Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.418
Filtrar
1.
J Vis Exp ; (208)2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38912787

RESUMO

The authors have developed a paradigm using positron emission tomography (PET) with multiple radiopharmaceutical tracers that combines measurements of cerebral metabolic rate of glucose (CMRGlc), cerebral metabolic rate of oxygen (CMRO2), cerebral blood flow (CBF), and cerebral blood volume (CBV), culminating in estimates of brain aerobic glycolysis (AG). These in vivo estimates of oxidative and non-oxidative glucose metabolism are pertinent to the study of the human brain in health and disease. The latest positron emission tomography-computed tomography (PET-CT) scanners provide time-of-flight (TOF) imaging and critical improvements in spatial resolution and reduction of artifacts. This has led to significantly improved imaging with lower radiotracer doses. Optimized methods for the latest PET-CT scanners involve administering a sequence of inhaled 15O-labeled carbon monoxide (CO) and oxygen (O2), intravenous 15O-labeled water (H2O), and 18F-deoxyglucose (FDG)-all within 2-h or 3-h scan sessions that yield high-resolution, quantitative measurements of CMRGlc, CMRO2, CBF, CBV, and AG. This methods paper describes practical aspects of scanning designed for quantifying brain metabolism with tracer kinetic models and arterial blood samples and provides examples of imaging measurements of human brain metabolism.


Assuntos
Encéfalo , Glucose , Oxigênio , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Compostos Radiofarmacêuticos , Humanos , Encéfalo/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/irrigação sanguínea , Glucose/metabolismo , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Compostos Radiofarmacêuticos/farmacocinética , Compostos Radiofarmacêuticos/química , Oxigênio/metabolismo , Fluordesoxiglucose F18/farmacocinética , Radioisótopos de Oxigênio/farmacocinética , Radioisótopos de Oxigênio/metabolismo , Circulação Cerebrovascular/fisiologia
2.
J Nucl Med ; 65(7): 1113-1121, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38724275

RESUMO

Currently, cutoffs of quantitative [15O]H2O PET to detect fractional flow reserve (FFR)-defined coronary artery disease (CAD) were derived from a single cohort that included patients without prior CAD. However, prior CAD, sex, and age can influence myocardial blood flow (MBF). Therefore, the present study determined the influence of prior CAD, sex, and age on optimal cutoffs of hyperemic MBF (hMBF) and coronary flow reserve (CFR) and evaluated whether cutoff optimization enhanced diagnostic performance of quantitative [15O]H2O PET against an FFR reference standard. Methods: Patients with chronic coronary symptoms underwent [15O]H2O PET and invasive coronary angiography with FFR. Optimal cutoffs for patients with and without prior CAD and subpopulations based on sex and age were determined. Results: This multicenter study included 560 patients. Optimal cutoffs were similar for patients with (n = 186) and without prior CAD (hMBF, 2.3 vs. 2.3 mL·min-1·g-1; CFR, 2.7 vs. 2.6). Females (n = 190) had higher hMBF cutoffs than males (2.8 vs. 2.3 mL·min-1·g-1), whereas CFRs were comparable (2.6 vs. 2.7). However, female sex-specific hMBF cutoff implementation decreased diagnostic accuracy as compared with the cutoff of 2.3 mL·min-1·g-1 (72% vs. 82%, P < 0.001). Patients aged more than 70 y (n = 79) had lower hMBF (1.7 mL·min-1·g-1) and CFR (2.3) cutoffs than did patients aged 50 y or less, 51-60 y, and 61-70 y (hMBF, 2.3-2.4 mL·min-1·g-1; CFR, 2.7). Age-specific cutoffs in patients aged more than 70 y yielded comparable accuracy to the previously established cutoffs (hMBF, 72% vs. 76%, P = 0.664; CFR, 80% vs. 75%, P = 0.289). Conclusion: Patients with and without prior CAD had similar [15O]H2O PET cutoffs for detecting FFR-defined significant CAD. Stratifying patients according to sex and age led to different optimal cutoffs; however, these values did not translate into an increased overall accuracy as compared with previously established thresholds for MBF.


Assuntos
Doença da Artéria Coronariana , Radioisótopos de Oxigênio , Tomografia por Emissão de Pósitrons , Humanos , Feminino , Masculino , Doença da Artéria Coronariana/diagnóstico por imagem , Doença da Artéria Coronariana/fisiopatologia , Pessoa de Meia-Idade , Idoso , Reserva Fracionada de Fluxo Miocárdico , Hemodinâmica , Circulação Coronária
4.
Eur Heart J Cardiovasc Imaging ; 25(7): 958-967, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38376457

RESUMO

AIMS: Myocardial perfusion imaging (MPI) using [15O]H2O positron emission tomography (PET) is used to guide the selection of patients with angina for invasive angiography and possible revascularization. Our study evaluated (i) whether atrial fibrillation (AF) reduces global hyperaemic myocardial blood flow (MBF) and (ii) whether [15O]H2O PET MPI effectively guides revascularization procedures for patients with ongoing AF. METHODS AND RESULTS: We prospectively recruited 346 patients with angina and persistent or paroxysmal AF referred for baseline/hyperaemic [15O]H2O PET MPI. The primary outcome was revascularization within 3 months of MPI. In the analyses, patients were divided into four groups based on whether they had ongoing AF or sinus rhythm (SR) and whether they had previously documented coronary artery disease (CAD) or not. Thus, four groups were compared: SR-noCAD, AF-noCAD, SR-CAD, and AF-CAD. Hyperaemic MBF was affected by both ongoing AF and prior CAD [MBF (mL/min/g): 2.82 (SR-noCAD) vs. 2.12 (AF-noCAD) vs. 2.22 (SR-CAD) vs. 1.80 (AF-CAD), two-way analysis of variance P < 0.0001]. In multiple linear regression, ongoing AF was independently associated with reduced hyperaemic MBF. Every 0.1 mL/min/g decrease in hyperaemic MBF was associated with a 23% increase in odds of early revascularization. Receiver operating characteristic (ROC) analysis of vessel-specific hyperaemic MBF to predict early revascularization yielded the following areas under the ROC curve: SR-noCAD: 0.95 (P < 0.0001); AF-noCAD: 0.79 (P < 0.0001); SR-CAD: 0.78 (P < 0.0001); and AF-CAD: 0.88 (P < 0.0001). CONCLUSION: Ongoing AF is associated with 19-25% reduced global hyperaemic MBF as measured by [15O]H2O MPI PET. Regardless, vessel-specific hyperaemic MBF still predicts early revascularization in patients with AF.


Assuntos
Fibrilação Atrial , Imagem de Perfusão do Miocárdio , Revascularização Miocárdica , Radioisótopos de Oxigênio , Tomografia por Emissão de Pósitrons , Humanos , Fibrilação Atrial/diagnóstico por imagem , Fibrilação Atrial/cirurgia , Feminino , Masculino , Imagem de Perfusão do Miocárdio/métodos , Estudos Prospectivos , Tomografia por Emissão de Pósitrons/métodos , Pessoa de Meia-Idade , Idoso , Doença da Artéria Coronariana/diagnóstico por imagem , Doença da Artéria Coronariana/cirurgia , Doença da Artéria Coronariana/complicações , Angina Pectoris/diagnóstico por imagem , Estudos de Coortes , Angiografia Coronária/métodos , Curva ROC , Índice de Gravidade de Doença , Medição de Risco
5.
J Nucl Cardiol ; 32: 101796, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38278706

RESUMO

BACKGROUND: Differences in tracer characteristics may influence the interpretation of positron emission tomography myocardial perfusion imaging (MPI). We compare the reading of MPIs with a low-extraction retention tracer (82Rb) and a high-extraction non-retention tracer (15O-water) in a selected cohort of patients with known coronary artery disease (CAD). METHODS: Thirty-nine patients with known CAD referred to 82Rb MPI due to angina underwent rest and stress imaging with both tracers and experienced MPI readers provided blinded consensus reads of all studies. In addition, a comparison of regional and global quantitative measures of perfusion was performed. RESULTS: The results showed 74 % agreement in the reading of 82Rb and 15O-water MPI for regional reversible ischemia and global disease, and 82 % agreement for regional irreversible ischemia. The 15O-water MPI identified more cases of global disease (n = 12 (15O-water) vs n = 4 (82Rb), p = 0.03), whereas differences in reversible ischemia (n = 22 vs n = 16, p = 0.11) and, irreversible ischemia (n = 8 vs n = 11, p = 0.45) were not significant. The correlation between myocardial blood flow measured using the two tracers was similar to previous studies (R2 = 0.78) with wide limits of agreement (-0.93 to 0.84 ml/g/min). CONCLUSIONS: Agreement between consensus readings of 82Rb and 15O-water MPI was good in patients with known CAD. In this limited size study, no significant differences in the identification of reversible and irreversible ischemia found, whereas 15O-water MPI had a higher positive rate for suspected global disease.


Assuntos
Isquemia , Radioisótopos de Oxigênio , Tomografia por Emissão de Pósitrons , Humanos , Radioisótopos de Rubídio
6.
Int J Mol Sci ; 25(2)2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38255785

RESUMO

Gadolinium (Gd)-containing fullerenols are perspective agents for magnetic resonance imaging and cancer research. They combine the unique paramagnetic properties of Gd with solubility in water, low toxicity and antiradical activity of fullerenols. We compared the bioeffects of two Gd-containing fullerenols with a different number of oxygen groups-20 and 42: Gd@C82O20H14 and Gd@C82O42H32. The bioluminescent bacteria-based assay was applied to monitor the toxicity of fullerenols, bioluminescence was applied as a signal physiological parameter, and bacterial enzyme-based assay was used to evaluate the fullerenol effects on enzymatic intracellular processes. Chemiluminescence luminol assay was applied to monitor the content of reactive oxygen species (ROS) in bacterial and enzymatic media. It was shown that Gd@C82O42H32 and Gd@C82O20H14 inhibited bacterial bioluminescence at >10-1 and >10-2 gL-1, respectively, revealing a lower toxicity of Gd@C82O42H32. Low-concentration (10-3-10-1 gL-1) bacterial bioluminescence activation by Gd@C82O42H32 was observed, while this activation was not found under exposure to Gd@C82O20H14. Additional carboxyl groups in the structure of Gd@C82O42H32 were determined by infrared spectroscopy and confirmed by quantum chemical calculations. The groups were supposed to endow Gd@C82O42H32 with higher penetration ability through the cellular membrane, activation ability, lower toxicity, balancing of the ROS content in the bacterial suspensions, and lower aggregation in aqueous media.


Assuntos
Fulerenos , Gadolínio , Radioisótopos de Oxigênio , Oxigênio , Espécies Reativas de Oxigênio , Gadolínio/farmacologia , Bactérias
7.
J Nucl Med ; 65(2): 306-312, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38071587

RESUMO

Cerebral blood flow (CBF) may be estimated from early-frame PET imaging of lipophilic tracers, such as amyloid agents, enabling measurement of this important biomarker in participants with dementia and memory decline. Although previous methods could map relative CBF, quantitative measurement in absolute units (mL/100 g/min) remained challenging and has not been evaluated against the gold standard method of [15O]water PET. The purpose of this study was to develop and validate a minimally invasive quantitative CBF imaging method combining early [18F]florbetaben (eFBB) with phase-contrast MRI using simultaneous PET/MRI. Methods: Twenty participants (11 men and 9 women; 8 cognitively normal, 9 with mild cognitive impairment, and 3 with dementia; 10 ß-amyloid negative and 10 ß-amyloid positive; 69 ± 9 y old) underwent [15O]water PET, phase-contract MRI, and eFBB imaging in a single session on a 3-T PET/MRI scanner. Quantitative CBF images were created from the first 2 min of brain activity after [18F]florbetaben injection combined with phase-contrast MRI measurement of total brain blood flow. These maps were compared with [15O]water CBF using concordance correlation (CC) and Bland-Altman statistics for gray matter, white matter, and individual regions derived from the automated anatomic labeling (AAL) atlas. Results: The 2 methods showed similar results in gray matter ([15O]water, 55.2 ± 14.7 mL/100 g/min; eFBB, 55.9 ± 14.2 mL/100 g/min; difference, 0.7 ± 2.4 mL/100 g/min; P = 0.2) and white matter ([15O]water, 21.4 ± 5.6 mL/100 g/min; eFBB, 21.2 ± 5.3 mL/100 g/min; difference, -0.2 ± 1.0 mL/100 g/min; P = 0.4). The intrasubject CC for AAL-derived regions was high (0.91 ± 0.04). Intersubject CC in different AAL-derived regions was similarly high, ranging from 0.86 for midfrontal regions to 0.98 for temporal regions. There were no significant differences in performance between the methods in the amyloid-positive and amyloid-negative groups as well as participants with different cognitive statuses. Conclusion: We conclude that eFBB PET/MRI can provide robust CBF measurements, highlighting the capability of simultaneous PET/MRI to provide measurements of both CBF and amyloid burden in a single imaging session in participants with memory disorders.


Assuntos
Compostos de Anilina , Disfunção Cognitiva , Demência , Estilbenos , Masculino , Humanos , Feminino , Água , Radioisótopos de Oxigênio , Tomografia por Emissão de Pósitrons/métodos , Imageamento por Ressonância Magnética , Disfunção Cognitiva/diagnóstico por imagem , Circulação Cerebrovascular , Encéfalo/diagnóstico por imagem , Encéfalo/irrigação sanguínea
8.
Chin J Integr Med ; 30(3): 230-242, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37815727

RESUMO

OBJECTIVE: To examine the therapeutic effect of Fangji Fuling Decoction (FFD) on sepsis through network pharmacological analysis combined with in vitro and in vivo experiments. METHODS: A sepsis mouse model was constructed through intraperitoneal injection of 20 mg/kg lipopolysaccharide (LPS). RAW264.7 cells were stimulated by 250 ng/mL LPS to establish an in vitro cell model. Network pharmacology analysis identified the key molecular pathway associated with FFD in sepsis. Through ectopic expression and depletion experiments, the effect of FFD on multiple organ damage in septic mice, as well as on cell proliferation and apoptosis in relation to the mitogen-activated protein kinase 14/Forkhead Box O 3A (MAPK14/FOXO3A) signaling pathway, was analyzed. RESULTS: FFD reduced organ damage and inflammation in LPS-induced septic mice and suppressed LPS-induced macrophage apoptosis and inflammation in vitro (P<0.05). Network pharmacology analysis showed that FFD could regulate the MAPK14/FOXO signaling pathway during sepsis. As confirmed by in vitro cell experiments, FFD inhibited the MAPK14 signaling pathway or FOXO3A expression to relieve LPS-induced macrophage apoptosis and inflammation (P<0.05). Furthermore, FFD inhibited the MAPK14/FOXO3A signaling pathway to inhibit LPS-induced macrophage apoptosis in the lung tissue of septic mice (P<0.05). CONCLUSION: FFD could ameliorate the LPS-induced inflammatory response in septic mice by inhibiting the MAPK14/FOXO3A signaling pathway.


Assuntos
Proteína Quinase 14 Ativada por Mitógeno , Radioisótopos de Oxigênio , Sepse , Wolfiporia , Camundongos , Animais , Proteína Quinase 14 Ativada por Mitógeno/metabolismo , Lipopolissacarídeos/farmacologia , Sepse/complicações , Transdução de Sinais , Inflamação/tratamento farmacológico
9.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-1010324

RESUMO

OBJECTIVE@#To examine the therapeutic effect of Fangji Fuling Decoction (FFD) on sepsis through network pharmacological analysis combined with in vitro and in vivo experiments.@*METHODS@#A sepsis mouse model was constructed through intraperitoneal injection of 20 mg/kg lipopolysaccharide (LPS). RAW264.7 cells were stimulated by 250 ng/mL LPS to establish an in vitro cell model. Network pharmacology analysis identified the key molecular pathway associated with FFD in sepsis. Through ectopic expression and depletion experiments, the effect of FFD on multiple organ damage in septic mice, as well as on cell proliferation and apoptosis in relation to the mitogen-activated protein kinase 14/Forkhead Box O 3A (MAPK14/FOXO3A) signaling pathway, was analyzed.@*RESULTS@#FFD reduced organ damage and inflammation in LPS-induced septic mice and suppressed LPS-induced macrophage apoptosis and inflammation in vitro (P<0.05). Network pharmacology analysis showed that FFD could regulate the MAPK14/FOXO signaling pathway during sepsis. As confirmed by in vitro cell experiments, FFD inhibited the MAPK14 signaling pathway or FOXO3A expression to relieve LPS-induced macrophage apoptosis and inflammation (P<0.05). Furthermore, FFD inhibited the MAPK14/FOXO3A signaling pathway to inhibit LPS-induced macrophage apoptosis in the lung tissue of septic mice (P<0.05).@*CONCLUSION@#FFD could ameliorate the LPS-induced inflammatory response in septic mice by inhibiting the MAPK14/FOXO3A signaling pathway.


Assuntos
Camundongos , Animais , Proteína Quinase 14 Ativada por Mitógeno/metabolismo , Wolfiporia , Lipopolissacarídeos/farmacologia , Sepse/complicações , Transdução de Sinais , Inflamação/tratamento farmacológico , Radioisótopos de Oxigênio
10.
J Cereb Blood Flow Metab ; 44(6): 1024-1038, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38112197

RESUMO

Perinatal hypoxic-ischaemic encephalopathy (HIE) is the leading cause of irreversible brain damage resulting in serious neurological dysfunction among neonates. We evaluated the feasibility of positron emission tomography (PET) methodology with 15O-labelled gases without intravenous or tracheal cannulation for assessing temporal changes in cerebral blood flow (CBF) and cerebral metabolic rate for oxygen (CMRO2) in a neonatal HIE rat model. Sequential PET scans with spontaneous inhalation of 15O-gases mixed with isoflurane were performed over 14 days after the hypoxic-ischaemic insult in HIE pups and age-matched controls. CBF and CMRO2 in the injured hemispheres of HIE pups remarkably decreased 2 days after the insult, gradually recovering over 14 days in line with their increase found in healthy controls according to their natural maturation process. The magnitude of hemispheric tissue loss histologically measured after the last PET scan was significantly correlated with the decreases in CBF and CMRO2.This fully non-invasive imaging strategy may be useful for monitoring damage progression in neonatal HIE and for evaluating potential therapeutic outcomes.


Assuntos
Animais Recém-Nascidos , Circulação Cerebrovascular , Modelos Animais de Doenças , Hipóxia-Isquemia Encefálica , Radioisótopos de Oxigênio , Tomografia por Emissão de Pósitrons , Animais , Tomografia por Emissão de Pósitrons/métodos , Hipóxia-Isquemia Encefálica/metabolismo , Hipóxia-Isquemia Encefálica/diagnóstico por imagem , Ratos , Encéfalo/metabolismo , Encéfalo/diagnóstico por imagem , Oxigênio/metabolismo , Ratos Sprague-Dawley
11.
J Paediatr Child Health ; 59(9): 1039-1046, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37302132

RESUMO

AIM: The Northern Territory Neonatal Emergency Transport Service (NETS NT) pilot was created in April 2018 to expedite the transfer of critically unwell neonates to specialised interstate centres. The aim of this paper is to describe long-distance retrievals undertaken during the first 3 years of operation of the service. METHODS: A case series is described comprising neonates requiring long-distance aeromedical transfer (>2500 km) by NETS NT between April 2018 and June 2021. Data were obtained from hospital and transport service documentation. This was supplemented by four semi-structured interviews with transport staff. RESULTS: Thirty neonates were transferred via NETS NT during the investigation period, including 19 transfers >2500 km. Of these, 18/19 (94.7%) required respiratory support, 8/19 (42.1%) were intubated and 4/19 (21.1%) required inotropic support. The average length of transport was 7.5 h (5.6-8.9). Twelve patients had in-flight documentation available. Eight required increased oxygen administration 8/12 (66.6%). The median change in FiO2 was an increase of 0.02 (-0.05 to 0.45). CONCLUSIONS: The NETS NT has been successfully established to transport high-risk neonates to interstate quaternary health services when required. Future recommendations for the service include ongoing implementation of systems and processes to strengthen all aspects of governance and operations using suitably adapted resources from established Australian retrievals services.


Assuntos
Serviços Médicos de Emergência , Recém-Nascido , Humanos , Austrália , Radioisótopos de Oxigênio , Transporte de Pacientes
13.
Eur Heart J Cardiovasc Imaging ; 24(3): 304-311, 2023 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-36585755

RESUMO

AIMS: Data on the warranty period of coronary computed tomography angiography (CTA) and combined coronary CTA/positron emission tomography (PET) are scarce. The present study aimed to determine the event-free (warranty) period after coronary CTA and the potential additional value of PET. METHOD AND RESULTS: Patients with suspected but not previously diagnosed coronary artery disease (CAD) who underwent coronary CTA and/or [15O]H2O PET were categorized based upon coronary CTA as no CAD, non-obstructive CAD, or obstructive CAD. A hyperaemic myocardial blood flow (MBF) ≤ 2.3 mL/min/g was considered abnormal. The warranty period was defined as the time for which the cumulative event rate of death and non-fatal myocardial infarction (MI) was below 5%. Of 2575 included patients (mean age 61.4 ± 9.9 years, 41% male), 1319 (51.2%) underwent coronary CTA only and 1237 (48.0%) underwent combined coronary CTA/PET. During a median follow-up of 7.0 years 163 deaths and 68 MIs occurred. The warranty period for patients with no CAD on coronary CTA was ≥10 years, whereas patients with non-obstructive CAD had a 5-year warranty period. Patients with obstructive CAD and normal hyperaemic MBF had a 2-year longer warranty period compared to patients with obstructive CAD and abnormal MBF (3 years vs. 1 year). CONCLUSION: As standalone imaging, the warranty period for normal coronary CTA is ≥10 years, whereas patients with non-obstructive CAD have a warranty period of 5 years. Normal PET yielded a 2-year longer warranty period in patients with obstructive CAD.


Assuntos
Angiografia por Tomografia Computadorizada , Doença da Artéria Coronariana , Humanos , Masculino , Pessoa de Meia-Idade , Idoso , Feminino , Radioisótopos de Oxigênio , Angiografia Coronária/métodos , Valor Preditivo dos Testes , Doença da Artéria Coronariana/diagnóstico por imagem , Tomografia por Emissão de Pósitrons/métodos
15.
J Magn Reson Imaging ; 56(4): 1243-1255, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35226390

RESUMO

BACKGROUND: Quantification of cerebral blood flow (CBF) with [15 O]H2 O-positron emission tomography (PET) requires arterial sampling to measure the input function. This invasive procedure can be avoided by extracting an image-derived input function (IDIF); however, IDIFs are sensitive to partial volume errors due to the limited spatial resolution of PET. PURPOSE: To present an alternative hybrid PET/MR imaging of CBF (PMRFlowIDIF ) that uses phase-contrast (PC) MRI measurements of whole-brain (WB) CBF to calibrate an IDIF extracted from a WB [15 O]H2 O time-activity curve. STUDY TYPE: Technical development and validation. ANIMAL MODEL: Twelve juvenile Duroc pigs (83% female). POPULATION: Thirteen healthy individuals (38% female). FIELD STRENGTH/SEQUENCES: 3 T; gradient-echo PC-MRI. ASSESSMENT: PMRFlowIDIF was validated against PET-only in a porcine model that included arterial sampling. CBF maps were generated by applying PMRFlowIDIF and two previous PMRFlow methods (PC-PET and double integration method [DIM]) to [15 O]H2 O-PET data acquired from healthy individuals. STATISTICAL TESTS: PMRFlow and PET CBF measurements were compared with regression and correlation analyses. Paired t-tests were performed to evaluate differences. Potential biases were assessed using one-sample t-tests. Reliability was assessed by intraclass correlation coefficients. Statistical significance: α  = 0.05. RESULTS: In the animal study, strong agreement was observed between PMRFlowIDIF (average voxel-wise CBF, 58.0 ± 16.9 mL/100 g/min) and PET (63.0 ± 18.9 mL/100 g/min). In the human study, PMRFlowDIM (y = 1.11x - 5.16, R2  = 0.99 ± 0.01) and PMRFlowPC-PET (y = 0.87x + 3.82, R2  = 0.97 ± 0.02) performed similarly to PMRFlowIDIF, and CBF was within the expected range (eg, 49.7 ± 7.2 mL/100 g/min for gray matter). DATA CONCLUSION: Accuracy of PMRFlowIDIF was confirmed in the animal study with the primary source of error attributed to differences in WB CBF measured by PC MRI and PET. In the human study, differences in CBF from PMRFlowIDIF , PMRFlowDIM , and PMRFlowPC-PET were due to the latter two not accounting for blood-borne activity. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY STAGE: 1.


Assuntos
Circulação Cerebrovascular , Tomografia por Emissão de Pósitrons , Animais , Encéfalo/irrigação sanguínea , Encéfalo/diagnóstico por imagem , Circulação Cerebrovascular/fisiologia , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Radioisótopos de Oxigênio , Tomografia por Emissão de Pósitrons/métodos , Reprodutibilidade dos Testes , Suínos
16.
Clin Nucl Med ; 47(3): e230-e239, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35025789

RESUMO

PURPOSE: This study aimed to investigate functional abnormalities in the brain of patients with neurological adverse effects following COVID-19 (coronavirus disease 2019) vaccination using 18F-FDG PET/MRI and 15O-water PET. METHODS: Eight patients (1 man and 7 women, aged 26-47 years [median age, 36.5 years]) who experienced neurological symptoms after the first COVID-19 vaccination underwent CT, MRI, 18F-FDG PET/MRI, and 15O-water PET of the brain. After 7 days, each patient underwent a follow-up 18F-FDG PET/MRI and 15O-water PET of the brain. Imaging data were analyzed using visual and semiquantitative analyses, which included a cluster subtraction workflow (P = 0.05). RESULTS: There was no evidence of vascular abnormalities, acute infarction, or hemorrhage on the CT or MRI scans. On the 15O-water PET images, 1 patient had mildly significant decreases in perfusion in the bilateral thalamus and bilateral cerebellum, and another patient showed a diffuse increase in perfusion in the cerebral white matter. The visual and semiquantitative analyses showed hypometabolism in the bilateral parietal lobes in all 8 patients on both the first and follow-up 18F-FDG PET/MRI scans. Metabolic changes in the bilateral cuneus were also observed during the first visit; all patients exhibited neurological symptoms. Moreover, 6 patients showed hypometabolism, and 2 patients showed hypermetabolism. CONCLUSION: All regions of metabolic abnormality were part of the fear network model that has been implicated in anxiety. Our study findings support the concepts of and provide evidence for the immunization stress-related response and the biopsychosocial model.


Assuntos
COVID-19 , Fluordesoxiglucose F18 , Adulto , Encéfalo/diagnóstico por imagem , Vacinas contra COVID-19 , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Radioisótopos de Oxigênio , Projetos Piloto , Tomografia por Emissão de Pósitrons , SARS-CoV-2 , Vacinação , Água
17.
J Nucl Cardiol ; 29(3): 1119-1128, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-33146863

RESUMO

BACKGROUND: Quantification of myocardial blood flow (MBF) with PET requires accurate attenuation correction, which is performed using a separate CT. Misalignment between PET and CT scans has been reported to be a common problem. The purpose of the present study was to assess the effect of PET CT misalignment on the quantitative accuracy of cardiac 15O-water PET. METHODS: Ten clinical patients referred for evaluation of ischemia and assessment of MBF with 15O-water were included in the study. Eleven different misalignments between PET and CT were induced in 6 different directions with 10 and 20 mm amplitudes: caudal (+Z), cranial (- Z), lateral (±X), anterior (+Y), and anterior combined with cranial (+ Y and - Z). Blood flow was quantified from rates of washout (MBF) and uptake (transmural MBF, MBFt) for the whole left ventricle and the three coronary territories. The results from all misalignments were compared to the original scan without misalignment. RESULTS: MBF was only minorly affected by misalignments, but larger effects were seen in MBFt. On the global level, average absolute deviation across all misalignments for MBF was 1.7% ± 1.4% and for MBFt 5.4% ± 3.2 Largest deviation for MBF was - 4.8% ± 5.8% (LCX, X + 20) and for MBFt - 19.3% ± 9.6% (LCX, X + 20). In general, larger effects were seen in LAD and LCX compared to in RCA. CONCLUSION: The quantitative accuracy of MBF from 15O-water PET, based on the washout of the tracer, is only to a minor extent affected by misalignment between PET and CT.


Assuntos
Circulação Coronária , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Circulação Coronária/fisiologia , Coração , Humanos , Radioisótopos de Oxigênio , Tomografia por Emissão de Pósitrons , Tomografia Computadorizada por Raios X , Água
19.
J Nucl Cardiol ; 29(4): 1742-1752, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-33655448

RESUMO

BACKGROUND: Patient motion is a common problem during cardiac PET. The purpose of the present study was to investigate to what extent motions influence the quantitative accuracy of cardiac 15O-water PET/CT and to develop a method for automated motion detection. METHOD: Frequency and magnitude of motion was assessed visually using data from 50 clinical 15O-water PET/CT scans. Simulations of 4 types of motions with amplitude of 5 to 20 mm were performed based on data from 10 scans. An automated motion detection algorithm was evaluated on clinical and simulated motion data. MBF and PTF of all simulated scans were compared to the original scan used as reference. RESULTS: Patient motion was detected in 68% of clinical cases by visual inspection. All observed motions were small with amplitudes less than half the LV wall thickness. A clear pattern of motion influence was seen in the simulations with a decrease of myocardial blood flow (MBF) in the region of myocardium to where the motion was directed. The perfusable tissue fraction (PTF) trended in the opposite direction. Global absolute average deviation of MBF was 3.1% ± 1.8% and 7.3% ± 6.3% for motions with maximum amplitudes of 5 and 20 mm, respectively. Automated motion detection showed a sensitivity of 90% for simulated motions ≥ 10 mm but struggled with the smaller (≤ 5 mm) simulated (sensitivity 45%) and clinical motions (accuracy 48%). CONCLUSION: Patient motion can impair the quantitative accuracy of MBF. However, at typically occurring levels of patient motion, effects are similar to or only slightly larger than inter-observer variability, and downstream clinical effects are likely negligible.


Assuntos
Circulação Coronária , Água , Humanos , Movimento (Física) , Radioisótopos de Oxigênio , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Tomografia por Emissão de Pósitrons/métodos , Reprodutibilidade dos Testes
20.
Eur Heart J Cardiovasc Imaging ; 23(2): 229-237, 2022 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-33982071

RESUMO

AIMS: To compare cardiac magnetic resonance (CMR) measurement of T1 reactivity (ΔT1) with [15O]H2O positron emission tomography (PET) measurements of quantitative myocardial perfusion. METHODS AND RESULTS: Forty-three patients with suspected obstructed coronary artery disease underwent [15O]H2O PET and CMR at 1.5-T, including rest and adenosine stress T1 mapping (ShMOLLI) and late gadolinium enhancement to rule out presence of scar tissue. ΔT1 was determined for the three main vascular territories and compared with [15O]H2O PET-derived regional stress myocardial blood flow (MBF) and myocardial flow reserve (MFR). ΔT1 showed a significant but poor correlation with stress MBF (R2 = 0.04, P = 0.03) and MFR (R2 = 0.07, P = 0.004). Vascular territories with impaired stress MBF (i.e. ≤2.30 mL/min/g) demonstrated attenuated ΔT1 compared with vascular territories with preserved stress MBF (2.9 ± 2.2% vs. 4.1 ± 2.2%, P = 0.008). In contrast, ΔT1 did not differ between vascular territories with impaired (i.e. <2.50) and preserved MFR (3.2 ± 2.6% vs. 4.0 ± 2.1%, P = 0.25). Receiver operating curve analysis of ΔT1 resulted in an area under the curve of 0.66 [95% confidence interval (CI): 0.57-0.75, P = 0.009] for diagnosing impaired stress MBF and 0.62 (95% CI: 0.53-0.71, P = 0.07) for diagnosing impaired MFR. CONCLUSIONS: CMR stress T1 mapping has poor agreement with [15O]H2O PET measurements of absolute myocardial perfusion. Stress T1 and ΔT1 are lower in vascular territories with reduced stress MBF but have poor accuracy for detecting impaired myocardial perfusion.


Assuntos
Doença da Artéria Coronariana , Imagem de Perfusão do Miocárdio , Meios de Contraste , Doença da Artéria Coronariana/diagnóstico por imagem , Circulação Coronária , Gadolínio , Humanos , Espectroscopia de Ressonância Magnética , Imagem de Perfusão do Miocárdio/métodos , Radioisótopos de Oxigênio , Tomografia por Emissão de Pósitrons/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...