRNA function.


Assuntos
Códon/genética , Evolução Molecular , RNA de Transferência de Prolina/genética , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Mutação , Fenótipo , Biossíntese de Proteínas , Estabilidade de RNA , RNA de Transferência de Prolina/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
12.
Nucleic Acids Res ; 45(6): 3407-3421, 2017 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-27899648

RESUMO

Despite the general requirement for translation fidelity, mistranslation can be an adaptive response. We selected spontaneous second site mutations that suppress the stress sensitivity caused by a Saccharomyces cerevisiae tti2 allele with a Leu to Pro mutation at residue 187, identifying a single nucleotide mutation at the same position (C70U) in four tRNAProUGG genes. Linkage analysis and suppression by SUF9G3:U70 expressed from a centromeric plasmid confirmed the causative nature of the suppressor mutation. Since the mutation incorporates the G3:U70 identity element for alanyl-tRNA synthetase into tRNAPro, we hypothesized that suppression results from mistranslation of Pro187 in Tti2L187P as Ala. A strain expressing Tti2L187A was not stress sensitive. In vitro, tRNAProUGG (C70U) was mis-aminoacylated with alanine by alanyl-tRNA synthetase, but was not a substrate for prolyl-tRNA synthetase. Mass spectrometry from protein expressed in vivo and a novel GFP reporter for mistranslation confirmed substitution of alanine for proline at a rate of ∼6%. Mistranslating cells expressing SUF9G3:U70 induce a partial heat shock response but grow nearly identically to wild-type. Introducing the same G3:U70 mutation in SUF2 (tRNAProAGG) suppressed a second tti2 allele (tti2L50P). We have thus identified a strategy that allows mistranslation to suppress deleterious missense Pro mutations in Tti2.


Assuntos
Substituição de Aminoácidos , Chaperonas Moleculares/genética , Biossíntese de Proteínas , RNA de Transferência de Prolina/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Supressão Genética , Alelos , Íntrons , Chaperonas Moleculares/biossíntese , Proteínas de Saccharomyces cerevisiae/biossíntese , Seleção Genética
13.
Methods ; 113: 72-82, 2017 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-27729295

RESUMO

Phosphorylation of many aminoacyl tRNA synthetases (AARSs) has been recognized for decades, but the contribution of post-translational modification to their primary role in tRNA charging and decryption of genetic code remains unclear. In contrast, phosphorylation is essential for performance of diverse noncanonical functions of AARSs unrelated to protein synthesis. Phosphorylation of glutamyl-prolyl tRNA synthetase (EPRS) has been investigated extensively in our laboratory for more than a decade, and has served as an archetype for studies of other AARSs. EPRS is a constituent of the IFN-γ-activated inhibitor of translation (GAIT) complex that directs transcript-selective translational control in myeloid cells. Stimulus-dependent phosphorylation of EPRS is essential for its release from the parental multi-aminoacyl tRNA synthetase complex (MSC), for binding to other GAIT complex proteins, and for regulating the binding to target mRNAs. Importantly, phosphorylation is the common driving force for the context- and stimulus-dependent release, and non-canonical activity, of other AARSs residing in the MSC, for example, lysyl tRNA synthetase (KARS). Here, we describe the concepts and experimental methodologies we have used to investigate the influence of phosphorylation on the structure and function of EPRS. We suggest that application of these approaches will help to identify new functional phosphorylation event(s) in other AARSs and elucidate their possible roles in noncanonical activities.


Assuntos
Aminoacil-tRNA Sintetases/metabolismo , Bioensaio , Monócitos/metabolismo , Prolina/metabolismo , Processamento de Proteína Pós-Traducional , RNA de Transferência de Prolina/metabolismo , Aminoacil-tRNA Sintetases/genética , Animais , Anticorpos/química , Linhagem Celular Tumoral , Quinase 5 Dependente de Ciclina/antagonistas & inibidores , Quinase 5 Dependente de Ciclina/genética , Quinase 5 Dependente de Ciclina/metabolismo , Humanos , Interferon gama/genética , Interferon gama/metabolismo , Macrófagos/citologia , Macrófagos/metabolismo , Camundongos , Proteína Quinase 1 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Monócitos/citologia , Radioisótopos de Fósforo , Fosforilação , Cultura Primária de Células , Ligação Proteica , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , RNA de Transferência de Prolina/genética
14.
Neuromuscul Disord ; 26(12): 885-889, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27816331

RESUMO

An 11-year-old boy with psychomotor delay, exercise intolerance, ptosis and growth delay had a muscle biopsy showing typical mitochondrial alterations (60% of ragged-red fibers and 90% of cytochrome-c oxidase-deficient fibers). Next-generation sequencing revealed a novel heteroplasmic mutation (m.15958A>T) in the MTTP gene that encodes tRNAPro. The mutation was not present in the accessible non-muscle tissues of the patient's asymptomatic mother. Mutations in the rarely affected MTTP gene are responsible for different clinical presentations. We report the third early-onset case associated with a mutation in this gene. The severity of myopathy is likely related to the high mutation rate (96%) found in the patient's muscle. The clinical heterogeneity associated with MTTP mutations illustrates the value of the next-generation sequencing in routine diagnosis of mitochondrial diseases.


Assuntos
Genes Mitocondriais , Miopatias Mitocondriais/genética , Miopatias Mitocondriais/patologia , Mutação , RNA de Transferência de Prolina/genética , Criança , DNA Mitocondrial , Humanos , Masculino , Miopatias Mitocondriais/fisiopatologia , Músculo Esquelético/patologia , Fenótipo
15.
Mol Microbiol ; 102(2): 221-232, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27350030

RESUMO

Bacterial ribosome requires elongation factor P to translate fragments harbouring consecutive proline codons. Given the abundance of ORFs with potential EF-P regulated sites, EF-P was assumed to be constitutively expressed. Here, we report that the intracellular pathogen Salmonella enterica serovar Typhimurium decreases efp mRNA levels during course of infection. We determined that the decrease in efp mRNA is triggered by low levels of charged tRNAPro , a condition that Salmonella experiences when inside a macrophage phagosome. Surprisingly, downregulation of EF-P selectively promotes expression of the virulence mgtC gene and contributes to Salmonella's ability to survive inside macrophages. The decrease in EF-P levels induces ribosome stalling at the consecutive proline codons of the mgtP open reading frame in the mgtCBR leader RNA, and thus allows formation of a stem-loop structure promoting transcription of the mgtC gene. The substitution of proline codons in the mgtP gene eliminates EF-P-mediated mgtC expression and thus Salmonella's survival inside macrophages. Our findings indicate that Salmonella benefits virulence genes by decreasing EF-P levels and inducing the stringent response inside host.


Assuntos
Fatores de Alongamento de Peptídeos/metabolismo , RNA de Transferência de Prolina/metabolismo , Infecções por Salmonella/microbiologia , Salmonella typhimurium/metabolismo , Animais , Proteínas de Bactérias/metabolismo , Linhagem Celular , Regulação para Baixo , Regulação Bacteriana da Expressão Gênica , Inativação Gênica , Macrófagos/microbiologia , Camundongos , Fases de Leitura Aberta , Fatores de Alongamento de Peptídeos/genética , Fagossomos/metabolismo , RNA de Transferência de Prolina/genética , Ribossomos/metabolismo , Salmonella typhimurium/genética , Salmonella typhimurium/patogenicidade , Virulência , Fatores de Virulência/metabolismo
16.
Nat Commun ; 7: 11657, 2016 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-27216360

RESUMO

The ribosome stalls on translation of polyproline sequences due to inefficient peptide bond formation between consecutive prolines. The translation factor EF-P is able to alleviate this stalling by accelerating Pro-Pro formation. However, the mechanism by which EF-P recognizes the stalled complexes and accelerates peptide bond formation is not known. Here, we use genetic code reprogramming through a flexible in-vitro translation (FIT) system to investigate how mutations in tRNA(Pro) affect EF-P function. We show that the 9-nt D-loop closed by the stable D-stem sequence in tRNA(Pro) is a crucial recognition determinant for EF-P. Such D-arm structures are shared only among the tRNA(Pro) isoacceptors and tRNA(fMet) in Escherichia coli, and the D-arm of tRNA(fMet) is essential for EF-P-induced acceleration of fMet-puromycin formation. Thus, the activity of EF-P is controlled by recognition elements in the tRNA D-arm.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/fisiologia , Fatores de Alongamento de Peptídeos/metabolismo , Biossíntese de Proteínas , RNA de Transferência de Prolina/metabolismo , Sítios de Ligação/genética , Proteínas de Escherichia coli/genética , Mutação , Motivos de Nucleotídeos/genética , Fatores de Alongamento de Peptídeos/genética , Peptídeos/metabolismo , Ligação Proteica/genética , Puromicina/química , Puromicina/metabolismo , RNA de Transferência de Metionina/química , RNA de Transferência de Metionina/metabolismo , RNA de Transferência de Prolina/química , RNA de Transferência de Prolina/genética , Ribossomos/genética , Ribossomos/metabolismo
17.
Int J Mol Sci ; 16(7): 14866-83, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-26140378

RESUMO

Native tRNAs often contain post-transcriptional modifications to the wobble position to expand the capacity of reading the genetic code. Some of these modifications, due to the ability to confer imperfect codon-anticodon pairing at the wobble position, can induce a high propensity for tRNA to shift into alternative reading frames. An example is the native UGG isoacceptor of E. coli tRNAPro whose wobble nucleotide U34 is post-transcriptionally modified to cmo5U34 to read all four proline codons (5'-CCA, 5'-CCC, 5'-CCG, and 5'-CCU). Because the pairing of the modified anticodon to CCC codon is particularly weak relative to CCA and CCG codons, this tRNA can readily shift into both the +1 and +2-frame on the slippery mRNA sequence CCC-CG. We show that the shift to the +2-frame is more dominant, driven by the higher stability of the codon-anticodon pairing at the wobble position. Kinetic analysis suggests that both types of shifts can occur during stalling of the tRNA in a post-translocation complex or during translocation from the A to the P-site. Importantly, while the +1-frame post complex is active for peptidyl transfer, the +2-frame complex is a poor peptidyl donor. Together with our recent work, we draw a mechanistic distinction between +1 and +2-frameshifts, showing that while the +1-shifts are suppressed by the additional post-transcriptionally modified m1G37 nucleotide in the anticodon loop, the +2-shifts are suppressed by the ribosome, supporting a role of the ribosome in the overall quality control of reading-frame maintenance.


Assuntos
Mutação da Fase de Leitura , RNA de Transferência de Prolina/genética , Pareamento de Bases , Códon/genética , Escherichia coli/genética , RNA Mensageiro/genética
18.
PLoS One ; 9(2): e90486, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24587376

RESUMO

Transcription and translation of mRNA's are coordinated processes in bacteria. We have previously shown that a mutant form of EF-Tu (Gln125Arg) in Salmonella Typhimurium with a reduced affinity for aa-tRNA, causes ribosome pausing, resulting in an increased rate of RNase E-mediated mRNA cleavage, causing extremely slow growth, even on rich medium. The slow growth phenotype is reversed by mutations that reduce RNase E activity. Here we asked whether the slow growth phenotype could be reversed by overexpression of a wild-type gene. We identified spoT (encoding ppGpp synthetase/hydrolase) as a gene that partially reversed the slow growth rate when overexpressed. We found that the slow-growing mutant had an abnormally high basal level of ppGpp that was reduced when spoT was overexpressed. Inactivating relA (encoding the ribosome-associated ppGpp synthetase) also reduced ppGpp levels and significantly increased growth rate. Because RelA responds specifically to deacylated tRNA in the ribosomal A-site this suggested that the tuf mutant had an increased level of deacylated tRNA relative to the wild-type. To test this hypothesis we measured the relative acylation levels of 4 families of tRNAs and found that proline isoacceptors were acylated at a lower level in the mutant strain relative to the wild-type. In addition, the level of the proS tRNA synthetase mRNA was significantly lower in the mutant strain. We suggest that an increased level of deacylated tRNA in the mutant strain stimulates RelA-mediated ppGpp production, causing changes in transcription pattern that are inappropriate for rich media conditions, and contributing to slow growth rate. Reducing ppGpp levels, by altering the activity of either SpoT or RelA, removes one cause of the slow growth and reveals the interconnectedness of intracellular regulatory mechanisms.


Assuntos
Proteínas de Bactérias/metabolismo , Guanosina Tetrafosfato/metabolismo , Ligases/metabolismo , Fator Tu de Elongação de Peptídeos/metabolismo , Pirofosfatases/metabolismo , Proteínas de Bactérias/genética , Cromatografia em Camada Fina , Endorribonucleases/genética , Endorribonucleases/metabolismo , Regulação Bacteriana da Expressão Gênica , Genótipo , Ligases/genética , Mutação de Sentido Incorreto , Fator Tu de Elongação de Peptídeos/genética , Fenótipo , Pirofosfatases/genética , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , RNA de Transferência de Prolina/genética , RNA de Transferência de Prolina/metabolismo , Salmonella typhimurium/genética , Salmonella typhimurium/crescimento & desenvolvimento , Salmonella typhimurium/metabolismo
19.
J Cell Physiol ; 229(9): 1121-9, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24676899

RESUMO

There is a critical need for techniques that directly monitor protein synthesis within cells isolated from normal and diseased tissue. Fibrotic disease, for which there is no drug treatment, is characterized by the overexpression of collagens. Here, we use a bioinformatics approach to identify a pair of glycine and proline isoacceptor tRNAs as being specific for the decoding of collagen mRNAs, leading to development of a FRET-based approach, dicodon monitoring of protein synthesis (DiCoMPS), that directly monitors the synthesis of collagen. DiCoMPS aimed at detecting collagen synthesis will be helpful in identifying novel anti-fibrotic compounds in cells derived from patients with fibrosis of any etiology, and, suitably adapted, should be widely applicable in monitoring the synthesis of other proteins in cells.


Assuntos
Colágeno/biossíntese , Fibroblastos/metabolismo , Transferência Ressonante de Energia de Fluorescência , Microscopia Confocal , RNA de Transferência de Glicina/metabolismo , RNA de Transferência de Prolina/metabolismo , Animais , Carbocianinas/metabolismo , Células Cultivadas , Fibroblastos/patologia , Fibrose , Corantes Fluorescentes/metabolismo , Humanos , Cinética , Camundongos , Camundongos Knockout , PTEN Fosfo-Hidrolase/deficiência , PTEN Fosfo-Hidrolase/genética , RNA de Transferência de Glicina/genética , RNA de Transferência de Prolina/genética , Transfecção
20.
Proc Natl Acad Sci U S A ; 111(8): 3140-5, 2014 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-24516160

RESUMO

The intracellular pathogen Salmonella enterica serovar Typhimurium requires the mgtC gene to cause disease. The mgtC transcript includes a long leader region that harbors a short proline codon-rich ORF--termed mgtP--the translation of which is predicted to favor formation of one of two alternative stem-loop structures. We now report that the mgtP proline codons are critical for expression of the mgtC coding region inside host cells, for Salmonella survival inside macrophages, and for virulence in mice. We determine that the mgtP proline codons mediate the response to proline-charged tRNA(Pro), the levels of which decrease under proline limitation and/or hyperosmotic stress. The host compartment harboring Salmonella appears to be limited in proline because proline auxotrophs were defective for intramacrophage survival and virulence in mice. Salmonella seems to experience hyperosmotic stress during infection because osmotically regulated genes were highly induced inside phagocytic cells. Replacing mgtP proline codons with codons specifying threonine converted the mgtC leader into a threonine-responding element. Our findings indicate that an attenuation-like mechanism governs transcription elongation into the mgtCBR coding region. Moreover, they highlight how pathogens construe host signals by the effect they have on bacterial constituents.


Assuntos
Regiões 5' não Traduzidas/genética , Proteínas de Bactérias/genética , Proteínas de Transporte de Cátions/genética , Regulação Bacteriana da Expressão Gênica/genética , Interações Hospedeiro-Patógeno/genética , RNA de Transferência de Prolina/metabolismo , Salmonella typhimurium/patogenicidade , Sequência de Aminoácidos , Animais , Pareamento de Bases , Sequência de Bases , Códon/genética , Camundongos , Dados de Sequência Molecular , Oligodesoxirribonucleotídeos/genética , Fases de Leitura Aberta/genética , Prolina/genética , Prolina/metabolismo , RNA de Transferência de Prolina/genética , Reação em Cadeia da Polimerase em Tempo Real , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...