Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.906
Filtrar
1.
Environ Microbiol ; 26(6): e16662, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38840258

RESUMO

Our study delved into the relationship between root-associated fungi, gene expression and plant morphology in Norway spruce cuttings derived from both slow-and fast-growing trees. We found no clear link between the gene expression patterns of adventitious roots and the growth phenotype, suggesting no fundamental differences in the receptiveness to fungal symbionts between the phenotypes. Interestingly, saplings from slow-growing parental trees exhibited a higher richness of ectomycorrhizal species and larger roots. Some ectomycorrhizal species, typically found on mature spruces, were more prevalent on saplings from slow-growing spruces. The ericoid mycorrhizal fungus, Hyaloscypha hepaticola, showed a stronger association with saplings from fast-growing spruces. Moreover, saplings from slow-growing spruces had a greater number of Ascomycete taxa and free-living saprotrophic fungi. Aboveground sapling stems displayed some phenotypic variation; saplings from fast-growing phenotypes had longer branches but fewer whorls in their stems compared to those from the slow-growing group. In conclusion, the observed root-associated fungi and phenotypic characteristics in young Norway spruces may play a role in their long-term growth rate. This suggests that the early interactions between spruces and fungi could potentially influence their growth trajectory.


Assuntos
Micorrizas , Picea , Raízes de Plantas , Picea/microbiologia , Picea/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Raízes de Plantas/crescimento & desenvolvimento , Micorrizas/genética , Micorrizas/crescimento & desenvolvimento , Micorrizas/fisiologia , Noruega , Simbiose , Fungos/genética , Fungos/classificação , Fungos/crescimento & desenvolvimento , Ascomicetos/genética , Ascomicetos/crescimento & desenvolvimento
2.
Curr Microbiol ; 81(7): 207, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38831110

RESUMO

The current study aimed to evaluate the plant growth-promoting (PGP) potential of endophytic strain Bacillus subtilis KU21 isolated from the roots of Rosmarinus officinalis. The strain exhibited multiple traits of plant growth promotion viz., phosphate (P) solubilization, nitrogen fixation, indole-3-acetic acid (IAA), siderophore, hydrogen cyanide (HCN), lytic enzymes production, and 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity. The isolate also exhibited antagonistic activity against phytopathogenic fungi, i.e., Fusarium oxysporum, Fusarium graminiarum, and Rhizoctonia solani. The P-solubilization activity of B. subtilis KU21 was further elucidated via detection of glucose dehydrogenase (gdh) gene involved in the production of gluconic acid which is responsible for P-solubilization. Further, B. subtilis KU21 was evaluated for in vivo growth promotion studies of tomato (test crop) under net house conditions. A remarkable increase in seed germination, plant growth parameters, nutrient acquisition, and soil quality parameters (NPK) was observed in B. subtilis KU21-treated plants over untreated control. Hence, the proposed module could be recommended for sustainable tomato production in the Northwest Himalayan region without compromising soil health and fertility.


Assuntos
Bacillus subtilis , Endófitos , Raízes de Plantas , Rosmarinus , Bacillus subtilis/genética , Bacillus subtilis/crescimento & desenvolvimento , Bacillus subtilis/isolamento & purificação , Bacillus subtilis/metabolismo , Endófitos/isolamento & purificação , Endófitos/metabolismo , Endófitos/genética , Endófitos/classificação , Rosmarinus/química , Rosmarinus/microbiologia , Raízes de Plantas/microbiologia , Raízes de Plantas/crescimento & desenvolvimento , Solanum lycopersicum/microbiologia , Solanum lycopersicum/crescimento & desenvolvimento , Fusarium/crescimento & desenvolvimento , Fusarium/genética , Fusarium/metabolismo , Microbiologia do Solo , Desenvolvimento Vegetal , Germinação , Ácidos Indolacéticos/metabolismo , Rhizoctonia/crescimento & desenvolvimento , Rhizoctonia/efeitos dos fármacos , Fixação de Nitrogênio , Fosfatos/metabolismo
3.
Environ Microbiol Rep ; 16(3): e13286, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38844388

RESUMO

Microorganisms in the rhizosphere, particularly arbuscular mycorrhiza, have a broad symbiotic relationship with their host plants. One of the major fungi isolated from the rhizosphere of Peucedanum praeruptorum is Penicillium restrictum. The relationship between the metabolites of P. restrictum and the root exudates of P. praeruptorum is being investigated. The accumulation of metabolites in the mycelium and fermentation broth of P. restrictum was analysed over different fermentation periods. Non-targeted metabolomics was used to compare the differences in intracellular and extracellular metabolites over six periods. There were significant differences in the content and types of mycelial metabolites during the incubation. Marmesin, an important intermediate in the biosynthesis of coumarins, was found in the highest amount on the fourth day of incubation. The differential metabolites were screened to obtain 799 intracellular and 468 extracellular differential metabolites. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis showed that the highly enriched extracellular metabolic pathways were alanine, aspartate and glutamate metabolism, glyoxylate and dicarboxylate metabolism, and terpenoid backbone biosynthesis. In addition, the enrichment analysis associated with intracellular and extracellular ATP-binding cassette transporter proteins revealed that some ATP-binding cassette transporters may be involved in the transportation of certain amino acids and carbohydrates. Our results provide some theoretical basis for the regulatory mechanisms between the rhizosphere and the host plant and pave the way for the heterologous production of furanocoumarin.


Assuntos
Fermentação , Micélio , Penicillium , Rizosfera , Micélio/metabolismo , Micélio/crescimento & desenvolvimento , Penicillium/metabolismo , Penicillium/genética , Raízes de Plantas/microbiologia , Metaboloma , Metabolômica , Microbiologia do Solo , Redes e Vias Metabólicas/genética
4.
World J Microbiol Biotechnol ; 40(8): 234, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38844667

RESUMO

Bradyrhizobia are the principal symbiotic partner of the leguminous plant and take active part in biological nitrogen-fixation. The present investigation explores the underlying competition among different strains during colonization in host roots. Six distinct GFP and RFP-tagged Bradyrhizobium strains were engineered to track them inside the peanut roots either independently or in combination. The Bradyrhizobium strains require different time-spans ranging from 4 to 21 days post-infection (dpi) for successful colonization which further varies in presence of another strain. While most of the individual strains enhanced the shoot and root dry weight, number of nodules, and nitrogen fixation capabilities of the host plants, no significant enhancement of plant growth and nodulation efficiency was observed when they were allowed to colonize in combinations. However, if among the combinations one strains is SEMIA 6144, the co-infection results in higher growth and nodulation efficiency of the hosts. From the competition experiments it has been found that Bradyrhizobium japonicum SEMIA 6144 was found to be the most dominant strain for effective nodulation in peanut. The extent of biofilm and exopolysaccharide (EPS) production by these isolates, individually or in combinations, were envisaged to correlate whether these parameters have any impact on the symbiotic association. But the extent of colonization, growth-promotion and nitrogen-fixation ability drastically lowered when a strain present together with other Bradyrhizobium strain. Therefore, it is imperative to understand the interaction between two co-inoculating Bradyrhizobium species for nodulation followed by plant growth promotion to develop suitable consortia for enhancing BNF in peanut and possibly for other legumes.


Assuntos
Arachis , Biofilmes , Bradyrhizobium , Fixação de Nitrogênio , Nodulação , Raízes de Plantas , Nódulos Radiculares de Plantas , Simbiose , Arachis/microbiologia , Arachis/crescimento & desenvolvimento , Bradyrhizobium/crescimento & desenvolvimento , Bradyrhizobium/fisiologia , Raízes de Plantas/microbiologia , Raízes de Plantas/crescimento & desenvolvimento , Nódulos Radiculares de Plantas/microbiologia , Nódulos Radiculares de Plantas/crescimento & desenvolvimento , Biofilmes/crescimento & desenvolvimento , Polissacarídeos Bacterianos/metabolismo , Interações Microbianas , Desenvolvimento Vegetal
5.
BMC Plant Biol ; 24(1): 508, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38844843

RESUMO

Phytophthora cinnamomi Rands is a highly prevalent phytopathogen worldwide, ranking among the top ten in terms of distribution. It inflicts crown rot, canker, and root rot on numerous plant species, significantly impacting the biodiversity of both flora and fauna within affected environments. With a host range spanning over 5,000 species, including important plants like Quercus suber, Quercus ilex, Castanea sativa, and commercially significant crops such as avocado (Persea americana), maize (Zea mays), and tomato (Solanum lycopersicum), Phytophthora cinnamomi poses a substantial threat to agriculture and ecosystems. The efficient dissemination of the oomycete relies on its short-lived asexually motile zoospores, which depend on water currents to infect host roots. However, managing these zoospores in the laboratory has long been challenging due to the complexity of the life cycle. Current protocols involve intricate procedures, including alternating cycles of growth, drought, and flooding. Unfortunately, these artificial conditions often result in a rapid decline in virulence, necessitating additional steps to maintain infectivity during cultivation. In our research, we sought to address this challenge by investigating zoospore survival under various conditions. Our goal was to develop a stable stock of zoospores that is both easily deployable and highly infective. Through direct freezing in liquid nitrogen, we have successfully preserved their virulence. This breakthrough eliminates the need for repeated culture transfers, simplifying the process of plant inoculation. Moreover, it enables more comprehensive studies of Phytophthora cinnamomi and its interactions with host plants.


Assuntos
Phytophthora , Doenças das Plantas , Phytophthora/fisiologia , Doenças das Plantas/microbiologia , Interações Hospedeiro-Patógeno , Raízes de Plantas/microbiologia , Esporos/fisiologia
6.
Microbiome ; 12(1): 101, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38840214

RESUMO

BACKGROUND: Plant microbiota contributes to plant growth and health, including enhancing plant resistance to various diseases. Despite remarkable progress in understanding diseases resistance in plants, the precise role of rhizosphere microbiota in enhancing watermelon resistance against soil-borne diseases remains unclear. Here, we constructed a synthetic community (SynCom) of 16 core bacterial strains obtained from the rhizosphere of grafted watermelon plants. We further simplified SynCom and investigated the role of bacteria with synergistic interactions in promoting plant growth through a simple synthetic community. RESULTS: Our results demonstrated that the SynCom significantly enhanced the growth and disease resistance of ungrafted watermelon grown in non-sterile soil. Furthermore, analysis of the amplicon and metagenome data revealed the pivotal role of Pseudomonas in enhancing plant health, as evidenced by a significant increase in the relative abundance and biofilm-forming pathways of Pseudomonas post-SynCom inoculation. Based on in vitro co-culture experiments and bacterial metabolomic analysis, we selected Pseudomonas along with seven other members of the SynCom that exhibited synergistic effects with Pseudomonas. It enabled us to further refine the initially constructed SynCom into a simplified SynCom comprising the eight selected bacterial species. Notably, the plant-promoting effects of simplified SynCom were similar to those of the initial SynCom. Furthermore, the simplified SynCom protected plants through synergistic effects of bacteria. CONCLUSIONS: Our findings suggest that the SynCom proliferate in the rhizosphere and mitigate soil-borne diseases through microbial synergistic interactions, highlighting the potential of synergistic effects between microorganisms in enhancing plant health. This study provides a novel insight into using the functional SynCom as a promising solution for sustainable agriculture. Video Abstract.


Assuntos
Citrullus , Fusarium , Microbiota , Doenças das Plantas , Pseudomonas , Rizosfera , Microbiologia do Solo , Citrullus/microbiologia , Fusarium/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Pseudomonas/genética , Resistência à Doença , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Raízes de Plantas/microbiologia
7.
Sci Rep ; 14(1): 10587, 2024 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-38719851

RESUMO

Cassava root-rot incited by soil-borne pathogens is one of the major diseases that reduces root yield. Although the use of resistant cultivars is the most effective method of management, the genetic basis for root-rot resistance remains poorly understood. Therefore, our work analyzed the transcriptome of two contrasting genotypes (BRS Kiriris/resistant and BGM-1345/susceptible) using RNA-Seq to understand the molecular response and identify candidate genes for resistance. Cassava seedlings (resistant and susceptible to root-rot) were both planted in infested and sterilized soil and samples from Initial-time and Final-time periods, pooled. Two controls were used: (i) seedlings collected before planting in infested soil (absolute control) and, (ii) plants grown in sterilized soil (mock treatments). For the differentially expressed genes (DEGs) analysis 23.912 were expressed in the resistant genotype, where 10.307 were differentially expressed in the control treatment, 15 DEGs in the Initial Time-period and 366 DEGs in the Final Time-period. Eighteen candidate genes from the resistant genotype were related to plant defense, such as the MLP-like protein 31 and the peroxidase A2-like gene. This is the first model of resistance at the transcriptional level proposed for the cassava × root-rot pathosystem. Gene validation will contribute to screening for resistance of germplasm, segregating populations and/or use in gene editing in the pursuit to develop most promising cassava clones with resistance to root-rot.


Assuntos
Resistência à Doença , Regulação da Expressão Gênica de Plantas , Manihot , Doenças das Plantas , Raízes de Plantas , Transcriptoma , Manihot/genética , Manihot/microbiologia , Resistência à Doença/genética , Raízes de Plantas/genética , Raízes de Plantas/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Perfilação da Expressão Gênica , Genótipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genes de Plantas
8.
Sci Rep ; 14(1): 10525, 2024 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-38720057

RESUMO

The narrow zone of soil around the plant roots with maximum microbial activity termed as rhizosphere. Rhizospheric bacteria promote the plant growth directly or indirectly by providing the nutrients and producing antimicrobial compounds. In this study, the rhizospheric microbiota of peanut plants was characterized from different farms using an Illumina-based partial 16S rRNA gene sequencing to evaluate microbial diversity and identify the core microbiome through culture-independent (CI) approach. Further, all rhizospheric bacteria that could grow on various nutrient media were identified, and the diversity of those microbes through culture-dependent method (CD) was then directly compared with their CI counterparts. The microbial population profiles showed a significant correlation with organic carbon and concentration of phosphate, manganese, and potassium in the rhizospheric soil. Genera like Sphingomicrobium, Actinoplanes, Aureimonas _A, Chryseobacterium, members from Sphingomonadaceae, Burkholderiaceae, Pseudomonadaceae, Enterobacteriaceae family, and Bacilli class were found in the core microbiome of peanut plants. As expected, the current study demonstrated more bacterial diversity in the CI method. However, a higher number of sequence variants were exclusively present in the CD approach compared to the number of sequence variants shared between both approaches. These CD-exclusive variants belonged to organisms that are more typically found in soil. Overall, this study portrayed the changes in the rhizospheric microbiota of peanuts in different rhizospheric soil and environmental conditions and gave an idea about core microbiome of peanut plant and comparative bacterial diversity identified through both approaches.


Assuntos
Arachis , Bactérias , Metagenômica , Microbiota , RNA Ribossômico 16S , Rizosfera , Microbiologia do Solo , Arachis/microbiologia , Índia , Microbiota/genética , RNA Ribossômico 16S/genética , Metagenômica/métodos , Bactérias/genética , Bactérias/classificação , Bactérias/isolamento & purificação , Fazendas , Raízes de Plantas/microbiologia , Filogenia , Metagenoma , Biodiversidade
9.
BMC Genom Data ; 25(1): 40, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724915

RESUMO

Bulb rot, a highly damaging disease of tulip plants, has hindered their profitable cultivation worldwide. This rot occurs in both field and storage conditions posing significant challenges. While this disease has been attributed to a range of pathogens, previous investigations have solely examined it within the framework of a single-pathogen disease model. Our study took a different approach and identified four pathogens associated with the disease: Fusarium solani, Penicillium chrysogenum, Botrytis tulipae, and Aspergillus niger. The primary objective of our research was to examine the impact of co-infections on the overall virulence dynamics of these pathogens. Through co-inoculation experiments on potato dextrose agar, we delineated three primary interaction patterns: antibiosis, deadlock, and merging. In vitro trials involving individual pathogen inoculations on tulip bulbs revealed that B. tulipae,was the most virulent and induced complete bulb decay. Nonetheless, when these pathogens were simultaneously introduced in various combinations, outcomes ranged from partial bulb decay to elongated rotting periods. This indicated a notable degree of antagonistic behaviour among the pathogens. While synergistic interactions were evident in a few combinations, antagonism overwhelmingly prevailed. The complex interplay of these pathogens during co-infection led to a noticeable change in the overall severity of the disease. This underscores the significance of pathogen-pathogen interactions in the realm of plant pathology, opening new insights for understanding and managing tulip bulb rot.


Assuntos
Fusarium , Doenças das Plantas , Tulipa , Doenças das Plantas/microbiologia , Fusarium/patogenicidade , Tulipa/microbiologia , Botrytis/patogenicidade , Penicillium chrysogenum/patogenicidade , Aspergillus niger/patogenicidade , Virulência , Raízes de Plantas/microbiologia
10.
Microbiome ; 12(1): 83, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38725008

RESUMO

BACKGROUND: Fungi and bacteria coexist in a wide variety of environments, and their interactions are now recognized as the norm in most agroecosystems. These microbial communities harbor keystone taxa, which facilitate connectivity between fungal and bacterial communities, influencing their composition and functions. The roots of most plants are associated with arbuscular mycorrhizal (AM) fungi, which develop dense networks of hyphae in the soil. The surface of these hyphae (called the hyphosphere) is the region where multiple interactions with microbial communities can occur, e.g., exchanging or responding to each other's metabolites. However, the presence and importance of keystone taxa in the AM fungal hyphosphere remain largely unknown. RESULTS: Here, we used in vitro and pot cultivation systems of AM fungi to investigate whether certain keystone bacteria were able to shape the microbial communities growing in the hyphosphere and potentially improved the fitness of the AM fungal host. Based on various AM fungi, soil leachates, and synthetic microbial communities, we found that under organic phosphorus (P) conditions, AM fungi could selectively recruit bacteria that enhanced their P nutrition and competed with less P-mobilizing bacteria. Specifically, we observed a privileged interaction between the isolate Streptomyces sp. D1 and AM fungi of the genus Rhizophagus, where (1) the carbon compounds exuded by the fungus were acquired by the bacterium which could mineralize organic P and (2) the in vitro culturable bacterial community residing on the surface of hyphae was in part regulated by Streptomyces sp. D1, primarily by inhibiting the bacteria with weak P-mineralizing ability, thereby enhancing AM fungi to acquire P. CONCLUSIONS: This work highlights the multi-functionality of the keystone bacteria Streptomyces sp. D1 in fungal-bacteria and bacterial-bacterial interactions at the hyphal surface of AM fungi. Video Abstract.


Assuntos
Hifas , Microbiota , Micorrizas , Raízes de Plantas , Microbiologia do Solo , Streptomyces , Micorrizas/fisiologia , Micorrizas/classificação , Streptomyces/classificação , Streptomyces/isolamento & purificação , Streptomyces/genética , Streptomyces/fisiologia , Hifas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Fósforo/metabolismo , Interações Microbianas/fisiologia , Solo/química , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/metabolismo
11.
PLoS One ; 19(5): e0298299, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38722945

RESUMO

Sunflower is one of the four major oil crops in the world. 'Zaoaidatou' (ZADT), the main variety of oil sunflower in the northwest of China, has a short growth cycle, high yield, and high resistance to abiotic stress. However, the ability to tolerate adervesity is limited. Therefore, in this study, we used the retention line of backbone parent ZADT as material to establish its tissue culture and genetic transformation system for new variety cultivating to enhance resistance and yields by molecular breeding. The combination of 0.05 mg/L IAA and 2 mg/L KT in MS was more suitable for direct induction of adventitious buds with cotyledon nodes and the addition of 0.9 mg/L IBA to MS was for adventitious rooting. On this basis, an efficient Agrobacterium tumefaciens-mediated genetic transformation system for ZADT was developed by the screening of kanamycin and optimization of transformation conditions. The rate of positive seedlings reached 8.0%, as determined by polymerase chain reaction (PCR), under the condition of 45 mg/L kanamycin, bacterial density of OD600 0.8, infection time of 30 min, and co-cultivation of three days. These efficient regeneration and genetic transformation platforms are very useful for accelerating the molecular breeding process on sunflower.


Assuntos
Agrobacterium tumefaciens , Helianthus , Plantas Geneticamente Modificadas , Transformação Genética , Helianthus/genética , Helianthus/microbiologia , Helianthus/crescimento & desenvolvimento , Agrobacterium tumefaciens/genética , Plantas Geneticamente Modificadas/genética , Técnicas de Cultura de Tecidos/métodos , Raízes de Plantas/microbiologia , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Melhoramento Vegetal/métodos , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento
12.
Environ Microbiol Rep ; 16(3): e13254, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38725134

RESUMO

Arid and semi-arid areas are facing increasingly severe water deficits that are being intensified by global climate changes. Microbes associated with plants native to arid regions provide valuable benefits to plants, especially in water-stressed environments. In this study, we used 16S rDNA metabarcoding analysis to examine the bacterial communities in the bulk soil, rhizosphere and root endosphere of the plant Malva sylvestris L. in Morocco, along a gradient of precipitation. We found that the rhizosphere of M. sylvestris did not show significant differences in beta-diversity compared to bulk soil, although, it did display an increased degree of alpha-diversity. The endosphere was largely dominated by the genus Rhizobium and displayed remarkable variation between plants, which could not be attributed to any of the variables observed in this study. Overall, the effects of precipitation level were relatively weak, which may be related to the intense drought in Morocco at the time of sampling. The dominance of Rhizobium in a non-leguminous plant is particularly noteworthy and may permit the utilization of this bacterial taxon to augment drought tolerance; additionally, the absence of any notable selection of the rhizosphere of M. sylvestris suggests that it is not significatively affecting its soil environment.


Assuntos
Bactérias , Secas , RNA Ribossômico 16S , Rizosfera , Microbiologia do Solo , Marrocos , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , RNA Ribossômico 16S/genética , Raízes de Plantas/microbiologia , Biodiversidade , Microbiota , DNA Bacteriano/genética , Rhizobium/classificação , Rhizobium/genética , Rhizobium/isolamento & purificação , Rhizobium/fisiologia , Filogenia
13.
Physiol Plant ; 176(3): e14323, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38695188

RESUMO

Tomatoes are frequently challenged by various pathogens, among which Phytophthora capsici (P. capsici) is a destructive soil-borne pathogen that seriously threatens the safe production of tomatoes. Plant growth-promoting rhizobacteria (PGPR) positively induced plant resistance against multiple pathogens. However, little is known about the role and regulatory mechanism of PGPR in tomato resistance to P. capsici. Here, we identified a new strain Serratia plymuthica (S. plymuthica), HK9-3, which has a significant antibacterial effect on P. capsici infection. Meanwhile, stable colonization in roots by HK9-3, even under P. capsici infection, improved tomato growth parameters, root system architecture, photosynthetic capacity, and boosted biomass. Importantly, HK9-3 colonization significantly alleviated the damage caused by P. capsici infection through enhancing ROS scavenger ability and inducing antioxidant defense system and pathogenesis-related (PR) proteins in leaves, as evidenced by elevating the activities of peroxidase (POD), superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), phenylalanine ammonia lyase (PAL), polyphenol oxidase (PPO), and chitinase, ß-1,3-glucanase, and increasing the transcripts of POD, SOD, CAT, APX1, PAL1, PAL2, PAL5, PPO2, CHI17 and ß-1,3-glucanase genes. Notably, HK9-3 colonization not only effectively improved soil microecology and soil fertility, but also significantly enhanced fruit yield by 44.6% and improved quality. Our study presents HK9-3 as a promising and effective solution for controlling P. capsici infection in tomato cultivation while simultaneously promoting plant growth and increasing yield, which may have implications for P. capsici control in vegetable production.


Assuntos
Resistência à Doença , Phytophthora , Doenças das Plantas , Rizosfera , Serratia , Solanum lycopersicum , Solanum lycopersicum/microbiologia , Solanum lycopersicum/fisiologia , Solanum lycopersicum/genética , Phytophthora/fisiologia , Serratia/fisiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Antioxidantes/metabolismo , Raízes de Plantas/microbiologia , Raízes de Plantas/fisiologia
14.
Sci Rep ; 14(1): 10231, 2024 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702407

RESUMO

Agricultural soils are increasingly undergoing inadvertent and purposeful exposures to engineered CeO2 nanoparticles (NPs), which can impact crops and root-associated microbial communities. However, interactions between NP concentration and exposure duration on plant-mediated responses of root-associated bacterial communities are not well understood. Soybeans seedlings were grown in soil with uncoated NPs added at concentrations of 0, 1 or 100 mg kg-1. Total soil exposure durations were either 190 days, starting 106 days before planting or 84 days with NP amendments coinciding with planting. We assessed plant development, bacterial diversity, differential abundance and inferred functional changes across rhizosphere, rhizoplane, and root tissue compartments. Plant non-monotonic dose responses were mirrored in bacterial communities. Most notably, effects were magnified in the rhizoplane under low-dose, short-exposures. Enriched metabolic pathways were primarily related to biosynthesis and degradation/utilization/assimilation, rather than responses to metals or oxidative stress. Our results indicate that plant-mediated bacterial responses were greater than direct NP impacts. Also, we identify needs for modeling non-monotonic legume stress responses that account for coinfection with mutualistic and parasitic bacteroids. Our findings provide new insights regarding effects of applications of soil amendments such as biosolids containing NPs or nano-enabled formulations used in cultivation of legumes and other crops.


Assuntos
Bactérias , Cério , Glycine max , Nanopartículas , Raízes de Plantas , Rizosfera , Microbiologia do Solo , Glycine max/crescimento & desenvolvimento , Glycine max/efeitos dos fármacos , Glycine max/microbiologia , Raízes de Plantas/microbiologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Bactérias/efeitos dos fármacos , Microbiota/efeitos dos fármacos , Solo/química
15.
Sci Rep ; 14(1): 10294, 2024 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-38704448

RESUMO

The Himalayas provide unique opportunities for the extension of shrubs beyond the upper limit of the tree. However, little is known about the limitation of the biotic factors belowground of shrub growth at these cruising altitudes. To fill this gap, the present study deals with the documentation of root-associated microbiota with their predicted functional profiles and interactions in the host Rhododendron campanulatum, a krummholz species. While processing 12 root samples of R. campanulatum from the sites using Omics we could identify 134 root-associated fungal species belonging to 104 genera, 74 families, 39 orders, 17 classes, and 5 phyla. The root-associated microbiota members of Ascomycota were unambiguously dominant followed by Basidiomycota. Using FUNGuild, we reported that symbiotroph and pathotroph as abundant trophic modes. Furthermore, FUNGuild revealed the dominant prevalence of the saptroptroph guild followed by plant pathogens and wood saprotrophs. Alpha diversity was significantly different at the sites. The heatmap dendrogram showed the correlation between various soil nutrients and some fungal species. The study paves the way for a more in-depth exploration of unidentified root fungal symbionts, their interactions and their probable functional roles, which may serve as an important factor for the growth and conservation of these high-altitude ericaceous plants.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Raízes de Plantas , Rhododendron , Rhododendron/microbiologia , Rhododendron/genética , Raízes de Plantas/microbiologia , Fungos/genética , Fungos/classificação , Micobioma , Microbiologia do Solo , Simbiose , Filogenia
16.
PLoS One ; 19(5): e0303096, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38713656

RESUMO

Fast-growing poplar plantations are considered a great benefit to timber production, but water availability is a key factor limiting their growth and development, especially in arid and semi-arid ecosystems. Super-absorbent polymers facilitate more water retention in soil after rain or irrigation, and they are able to release water gradually during plant growth. This study aimed to examine the effects of reduced irrigation (60% and 30% of conventional border irrigation) co-applied with super-absorbent polymers (0, 40 kg/ha) on root exudates, enzyme activities, microbial functional diversity in rhizosphere soil, and volume increments in poplar (Populus euramericana cv. 'Neva'). The results showed that 60% border irrigation co-applied with super-absorbent polymers significantly increased the content of organic acids, amino acids and total sugars in the root exudates, and the activities of invertase, urease, dehydrogenase, and catalase in the rhizosphere soil in comparison to conventional border irrigation without super-absorbent polymers. Meanwhile, this treatment also enhanced the average well-color development, Shannon index, and McIntosh index, but decreased the Simpson index. Additionally, the average volume growth rate and relative water content of leaves reached their maximum using 60% irrigation with super-absorbent polymers, which was significantly higher than other treatments. However, using 30% irrigation with super-absorbent polymers, had a smaller effect on rhizosphere soil and volume growth than 60% irrigation with super-absorbent polymers. Therefore, using an appropriate water-saving irrigation measure (60% conventional border irrigation with super-absorbent polymers) can help to improve enzyme activities and microbial diversity in the rhizosphere soil while promoting the growth of poplar trees.


Assuntos
Irrigação Agrícola , Polímeros , Populus , Rizosfera , Microbiologia do Solo , Populus/crescimento & desenvolvimento , Populus/microbiologia , Irrigação Agrícola/métodos , Polímeros/química , Raízes de Plantas/microbiologia , Raízes de Plantas/crescimento & desenvolvimento , Solo/química , Água/química
17.
Ecotoxicol Environ Saf ; 279: 116518, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38820874

RESUMO

Microplastics (MP) can influence a plethora of fungal species within the rhizosphere. Nevertheless, there are few studies on the direct impacts of MPs on soil fungi and their intricate interplay with plants. Here, we investigated the impact of polyethylene microspheres (PEMS) on the ecological interactions between Fusarium solani, a plant pathogenic fungus, and Trichoderma viride, a fungal plant growth promotor, within the rhizosphere of Solanum lycopersicum (tomato). Spores of F. solani and T. viride were pre-incubated with PEMS at two concentrations, 100 and 1000 mg L-1. Mycelium growth, sporulation, spore germination, and elongation were evaluated. Tomato seeds were exposed to fungal spore suspensions treated with PEMS, and plant development was subsequently assessed after 4 days. The results showed that PEMS significantly enhanced the sporulation (106.0 % and 70.1 %) but compromised the spore germination (up to 27.3 % and 32.2 %) and radial growth (up to -5.2% and -21.7 %) of F. solani and T. viride, respectively. Furthermore, the 100 and 1000 mg L-1 concentrations of PEMS significantly (p<0.05) enhanced the mycelium density of T. viride (9.74 % and 22.30 %, respectively), and impaired the germ-tube elongation of F. solani after 4 h (16.16 % and 11.85 %, respectively) and 8 h (4 % and 17.10 %, respectively). In addition, PEMS amplified the pathogenicity of F. solani and boosted the bio-enhancement effect of T. viride on tomato root growth. Further, PEMS enhanced the bio-fungicidal effect of T. viride toward F. solani (p<0.05). In summary, PEMS had varying effects on F. solani and T. viride, impacting their interactions and influencing their relationship with tomato plants. It intensified the beneficial effects of T. viride and increased the aggressiveness of F. solani. This study highlights concerns regarding the effects of MPs on fungal interactions in the rhizosphere, which are essential for crop soil colonization and resource utilization.


Assuntos
Fusarium , Microplásticos , Solanum lycopersicum , Esporos Fúngicos , Solanum lycopersicum/microbiologia , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/efeitos dos fármacos , Fusarium/fisiologia , Fusarium/crescimento & desenvolvimento , Esporos Fúngicos/efeitos dos fármacos , Esporos Fúngicos/crescimento & desenvolvimento , Microplásticos/toxicidade , Rizosfera , Microbiologia do Solo , Poluentes do Solo/toxicidade , Polietileno , Hypocreales/efeitos dos fármacos , Hypocreales/fisiologia , Microesferas , Raízes de Plantas/microbiologia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/efeitos dos fármacos
18.
Physiol Plant ; 176(3): e14338, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38740528

RESUMO

Bacteria can be applied as biofertilizers to improve crop growth in phosphorus (P)-limited conditions. However, their mode of action in a soil environment is still elusive. We used the strain ALC_02 as a case study to elucidate how Bacillus subtilis affects dwarf tomato cultivated in soil-filled rhizoboxes over time. ALC_02 improved plant P acquisition by increasing the size and P content of P-limited plants. We assessed three possible mechanisms, namely root growth stimulation, root hair elongation, and solubilization of soil P. ALC_02 produced auxin, and inoculation with ALC_02 promoted root growth. ALC_02 promoted root hair elongation as the earliest observed response and colonized root hairs specifically. Root and root hair growth stimulation was associated with a subsequent increase in plant P content, indicating that a better soil exploration by the root system improved plant P acquisition. Furthermore, ALC_02 affected the plant-available P content in sterilized soil differently over time and released P from native P pools in the soil. Collectively, ALC_02 exhibited all three mechanisms in a soil environment. To our knowledge, bacterial P biofertilizers have not been reported to colonize and elongate root hairs in the soil so far, and we propose that these traits contribute to the overall effect of ALC_02. The knowledge gained in this research can be applied in the future quest for bacterial P biofertilizers, where we recommend assessing all three parameters, not only root growth and P solubilization, but also root hair elongation. This will ultimately support the development of sustainable agricultural practices.


Assuntos
Bacillus subtilis , Fósforo , Raízes de Plantas , Solo , Solanum lycopersicum , Fósforo/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Raízes de Plantas/metabolismo , Bacillus subtilis/crescimento & desenvolvimento , Bacillus subtilis/metabolismo , Solo/química , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/microbiologia , Solanum lycopersicum/metabolismo , Microbiologia do Solo , Solubilidade , Ácidos Indolacéticos/metabolismo , Fertilizantes
19.
Physiol Plant ; 176(3): e14341, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38741264

RESUMO

Symbiotic nitrogen fixation (SNF) is crucial for legumes, providing them with the nitrogen necessary for plant growth and development. Nodulation is the first step in the establishment of SNF. However, the determinant genes in soybean nodulation and the understanding of the underlying molecular mechanisms governing nodulation are still limited. Herein, we identified a phosphatase, GmPP2C61A, which was specifically induced by rhizobia inoculation. Using transgenic hairy roots harboring GmPP2C61A::GUS, we showed that GmPP2C61A was mainly induced in epidermal cells following rhizobia inoculation. Functional analysis revealed that knockdown or knock-out of GmPP2C61A significantly reduced the number of nodules, while overexpression of GmPP2C61A promoted nodule formation. Additionally, GmPP2C61A protein was mainly localized in the cytoplasm and exhibited conserved phosphatase activity in vitro. Our findings suggest that phosphatase GmPP2C61A serves as a critical regulator in soybean nodulation, highlighting its potential significance in enhancing symbiotic nitrogen fixation.


Assuntos
Regulação da Expressão Gênica de Plantas , Glycine max , Fixação de Nitrogênio , Proteínas de Plantas , Nodulação , Simbiose , Glycine max/genética , Glycine max/microbiologia , Glycine max/fisiologia , Nodulação/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Simbiose/genética , Rhizobium/fisiologia , Nódulos Radiculares de Plantas/genética , Nódulos Radiculares de Plantas/microbiologia , Nódulos Radiculares de Plantas/metabolismo , Plantas Geneticamente Modificadas , Monoéster Fosfórico Hidrolases/metabolismo , Monoéster Fosfórico Hidrolases/genética , Raízes de Plantas/genética , Raízes de Plantas/microbiologia , Raízes de Plantas/metabolismo
20.
World J Microbiol Biotechnol ; 40(7): 205, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38755302

RESUMO

Jojoba shrubs are wild plants cultivated in arid and semiarid lands and characterized by tolerance to drought, salinity, and high temperatures. Fungi associated with such plants may be attributed to the tolerance of host plants against biotic stress in addition to the promotion of plant growth. Previous studies showed the importance of jojoba as jojoba oil in the agricultural field; however, no prior study discussed the role of jojoba-associated fungi (JAF) in reflecting plant health and the possibility of using JAF in biocontrol. Here, the culture-independent and culture-dependent approaches were performed to study the diversity of the jojoba-associated fungi. Then, the cultivable fungi were evaluated for in-vitro antagonistic activity and in vitro plant growth promotion assays. The metagenome analysis revealed the existence of four fungal phyla: Ascomycota, Aphelidiomycota, Basidiomycota, and Mortierellomycota. The phylum Ascomycota was the most common and had the highest relative abundance in soil, root, branch, and fruit samples (59.7%, 50.7%, 49.8%, and 52.4%, respectively). Alternaria was the most abundant genus in aboveground tissues: branch (43.7%) and fruit (32.1%), while the genus Discosia had the highest abundance in the underground samples: soil (24%) and root (30.7%). For the culture-dependent method, a total of 14 fungi were isolated, identified, and screened for their chitinolytic and antagonist activity against three phytopathogenic fungi (Fusarium oxysporum, Alternaria alternata and Rhizoctonia solani) as well as their in vitro plant growth promotion (PGP) activity. Based on ITS sequence analysis, the selected potent isolates were identified as Aspergillus stellatusEJ-JFF3, Aspergillus flavus EJ-JFF4, Stilbocrea sp. EJ-JLF1, Fusarium solani EJ-JRF3, and Amesia atrobrunneaEJ-JSF4. The endophyte strain A. flavus EJ-JFF4 exhibited the highest chitinolytic activity (9 Enzyme Index) and antagonistic potential against Fusarium oxysporum, Alternaria alternata, and Rhizoctonia solani phytopathogens with inhibitory percentages of 72, 70, and 80 respectively. Also, A. flavus EJ-JFF4 had significant multiple PGP properties, including siderophore production (69.3%), phosphate solubilization (95.4 µg ml-1). The greatest production of Indol-3-Acetic Acid was belonged to A. atrobrunnea EJ-JSF4 (114.5 µg ml-1). The analysis of FUNGuild revealed the abundance of symbiotrophs over other trophic modes, and the guild of endophytes was commonly assigned in all samples. For the first time, this study uncovered fungal diversity associated with jojoba plants using a culture-independent approach and in-vitro assessed the roles of cultivable fungal strains in promoting plant growth and biocontrol. The present study indicated the significance of jojoba shrubs as a potential source of diverse fungi with high biocontrol and PGP activities.


Assuntos
Alternaria , Fungos , Microbiologia do Solo , Fungos/genética , Fungos/classificação , Fungos/isolamento & purificação , Alternaria/genética , Alternaria/crescimento & desenvolvimento , Metagenoma , Rhizoctonia/crescimento & desenvolvimento , Filogenia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Fusarium/genética , Fusarium/crescimento & desenvolvimento , Antibiose , Raízes de Plantas/microbiologia , Biodiversidade , Agentes de Controle Biológico , Ascomicetos/crescimento & desenvolvimento , Ascomicetos/genética , Desenvolvimento Vegetal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...