Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 52(11): 6586-6595, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38572748

RESUMO

Ribosomal incorporation of ß-amino acids into nascent peptides is much less efficient than that of the canonical α-amino acids. To overcome this, we have engineered a tRNA chimera bearing T-stem of tRNAGlu and D-arm of tRNAPro1, referred to as tRNAPro1E2, which efficiently recruits EF-Tu and EF-P. Using tRNAPro1E2 indeed improved ß-amino acid incorporation. However, multiple/consecutive incorporations of ß-amino acids are still detrimentally poor. Here, we attempted fine-tuning of the anticodon arm of tRNAPro1E2 aiming at further enhancement of ß-amino acid incorporation. By screening various mutations introduced into tRNAPro1E2, C31G39/C28G42 mutation showed an approximately 3-fold enhancement of two consecutive incorporation of ß-homophenylglycine (ßPhg) at CCG codons. The use of this tRNA made it possible for the first time to elongate up to ten consecutive ßPhg's. Since the enhancement effect of anticodon arm mutations differs depending on the codon used for ß-amino acid incorporation, we optimized anticodon arm sequences for five codons (CCG, CAU, CAG, ACU and UGG). Combination of the five optimal tRNAs for these codons made it possible to introduce five different kinds of ß-amino acids and analogs simultaneously into model peptides, including a macrocyclic scaffold. This strategy would enable ribosomal synthesis of libraries of macrocyclic peptides containing multiple ß-amino acids.


Assuntos
Aminoácidos , Anticódon , Anticódon/genética , Anticódon/química , Aminoácidos/química , Aminoácidos/genética , RNA de Transferência/genética , RNA de Transferência/química , RNA de Transferência/metabolismo , Mutação , Códon/genética , Ribossomos/metabolismo , Ribossomos/genética , Biossíntese de Proteínas , RNA de Transferência de Prolina/genética , RNA de Transferência de Prolina/metabolismo , RNA de Transferência de Prolina/química , Conformação de Ácido Nucleico , Fator Tu de Elongação de Peptídeos/genética , Fator Tu de Elongação de Peptídeos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo
2.
Nucleic Acids Res ; 51(8): 3988-3999, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-36951109

RESUMO

High fidelity tRNA aminoacylation by aminoacyl-tRNA synthetases is essential for cell viability. ProXp-ala is a trans-editing protein that is present in all three domains of life and is responsible for hydrolyzing mischarged Ala-tRNAPro and preventing mistranslation of proline codons. Previous studies have shown that, like bacterial prolyl-tRNA synthetase, Caulobacter crescentus ProXp-ala recognizes the unique C1:G72 terminal base pair of the tRNAPro acceptor stem, helping to ensure deacylation of Ala-tRNAPro but not Ala-tRNAAla. The structural basis for C1:G72 recognition by ProXp-ala is still unknown and was investigated here. NMR spectroscopy, binding, and activity assays revealed two conserved residues, K50 and R80, that likely interact with the first base pair, stabilizing the initial protein-RNA encounter complex. Modeling studies are consistent with direct interaction between R80 and the major groove of G72. A third key contact between A76 of tRNAPro and K45 of ProXp-ala was essential for binding and accommodating the CCA-3' end in the active site. We also demonstrated the essential role that the 2'OH of A76 plays in catalysis. Eukaryotic ProXp-ala proteins recognize the same acceptor stem positions as their bacterial counterparts, albeit with different nucleotide base identities. ProXp-ala is encoded in some human pathogens; thus, these results have the potential to inform new antibiotic drug design.


Assuntos
Aminoacil-tRNA Sintetases , RNA de Transferência de Prolina , Humanos , RNA de Transferência de Prolina/metabolismo , Aminoacil-tRNA Sintetases/metabolismo , Prolina/química , Aminoacilação de RNA de Transferência , Códon , Domínio Catalítico
3.
Nucleic Acids Res ; 50(3): 1639-1649, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35061897

RESUMO

Proline tRNA 3'-maturation in Escherichia coli occurs through a one-step RNase E endonucleolytic cleavage immediately after the CCA determinant. This processing pathway is distinct from the 3'-end maturation of the other tRNAs by avoiding the widespread use of 3' → 5' exonucleolytic processing, 3'-polyadenylation and subsequent degradation. Here, we show that the cytosine (C) at the mature 5'-terminus of the proK and proL tRNAs is required for both the RNase E cleavage immediately after the CCA determinant and their functionality. Thus, changing the C nucleotide at the mature 5'-terminus of the proL and proK tRNAs to the more common G nucleotide led to RNase E cleavages 1-4 nucleotides downstream of the CCA determinant. Furthermore, the 5'-modified mutant tRNAs required RNase T and RNase PH for their 3'-maturation and became substrates for polyadenylation and degradation. Strikingly, the aminoacylation of the 5'-modified proline tRNAs was blocked due to the change in the recognition element for prolyl-tRNA-synthetase. An analogous modification of the pheV 5'-mature terminus from G to C nucleotide did not support cell viability. This result provides additional support for the importance of first nucleotide of the mature tRNAs in their processing and functionality.


Assuntos
Endorribonucleases , Escherichia coli , RNA de Transferência de Prolina/metabolismo , Endorribonucleases/genética , Endorribonucleases/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Nucleotídeos/metabolismo , Precursores de RNA/metabolismo
4.
Nucleic Acids Res ; 49(21): 12467-12485, 2021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-34761260

RESUMO

The tRNA modification m1G37, introduced by the tRNA methyltransferase TrmD, is thought to be essential for growth in bacteria because it suppresses translational frameshift errors at proline codons. However, because bacteria can tolerate high levels of mistranslation, it is unclear why loss of m1G37 is not tolerated. Here, we addressed this question through experimental evolution of trmD mutant strains of Escherichia coli. Surprisingly, trmD mutant strains were viable even if the m1G37 modification was completely abolished, and showed rapid recovery of growth rate, mainly via duplication or mutation of the proline-tRNA ligase gene proS. Growth assays and in vitro aminoacylation assays showed that G37-unmodified tRNAPro is aminoacylated less efficiently than m1G37-modified tRNAPro, and that growth of trmD mutant strains can be largely restored by single mutations in proS that restore aminoacylation of G37-unmodified tRNAPro. These results show that inefficient aminoacylation of tRNAPro is the main reason for growth defects observed in trmD mutant strains and that proS may act as a gatekeeper of translational accuracy, preventing the use of error-prone unmodified tRNAPro in translation. Our work shows the utility of experimental evolution for uncovering the hidden functions of essential genes and has implications for the development of antibiotics targeting TrmD.


Assuntos
Proteínas de Escherichia coli/genética , Escherichia coli/genética , Mutação , Processamento Pós-Transcricional do RNA , RNA de Transferência de Prolina/genética , tRNA Metiltransferases/genética , Adaptação Fisiológica/genética , Aminoacilação , Evolução Molecular Direcionada/métodos , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Óperon/genética , Plasmídeos/genética , Plasmídeos/metabolismo , RNA de Transferência de Prolina/metabolismo , tRNA Metiltransferases/deficiência , tRNA Metiltransferases/metabolismo
5.
Nucleic Acids Res ; 49(20): 11883-11899, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34718744

RESUMO

In neurodegenerative diseases, including pathologies with well-known causative alleles, genetic factors that modify severity or age of onset are not entirely understood. We recently documented the unexpected prevalence of transfer RNA (tRNA) mutants in the human population, including variants that cause amino acid mis-incorporation. We hypothesized that a mistranslating tRNA will exacerbate toxicity and modify the molecular pathology of Huntington's disease-causing alleles. We characterized a tRNAPro mutant that mistranslates proline codons with alanine, and tRNASer mutants, including a tRNASerAGA G35A variant with a phenylalanine anticodon (tRNASerAAA) found in ∼2% of the population. The tRNAPro mutant caused synthetic toxicity with a deleterious huntingtin poly-glutamine (polyQ) allele in neuronal cells. The tRNASerAAA variant showed synthetic toxicity with proteasome inhibition but did not enhance toxicity of the huntingtin allele. Cells mistranslating phenylalanine or proline codons with serine had significantly reduced rates of protein synthesis. Mistranslating cells were slow but effective in forming insoluble polyQ aggregates, defective in protein and aggregate degradation, and resistant to the neuroprotective integrated stress response inhibitor (ISRIB). Our findings identify mistranslating tRNA variants as genetic factors that slow protein aggregation kinetics, inhibit aggregate clearance, and increase drug resistance in cellular models of neurodegenerative disease.


Assuntos
Proteína Huntingtina/biossíntese , Doença de Huntington/genética , RNA de Transferência de Prolina/genética , Acetamidas/farmacologia , Animais , Linhagem Celular Tumoral , Códon/genética , Cicloexilaminas/farmacologia , Humanos , Proteína Huntingtina/química , Proteína Huntingtina/genética , Mutação , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fármacos Neuroprotetores/farmacologia , Células PC12 , Peptídeos/toxicidade , Proteólise , RNA de Transferência de Prolina/metabolismo , Ratos
6.
Nucleic Acids Res ; 47(2): 929-940, 2019 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-30418624

RESUMO

Aminoacyl-tRNA synthetases catalyze the attachment of cognate amino acids onto tRNAs. To avoid mistranslation, editing mechanisms evolved to maintain tRNA aminoacylation fidelity. For instance, while rejecting the majority of non-cognate amino acids via discrimination in the synthetic active site, prolyl-tRNA synthetase (ProRS) misactivates and mischarges Ala and Cys, which are similar in size to cognate Pro. Ala-tRNAPro is specifically hydrolyzed by the editing domain of ProRS in cis, while YbaK, a free-standing editing domain, clears Cys-tRNAPro in trans. ProXp-ala is another editing domain that clears Ala-tRNAPro in trans. YbaK does not appear to possess tRNA specificity, readily deacylating Cys-tRNACysin vitro. We hypothesize that YbaK binds to ProRS to gain specificity for Cys-tRNAPro and avoid deacylation of Cys-tRNACys in the cell. Here, in vivo evidence for ProRS-YbaK interaction was obtained using a split-green fluorescent protein assay. Analytical ultracentrifugation and native mass spectrometry were used to investigate binary and ternary complex formation between ProRS, YbaK, and tRNAPro. Our combined results support the hypothesis that the specificity of YbaK toward Cys-tRNAPro is determined by the formation of a three-component complex with ProRS and tRNAPro and establish the stoichiometry of a 'triple-sieve' editing complex for the first time.


Assuntos
Aminoacil-tRNA Sintetases/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Escherichia coli/metabolismo , Aminoacil-RNA de Transferência/metabolismo , RNA de Transferência de Prolina/metabolismo , Ligação Competitiva , Proteínas de Fluorescência Verde/análise , Proteínas de Fluorescência Verde/genética , Substâncias Luminescentes , Espectrometria de Massas , Ultracentrifugação
7.
RNA Biol ; 15(4-5): 567-575, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28933646

RESUMO

High-fidelity translation and a strictly accurate proteome were originally assumed as essential to life and cellular viability. Yet recent studies in bacteria and eukaryotic model organisms suggest that proteome-wide mistranslation can provide selective advantages and is tolerated in the cell at higher levels than previously thought (one error in 6.9 × 10-4 in yeast) with a limited impact on phenotype. Previously, we selected a tRNAPro containing a single mutation that induces mistranslation with alanine at proline codons in yeast. Yeast tolerate the mistranslation by inducing a heat-shock response and through the action of the proteasome. Here we found a homologous human tRNAPro (G3:U70) mutant that is not aminoacylated with proline, but is an efficient alanine acceptor. In live human cells, we visualized mistranslation using a green fluorescent protein reporter that fluoresces in response to mistranslation at proline codons. In agreement with measurements in yeast, quantitation based on the GFP reporter suggested a mistranslation rate of up to 2-5% in HEK 293 cells. Our findings suggest a stress-dependent phenomenon where mistranslation levels increased during nutrient starvation. Human cells did not mount a detectable heat-shock response and tolerated this level of mistranslation without apparent impact on cell viability. Because humans encode ∼600 tRNA genes and the natural population has greater tRNA sequence diversity than previously appreciated, our data also demonstrate a cell-based screen with the potential to elucidate mutations in tRNAs that may contribute to or alleviate disease.


Assuntos
Alanina/metabolismo , Aminoacil-tRNA Sintetases/genética , Mutação , Prolina/metabolismo , Biossíntese de Proteínas , Processamento Pós-Transcricional do RNA , RNA de Transferência de Prolina/genética , Alanina/genética , Aminoacil-tRNA Sintetases/metabolismo , Aminoacilação , Anticódon/química , Anticódon/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Códon/química , Códon/metabolismo , Meios de Cultura/farmacologia , Escherichia coli/genética , Escherichia coli/metabolismo , Genes Reporter , Glucose/deficiência , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Plasmídeos/química , Plasmídeos/metabolismo , Prolina/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , RNA de Transferência de Prolina/metabolismo , Transfecção
8.
RNA Biol ; 15(4-5): 576-585, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28737471

RESUMO

Accuracy in protein biosynthesis is maintained through multiple pathways, with a critical checkpoint occurring at the tRNA aminoacylation step catalyzed by aminoacyl-tRNA synthetases (ARSs). In addition to the editing functions inherent to some synthetases, single-domain trans-editing factors, which are structurally homologous to ARS editing domains, have evolved as alternative mechanisms to correct mistakes in aminoacyl-tRNA synthesis. To date, ARS-like trans-editing domains have been shown to act on specific tRNAs that are mischarged with genetically encoded amino acids. However, structurally related non-protein amino acids are ubiquitous in cells and threaten the proteome. Here, we show that a previously uncharacterized homolog of the bacterial prolyl-tRNA synthetase (ProRS) editing domain edits a known ProRS aminoacylation error, Ala-tRNAPro, but displays even more robust editing of tRNAs misaminoacylated with the non-protein amino acid α-aminobutyrate (2-aminobutyrate, Abu) in vitro and in vivo. Our results indicate that editing by trans-editing domains such as ProXp-x studied here may offer advantages to cells, especially under environmental conditions where concentrations of non-protein amino acids may challenge the substrate specificity of ARSs.


Assuntos
Aminoacil-tRNA Sintetases/genética , Aminobutiratos/metabolismo , Prolina/metabolismo , Processamento Pós-Transcricional do RNA , RNA de Transferência de Prolina/genética , Aminoacilação de RNA de Transferência , Alanina/genética , Alanina/metabolismo , Aminoacil-tRNA Sintetases/química , Aminoacil-tRNA Sintetases/metabolismo , Aminobutiratos/química , Anticódon/química , Anticódon/metabolismo , Sítios de Ligação , Códon/química , Códon/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Cinética , Simulação de Acoplamento Molecular , Mutação , Conformação de Ácido Nucleico , Prolina/genética , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , RNA de Transferência de Prolina/química , RNA de Transferência de Prolina/metabolismo , Rodopseudomonas/genética , Rodopseudomonas/metabolismo , Especificidade por Substrato
9.
Nucleic Acids Res ; 45(22): 12601-12610, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-29155943

RESUMO

A bacterial translation factor EF-P alleviates ribosomal stalling caused by polyproline sequence by accelerating Pro-Pro formation. EF-P recognizes a specific D-arm motif found in tRNAPro isoacceptors, 9-nt D-loop closed by a stable D-stem sequence, for Pro-selective peptidyl-transfer acceleration. It is also known that the T-stem sequence on aminoacyl-tRNAs modulates strength of the interaction with EF-Tu, giving enhanced incorporation of non-proteinogenic amino acids such as some N-methyl amino acids. Based on the above knowledge, we logically engineered tRNA's D-arm and T-stem sequences to investigate a series of tRNAs for the improvement of consecutive incorporation of d-amino acids and an α, α-disubstituted amino acid. We have devised a chimera of tRNAPro1 and tRNAGluE2, referred to as tRNAPro1E2, in which T-stem of tRNAGluE2 was engineered into tRNAPro1. The combination of EF-P with tRNAPro1E2NNN pre-charged with d-Phe, d-Ser, d-Ala, and/or d-Cys has drastically enhanced expression level of not only linear peptides but also a thioether-macrocyclic peptide consisting of the four consecutive d-amino acids over the previous method using orthogonal tRNAs.


Assuntos
Aminoácidos/genética , DNA Recombinante/genética , Aminoacil-RNA de Transferência/genética , RNA de Transferência/genética , Sequência de Aminoácidos , Aminoácidos/metabolismo , Sequência de Bases , Conformação de Ácido Nucleico , Fator Tu de Elongação de Peptídeos/metabolismo , Fatores de Alongamento de Peptídeos/metabolismo , Ligação Proteica , RNA de Transferência/química , RNA de Transferência/metabolismo , Aminoacil-RNA de Transferência/metabolismo , RNA de Transferência de Ácido Glutâmico/química , RNA de Transferência de Ácido Glutâmico/genética , RNA de Transferência de Ácido Glutâmico/metabolismo , RNA de Transferência de Prolina/química , RNA de Transferência de Prolina/genética , RNA de Transferência de Prolina/metabolismo
10.
Annu Rev Microbiol ; 71: 117-131, 2017 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-28886684

RESUMO

Elongation factor P (EF-P) binds to ribosomes requiring assistance with the formation of oligo-prolines. In order for EF-P to associate with paused ribosomes, certain tRNAs with specific d-arm residues must be present in the peptidyl site, e.g., tRNAPro. Once EF-P is accommodated into the ribosome and bound to Pro-tRNAPro, productive synthesis of the peptide bond occurs. The underlying mechanism by which EF-P facilitates this reaction seems to have entropic origins. Maximal activity of EF-P requires a posttranslational modification in Escherichia coli, Pseudomonas aeruginosa, and Bacillus subtilis. Each of these modifications is distinct and ligated onto its respective EF-P through entirely convergent means. Here we review the facets of translation elongation that are controlled by EF-P, with a particular focus on the purpose behind the many different modifications of EF-P.


Assuntos
Bacillus subtilis/enzimologia , Escherichia coli/enzimologia , Elongação Traducional da Cadeia Peptídica , Fatores de Alongamento de Peptídeos/metabolismo , Pseudomonas aeruginosa/enzimologia , Bacillus subtilis/genética , Escherichia coli/genética , Ligação Proteica , Pseudomonas aeruginosa/genética , RNA de Transferência de Prolina/metabolismo , Ribossomos/metabolismo
11.
Proc Natl Acad Sci U S A ; 114(33): E6774-E6783, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28768811

RESUMO

Molecular sieves ensure proper pairing of tRNAs and amino acids during aminoacyl-tRNA biosynthesis, thereby avoiding detrimental effects of mistranslation on cell growth and viability. Mischarging errors are often corrected through the activity of specialized editing domains present in some aminoacyl-tRNA synthetases or via single-domain trans-editing proteins. ProXp-ala is a ubiquitous trans-editing enzyme that edits Ala-tRNAPro, the product of Ala mischarging by prolyl-tRNA synthetase, although the structural basis for discrimination between correctly charged Pro-tRNAPro and mischarged Ala-tRNAAla is unclear. Deacylation assays using substrate analogs reveal that size discrimination is only one component of selectivity. We used NMR spectroscopy and sequence conservation to guide extensive site-directed mutagenesis of Caulobacter crescentus ProXp-ala, along with binding and deacylation assays to map specificity determinants. Chemical shift perturbations induced by an uncharged tRNAPro acceptor stem mimic, microhelixPro, or a nonhydrolyzable mischarged Ala-microhelixPro substrate analog identified residues important for binding and deacylation. Backbone 15N NMR relaxation experiments revealed dynamics for a helix flanking the substrate binding site in free ProXp-ala, likely reflecting sampling of open and closed conformations. Dynamics persist on binding to the uncharged microhelix, but are attenuated when the stably mischarged analog is bound. Computational docking and molecular dynamics simulations provide structural context for these findings and predict a role for the substrate primary α-amine group in substrate recognition. Overall, our results illuminate strategies used by a trans-editing domain to ensure acceptance of only mischarged Ala-tRNAPro, including conformational selection by a dynamic helix, size-based exclusion, and optimal positioning of substrate chemical groups.


Assuntos
Aminoacil-tRNA Sintetases/genética , Proteínas de Bactérias/genética , Caulobacter crescentus/genética , Biossíntese de Proteínas/genética , RNA de Transferência de Prolina/genética , Aminoácidos/genética , Aminoácidos/metabolismo , Aminoacil-tRNA Sintetases/química , Aminoacil-tRNA Sintetases/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sítios de Ligação/genética , Caulobacter crescentus/metabolismo , Cristalografia por Raios X , Modelos Moleculares , Mutagênese Sítio-Dirigida , Conformação de Ácido Nucleico , Conformação Proteica , Edição de RNA , RNA de Transferência de Prolina/química , RNA de Transferência de Prolina/metabolismo , Especificidade por Substrato
12.
Genetics ; 206(4): 1865-1879, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28576863

RESUMO

The genetic code converts information from nucleic acid into protein. The genetic code was thought to be immutable, yet many examples in nature indicate that variations to the code provide a selective advantage. We used a sensitive selection system involving suppression of a deleterious allele (tti2-L187P) in Saccharomyces cerevisiae to detect mistranslation and identify mechanisms that allow genetic code evolution. Though tRNASer containing a proline anticodon (UGG) is toxic, using our selection system we identified four tRNASerUGG variants, each with a single mutation, that mistranslate at a tolerable level. Mistranslating tRNALeuUGG variants were also obtained, demonstrating the generality of the approach. We characterized two of the tRNASerUGG variants. One contained a G26A mutation, which reduced cell growth to 70% of the wild-type rate, induced a heat shock response, and was lost in the absence of selection. The reduced toxicity of tRNASerUGG-G26A is likely through increased turnover of the tRNA, as lack of methylation at G26 leads to degradation via the rapid tRNA decay pathway. The second tRNASerUGG variant, with a G9A mutation, had minimal effect on cell growth, was relatively stable in cells, and gave rise to less of a heat shock response. In vitro, the G9A mutation decreases aminoacylation and affects folding of the tRNA. Notably, the G26A and G9A mutations were phenotypically neutral in the context of an otherwise wild-type tRNASer These experiments reveal a model for genetic code evolution in which tRNA anticodon mutations and mistranslation evolve through phenotypically ambivalent intermediates that reduce tRNA function.


Assuntos
Códon/genética , Evolução Molecular , RNA de Transferência de Prolina/genética , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Mutação , Fenótipo , Biossíntese de Proteínas , Estabilidade de RNA , RNA de Transferência de Prolina/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
13.
Nucleic Acids Res ; 45(14): 8392-8402, 2017 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-28637321

RESUMO

Whereas ribosomes efficiently catalyze peptide bond synthesis by most amino acids, the imino acid proline is a poor substrate for protein synthesis. Previous studies have shown that the translation factor eIF5A and its bacterial ortholog EF-P bind in the E site of the ribosome where they contact the peptidyl-tRNA in the P site and play a critical role in promoting the synthesis of polyproline peptides. Using misacylated Pro-tRNAPhe and Phe-tRNAPro, we show that the imino acid proline and not tRNAPro imposes the primary eIF5A requirement for polyproline synthesis. Though most proline analogs require eIF5A for efficient peptide synthesis, azetidine-2-caboxylic acid, a more flexible four-membered ring derivative of proline, shows relaxed eIF5A dependency, indicating that the structural rigidity of proline might contribute to the requirement for eIF5A. Finally, we examine the interplay between eIF5A and polyamines in promoting translation elongation. We show that eIF5A can obviate the polyamine requirement for general translation elongation, and that this activity is independent of the conserved hypusine modification on eIF5A. Thus, we propose that the body of eIF5A functionally substitutes for polyamines to promote general protein synthesis and that the hypusine modification on eIF5A is critically important for poor substrates like proline.


Assuntos
Aminoácidos/metabolismo , Lisina/análogos & derivados , Biossíntese Peptídica , Fatores de Iniciação de Peptídeos/metabolismo , Poliaminas/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Sequência de Bases , Lisina/metabolismo , Conformação de Ácido Nucleico , Fatores de Iniciação de Peptídeos/química , Peptídeos/metabolismo , Prolina/análogos & derivados , Prolina/química , Prolina/metabolismo , RNA de Transferência de Fenilalanina/química , RNA de Transferência de Fenilalanina/metabolismo , RNA de Transferência de Prolina/química , RNA de Transferência de Prolina/metabolismo , Proteínas de Ligação a RNA/química , Ribossomos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Fator de Iniciação de Tradução Eucariótico 5A
14.
Methods ; 113: 72-82, 2017 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-27729295

RESUMO

Phosphorylation of many aminoacyl tRNA synthetases (AARSs) has been recognized for decades, but the contribution of post-translational modification to their primary role in tRNA charging and decryption of genetic code remains unclear. In contrast, phosphorylation is essential for performance of diverse noncanonical functions of AARSs unrelated to protein synthesis. Phosphorylation of glutamyl-prolyl tRNA synthetase (EPRS) has been investigated extensively in our laboratory for more than a decade, and has served as an archetype for studies of other AARSs. EPRS is a constituent of the IFN-γ-activated inhibitor of translation (GAIT) complex that directs transcript-selective translational control in myeloid cells. Stimulus-dependent phosphorylation of EPRS is essential for its release from the parental multi-aminoacyl tRNA synthetase complex (MSC), for binding to other GAIT complex proteins, and for regulating the binding to target mRNAs. Importantly, phosphorylation is the common driving force for the context- and stimulus-dependent release, and non-canonical activity, of other AARSs residing in the MSC, for example, lysyl tRNA synthetase (KARS). Here, we describe the concepts and experimental methodologies we have used to investigate the influence of phosphorylation on the structure and function of EPRS. We suggest that application of these approaches will help to identify new functional phosphorylation event(s) in other AARSs and elucidate their possible roles in noncanonical activities.


Assuntos
Aminoacil-tRNA Sintetases/metabolismo , Bioensaio , Monócitos/metabolismo , Prolina/metabolismo , Processamento de Proteína Pós-Traducional , RNA de Transferência de Prolina/metabolismo , Aminoacil-tRNA Sintetases/genética , Animais , Anticorpos/química , Linhagem Celular Tumoral , Quinase 5 Dependente de Ciclina/antagonistas & inibidores , Quinase 5 Dependente de Ciclina/genética , Quinase 5 Dependente de Ciclina/metabolismo , Humanos , Interferon gama/genética , Interferon gama/metabolismo , Macrófagos/citologia , Macrófagos/metabolismo , Camundongos , Proteína Quinase 1 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Monócitos/citologia , Radioisótopos de Fósforo , Fosforilação , Cultura Primária de Células , Ligação Proteica , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , RNA de Transferência de Prolina/genética
15.
EMBO Rep ; 17(12): 1776-1784, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27827794

RESUMO

Proline is an amino acid with a unique cyclic structure that facilitates the folding of many proteins, but also impedes the rate of peptide bond formation by the ribosome. As a ribosome substrate, proline reacts markedly slower when compared with other amino acids both as a donor and as an acceptor of the nascent peptide. Furthermore, synthesis of peptides with consecutive proline residues triggers ribosome stalling. Here, we report crystal structures of the eukaryotic ribosome bound to analogs of mono- and diprolyl-tRNAs. These structures provide a high-resolution insight into unique properties of proline as a ribosome substrate. They show that the cyclic structure of proline residue prevents proline positioning in the amino acid binding pocket and affects the nascent peptide chain position in the ribosomal peptide exit tunnel. These observations extend current knowledge of the protein synthesis mechanism. They also revise an old dogma that amino acids bind the ribosomal active site in a uniform way by showing that proline has a binding mode distinct from other amino acids.


Assuntos
Peptídeos/metabolismo , Prolina/metabolismo , Biossíntese de Proteínas , Ribossomos/química , Sequência de Aminoácidos , Cristalografia por Raios X , Escherichia coli/genética , Modelos Moleculares , Peptídeos/química , Prolina/química , Ligação Proteica , RNA de Transferência de Prolina/metabolismo , Ribossomos/metabolismo
16.
Mol Microbiol ; 102(2): 221-232, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27350030

RESUMO

Bacterial ribosome requires elongation factor P to translate fragments harbouring consecutive proline codons. Given the abundance of ORFs with potential EF-P regulated sites, EF-P was assumed to be constitutively expressed. Here, we report that the intracellular pathogen Salmonella enterica serovar Typhimurium decreases efp mRNA levels during course of infection. We determined that the decrease in efp mRNA is triggered by low levels of charged tRNAPro , a condition that Salmonella experiences when inside a macrophage phagosome. Surprisingly, downregulation of EF-P selectively promotes expression of the virulence mgtC gene and contributes to Salmonella's ability to survive inside macrophages. The decrease in EF-P levels induces ribosome stalling at the consecutive proline codons of the mgtP open reading frame in the mgtCBR leader RNA, and thus allows formation of a stem-loop structure promoting transcription of the mgtC gene. The substitution of proline codons in the mgtP gene eliminates EF-P-mediated mgtC expression and thus Salmonella's survival inside macrophages. Our findings indicate that Salmonella benefits virulence genes by decreasing EF-P levels and inducing the stringent response inside host.


Assuntos
Fatores de Alongamento de Peptídeos/metabolismo , RNA de Transferência de Prolina/metabolismo , Infecções por Salmonella/microbiologia , Salmonella typhimurium/metabolismo , Animais , Proteínas de Bactérias/metabolismo , Linhagem Celular , Regulação para Baixo , Regulação Bacteriana da Expressão Gênica , Inativação Gênica , Macrófagos/microbiologia , Camundongos , Fases de Leitura Aberta , Fatores de Alongamento de Peptídeos/genética , Fagossomos/metabolismo , RNA de Transferência de Prolina/genética , Ribossomos/metabolismo , Salmonella typhimurium/genética , Salmonella typhimurium/patogenicidade , Virulência , Fatores de Virulência/metabolismo
17.
Nat Commun ; 7: 11657, 2016 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-27216360

RESUMO

The ribosome stalls on translation of polyproline sequences due to inefficient peptide bond formation between consecutive prolines. The translation factor EF-P is able to alleviate this stalling by accelerating Pro-Pro formation. However, the mechanism by which EF-P recognizes the stalled complexes and accelerates peptide bond formation is not known. Here, we use genetic code reprogramming through a flexible in-vitro translation (FIT) system to investigate how mutations in tRNA(Pro) affect EF-P function. We show that the 9-nt D-loop closed by the stable D-stem sequence in tRNA(Pro) is a crucial recognition determinant for EF-P. Such D-arm structures are shared only among the tRNA(Pro) isoacceptors and tRNA(fMet) in Escherichia coli, and the D-arm of tRNA(fMet) is essential for EF-P-induced acceleration of fMet-puromycin formation. Thus, the activity of EF-P is controlled by recognition elements in the tRNA D-arm.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/fisiologia , Fatores de Alongamento de Peptídeos/metabolismo , Biossíntese de Proteínas , RNA de Transferência de Prolina/metabolismo , Sítios de Ligação/genética , Proteínas de Escherichia coli/genética , Mutação , Motivos de Nucleotídeos/genética , Fatores de Alongamento de Peptídeos/genética , Peptídeos/metabolismo , Ligação Proteica/genética , Puromicina/química , Puromicina/metabolismo , RNA de Transferência de Metionina/química , RNA de Transferência de Metionina/metabolismo , RNA de Transferência de Prolina/química , RNA de Transferência de Prolina/genética , Ribossomos/genética , Ribossomos/metabolismo
18.
ACS Chem Biol ; 9(6): 1303-11, 2014 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-24673854

RESUMO

Applications of N-methyl amino acids (NMAAs) in drug discovery are limited by their low efficiencies of ribosomal incorporation, and little is known mechanistically about the steps leading to incorporation. Here, we demonstrate that a synthetic tRNA body based on a natural N-alkyl amino acid carrier, tRNA(Pro), increases translation incorporation rates of all three studied NMAAs compared with tRNA(Phe)- and tRNA(Ala)-based bodies. We also investigate the pH dependence of the incorporation rates and find that the rates increase dramatically in the range of pH 7 to 8.5 with the titration of a single proton. Results support a rate-limiting peptidyl transfer step dependent on deprotonation of the N-nucleophile of the NMAA. Competition experiments demonstrate that several futile cycles of delivery and rejection of A-site NMAA-tRNA are required per peptide bond formed and that increasing magnesium ion concentration increases incorporation yield. Data clarify the mechanism of ribosomal NMAA incorporation and provide three generalizable ways to improve incorporation of NMAAs in translation.


Assuntos
Aminoácidos/metabolismo , Escherichia coli/metabolismo , Biossíntese Peptídica/fisiologia , RNA Mensageiro/genética , RNA de Transferência de Prolina/metabolismo , Ribossomos/metabolismo , Escherichia coli/genética , Concentração de Íons de Hidrogênio , Cinética , Modelos Biológicos , Estrutura Molecular
19.
PLoS One ; 9(2): e90486, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24587376

RESUMO

Transcription and translation of mRNA's are coordinated processes in bacteria. We have previously shown that a mutant form of EF-Tu (Gln125Arg) in Salmonella Typhimurium with a reduced affinity for aa-tRNA, causes ribosome pausing, resulting in an increased rate of RNase E-mediated mRNA cleavage, causing extremely slow growth, even on rich medium. The slow growth phenotype is reversed by mutations that reduce RNase E activity. Here we asked whether the slow growth phenotype could be reversed by overexpression of a wild-type gene. We identified spoT (encoding ppGpp synthetase/hydrolase) as a gene that partially reversed the slow growth rate when overexpressed. We found that the slow-growing mutant had an abnormally high basal level of ppGpp that was reduced when spoT was overexpressed. Inactivating relA (encoding the ribosome-associated ppGpp synthetase) also reduced ppGpp levels and significantly increased growth rate. Because RelA responds specifically to deacylated tRNA in the ribosomal A-site this suggested that the tuf mutant had an increased level of deacylated tRNA relative to the wild-type. To test this hypothesis we measured the relative acylation levels of 4 families of tRNAs and found that proline isoacceptors were acylated at a lower level in the mutant strain relative to the wild-type. In addition, the level of the proS tRNA synthetase mRNA was significantly lower in the mutant strain. We suggest that an increased level of deacylated tRNA in the mutant strain stimulates RelA-mediated ppGpp production, causing changes in transcription pattern that are inappropriate for rich media conditions, and contributing to slow growth rate. Reducing ppGpp levels, by altering the activity of either SpoT or RelA, removes one cause of the slow growth and reveals the interconnectedness of intracellular regulatory mechanisms.


Assuntos
Proteínas de Bactérias/metabolismo , Guanosina Tetrafosfato/metabolismo , Ligases/metabolismo , Fator Tu de Elongação de Peptídeos/metabolismo , Pirofosfatases/metabolismo , Proteínas de Bactérias/genética , Cromatografia em Camada Fina , Endorribonucleases/genética , Endorribonucleases/metabolismo , Regulação Bacteriana da Expressão Gênica , Genótipo , Ligases/genética , Mutação de Sentido Incorreto , Fator Tu de Elongação de Peptídeos/genética , Fenótipo , Pirofosfatases/genética , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , RNA de Transferência de Prolina/genética , RNA de Transferência de Prolina/metabolismo , Salmonella typhimurium/genética , Salmonella typhimurium/crescimento & desenvolvimento , Salmonella typhimurium/metabolismo
20.
J Cell Physiol ; 229(9): 1121-9, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24676899

RESUMO

There is a critical need for techniques that directly monitor protein synthesis within cells isolated from normal and diseased tissue. Fibrotic disease, for which there is no drug treatment, is characterized by the overexpression of collagens. Here, we use a bioinformatics approach to identify a pair of glycine and proline isoacceptor tRNAs as being specific for the decoding of collagen mRNAs, leading to development of a FRET-based approach, dicodon monitoring of protein synthesis (DiCoMPS), that directly monitors the synthesis of collagen. DiCoMPS aimed at detecting collagen synthesis will be helpful in identifying novel anti-fibrotic compounds in cells derived from patients with fibrosis of any etiology, and, suitably adapted, should be widely applicable in monitoring the synthesis of other proteins in cells.


Assuntos
Colágeno/biossíntese , Fibroblastos/metabolismo , Transferência Ressonante de Energia de Fluorescência , Microscopia Confocal , RNA de Transferência de Glicina/metabolismo , RNA de Transferência de Prolina/metabolismo , Animais , Carbocianinas/metabolismo , Células Cultivadas , Fibroblastos/patologia , Fibrose , Corantes Fluorescentes/metabolismo , Humanos , Cinética , Camundongos , Camundongos Knockout , PTEN Fosfo-Hidrolase/deficiência , PTEN Fosfo-Hidrolase/genética , RNA de Transferência de Glicina/genética , RNA de Transferência de Prolina/genética , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...