Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.887
Filtrar
1.
Molecules ; 29(11)2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38893315

RESUMO

Radiotherapy is an essential component of the treatment regimens for many cancer patients. Despite recent technological advancements to improve dose delivery techniques, the dose escalation required to enhance tumor control is limited due to the inevitable toxicity to the surrounding healthy tissue. Therefore, the local enhancement of dosing in tumor sites can provide the necessary means to improve the treatment modality. In recent years, the emergence of nanotechnology has facilitated a unique opportunity to increase the efficacy of radiotherapy treatment. The application of high-atomic-number (Z) nanoparticles (NPs) can augment the effects of radiotherapy by increasing the sensitivity of cells to radiation. High-Z NPs can inherently act as radiosensitizers as well as serve as targeted delivery vehicles for radiosensitizing agents. In this work, the therapeutic benefits of high-Z NPs as radiosensitizers, such as their tumor-targeting capabilities and their mechanisms of sensitization, are discussed. Preclinical data supporting their application in radiotherapy treatment as well as the status of their clinical translation will be presented.


Assuntos
Nanopartículas , Neoplasias , Radiossensibilizantes , Humanos , Radiossensibilizantes/química , Radiossensibilizantes/uso terapêutico , Radiossensibilizantes/administração & dosagem , Neoplasias/radioterapia , Neoplasias/tratamento farmacológico , Nanopartículas/química , Nanopartículas/uso terapêutico , Animais , Radioterapia/métodos
3.
J Exp Clin Cancer Res ; 43(1): 159, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38840237

RESUMO

BACKGROUND: Renal cell carcinoma (RCC) was historically considered to be less responsive to radiation therapy (RT) compared to other cancer indications. However, advancements in precision high-dose radiation delivery through single-fraction and multi-fraction stereotactic ablative radiotherapy (SABR) have led to better outcomes and reduced treatment-related toxicities, sparking renewed interest in using RT to treat RCC. Moreover, numerous studies have revealed that certain therapeutic agents including chemotherapies can increase the sensitivity of tumors to RT, leading to a growing interest in combining these treatments. Here, we developed a rational combination of two radiosensitizers in a tumor-targeted liposomal formulation for augmenting RT in RCC. The objective of this study is to assess the efficacy of a tumor-targeted liposomal formulation combining the mTOR inhibitor everolimus (E) with the survivin inhibitor YM155 (Y) in enhancing the sensitivity of RCC tumors to radiation. EXPERIMENTAL DESIGN: We slightly modified our previously published tumor-targeted liposomal formulation to develop a rational combination of E and Y in a single liposomal formulation (EY-L) and assessed its efficacy in RCC cell lines in vitro and in RCC tumors in vivo. We further investigated how well EY-L sensitizes RCC cell lines and tumors toward radiation and explored the underlying mechanism of radiosensitization. RESULTS: EY-L outperformed the corresponding single drug-loaded formulations E-L and Y-L in terms of containing primary tumor growth and improving survival in an immunocompetent syngeneic mouse model of RCC. EY-L also exhibited significantly higher sensitization of RCC cells towards radiation in vitro than E-L and Y-L. Additionally, EY-L sensitized RCC tumors towards radiation therapy in xenograft and murine RCC models. EY-L mediated induction of mitotic catastrophe via downregulation of multiple cell cycle checkpoints and DNA damage repair pathways could be responsible for the augmentation of radiation therapy. CONCLUSION: Taken together, our study demonstrated the efficacy of a strategic combination therapy in sensitizing RCC to radiation therapy via inhibition of DNA damage repair and a substantial increase in mitotic catastrophe. This combination therapy may find its use in the augmentation of radiation therapy during the treatment of RCC patients.


Assuntos
Carcinoma de Células Renais , Reparo do DNA , Neoplasias Renais , Survivina , Serina-Treonina Quinases TOR , Ensaios Antitumorais Modelo de Xenoenxerto , Carcinoma de Células Renais/patologia , Carcinoma de Células Renais/radioterapia , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/metabolismo , Animais , Survivina/metabolismo , Humanos , Camundongos , Linhagem Celular Tumoral , Neoplasias Renais/patologia , Neoplasias Renais/radioterapia , Neoplasias Renais/tratamento farmacológico , Reparo do DNA/efeitos dos fármacos , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo , Mitose/efeitos dos fármacos , Mitose/efeitos da radiação , Imidazóis/farmacologia , Dano ao DNA , Everolimo/farmacologia , Naftoquinonas/farmacologia , Naftoquinonas/uso terapêutico , Radiossensibilizantes/farmacologia , Radiossensibilizantes/uso terapêutico , Lipossomos/farmacologia , Inibidores de MTOR/farmacologia , Inibidores de MTOR/uso terapêutico
4.
Bull Exp Biol Med ; 176(5): 626-630, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38730109

RESUMO

We studied the antitumor activity of the combined use of local proton irradiation in two modes (10 and 31 Gy) with preliminary intra-tumoral injection of two types of bismuth nanoparticles differing in surface coating: coated with the amphiphilic molecule Pluronic-F127 or Silane-PEG (5 kDa)-COOH polymer. Nanoparticles were used in doses of 0.75 and 1.5 mg/mouse. In two independent series on experimental tumor model (solid Ehrlich carcinoma), bismuth nanoparticles of both modifications injected directly into the tumor enhanced the antitumor effects of proton therapy. Moreover, the radiosensitizing effect of bismuth nanoparticles administered via this route increased with the increasing the doses of nanoparticles and the doses of radiation exposure. In our opinion, these promising data obtained for the first time extend the possibilities of treating malignant neoplasms.


Assuntos
Bismuto , Carcinoma de Ehrlich , Poloxâmero , Terapia com Prótons , Carcinoma de Ehrlich/radioterapia , Carcinoma de Ehrlich/tratamento farmacológico , Carcinoma de Ehrlich/patologia , Animais , Bismuto/uso terapêutico , Bismuto/química , Camundongos , Terapia com Prótons/métodos , Poloxâmero/química , Radiossensibilizantes/uso terapêutico , Radiossensibilizantes/química , Radiossensibilizantes/farmacologia , Polietilenoglicóis/química , Nanopartículas Metálicas/química , Nanopartículas Metálicas/uso terapêutico , Nanopartículas/química , Feminino
5.
ACS Appl Mater Interfaces ; 16(14): 17242-17252, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38556729

RESUMO

Protective autophagy and DNA damage repair lead to tumor radio-resistance. Some hypoxic tumors exhibit a low radiation energy absorption coefficient in radiation therapy. High doses of X-rays may lead to side effects in the surrounding normal tissues. In order to overcome the radio-resistance and improve the efficacy of radiotherapy based on the characteristics of the tumor microenvironment, the development of radiosensitizers has attracted much attention. In this study, a Janus ACSP nanoparticle (NP) was developed for chemodynamic therapy and radiosensitization. The reactive oxygen species generated by the Fenton-like reaction regulated the distribution of cell cycles from a radioresistant phase to a radio-sensitive phase. The high-Z element, Au, enhanced the production of hydroxyl radicals (•OH) under X-ray radiation, promoting DNA damage and cell apoptosis. The NP delayed DNA damage repair by interfering with certain proteins involved in the DNA repair signaling pathway. In vivo experiments demonstrated that the combination of the copper-ion-based Fenton-like reaction and low-dose X-ray radiation enhanced the effectiveness of radiotherapy, providing a novel approach for synergistic chemodynamic and radiosensitization therapy. This study provides valuable insights and strategies for the development and application of NPs in cancer treatment.


Assuntos
Nanopartículas , Neoplasias , Radiossensibilizantes , Humanos , Neoplasias/tratamento farmacológico , Radiossensibilizantes/farmacologia , Radiossensibilizantes/uso terapêutico , Apoptose , Linhagem Celular Tumoral , Microambiente Tumoral , Peróxido de Hidrogênio
6.
Int J Mol Sci ; 25(7)2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38612455

RESUMO

Recently, it was established that ferroptosis, a type of iron-dependent regulated cell death, plays a prominent role in radiotherapy-triggered cell death. Accordingly, ferroptosis inducers attracted a lot of interest as potential radio-synergizing drugs, ultimately enhancing radioresponses and patient outcomes. Nevertheless, the tumor microenvironment seems to have a major impact on ferroptosis induction. The influence of hypoxic conditions is an area of interest, as it remains the principal hurdle in the field of radiotherapy. In this review, we focus on the implications of hypoxic conditions on ferroptosis, contemplating the plausibility of using ferroptosis inducers as clinical radiosensitizers. Furthermore, we dive into the prospects of drug repurposing in the domain of ferroptosis inducers and radiosensitizers. Lastly, the potential adverse effects of ferroptosis inducers on normal tissue were discussed in detail. This review will provide an important framework for subsequent ferroptosis research, ascertaining the feasibility of ferroptosis inducers as clinical radiosensitizers.


Assuntos
Ferroptose , Radioterapia (Especialidade) , Radiossensibilizantes , Morte Celular Regulada , Humanos , Radiossensibilizantes/farmacologia , Radiossensibilizantes/uso terapêutico , Morte Celular , Hipóxia
7.
ACS Nano ; 18(11): 8325-8336, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38447099

RESUMO

Radiotherapy is a mainstay treatment used in clinics for locoregional therapy, although it still represents a great challenge to improve the sensitivity and accuracy of radiotherapy for tumors. Here, we report the conjugated polymer, polydiiododiacetylene (PIDA), with an iodine content of 84 wt %, as a highly effective computed tomography (CT) contrast agent and tumor microenvironment-responsive radiosensitizer. PIDA exhibited several key properties that contribute to the improvement of precision radiotherapy. The integrated PIDA nanofibers confined within the tumor envelope demonstrated amplified CT intensity and prolonged retention, providing an accurate calculation of dose distribution and precise radiation delivery for CT image-guided radiotherapy. Therefore, our strategy pioneers PIDA nanofibers as a bridge to cleverly connect a fiducial marker to guide accurate radiotherapy and a radiosensitizer to improve tumor sensitivity, thereby minimizing potential damage to surrounding tissues and facilitating on-demand therapeutic intervention in tumors.


Assuntos
Nanofibras , Neoplasias , Polímero Poliacetilênico , Radiossensibilizantes , Radioterapia Guiada por Imagem , Humanos , Carbono , Microambiente Tumoral , Radiossensibilizantes/farmacologia , Radiossensibilizantes/uso terapêutico
8.
Adv Mater ; 36(19): e2312588, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38316447

RESUMO

Cancer cells can upregulate the MYC expression to repair the radiotherapy-triggered DNA damage, aggravating therapeutic resistance and tumor immunosuppression. Epigenetic treatment targeting the MYC-transcriptional abnormality may intensively solve this clinical problem. Herein, 5-Aza (a DNA methyltransferase inhibitor) and ITF-2357 (a histone deacetylase inhibitor) are engineered into a tungsten-based nano-radiosensitizer (PWAI), to suppress MYC rising and awaken robust radiotherapeutic antitumor immunity. Individual 5-Aza depletes MYC expression but cannot efficiently awaken radiotherapeutic immunity. This drawback can be overcome by the addition of ITF-2357, which triggers cancer cellular type I interferon (IFN-I) signaling. Coupling 5-Aza with ITF-2357 ensures that PWAI does not evoke the treated model with high MYC-related immune resistance while amplifying the radiotherapeutic tumor killing, and more importantly promotes the generation of IFN-I signal-related proteins involving IFN-α and IFN-ß. Unlike the radiation treatment alone, PWAI-triggered immuno-radiotherapy remarkably enhances antitumor immune responses involving the tumor antigen presentation by dendritic cells, and improves intratumoral recruitment of cytotoxic T lymphocytes and their memory-phenotype formation in 4T1 tumor-bearing mice. Downgrading the radiotherapy-induced MYC overexpression via the dual-epigenetic reprogramming strategy may elicit a robust immuno-radiotherapy.


Assuntos
Epigênese Genética , Imunoterapia , Proteínas Proto-Oncogênicas c-myc , Radiossensibilizantes , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Epigênese Genética/efeitos dos fármacos , Terapia de Imunossupressão/métodos , Imunoterapia/métodos , Interferon Tipo I/metabolismo , Nanopartículas/química , Neoplasias/terapia , Neoplasias/imunologia , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Radiossensibilizantes/farmacologia , Radiossensibilizantes/química , Radiossensibilizantes/uso terapêutico , Ácidos Hidroxâmicos/farmacologia , Ácidos Hidroxâmicos/uso terapêutico , Metilases de Modificação do DNA/antagonistas & inibidores , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico
9.
Adv Sci (Weinh) ; 11(17): e2308905, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38419379

RESUMO

The precise theranostics of rheumatoid arthritis (RA) remains a formidable challenge in clinical practice. Exploring novel applications of contemporary therapeutic approaches like chemo-radiotherapy is promising as a highly effective strategy for RA. Herein, a novel activatable nanoradiosensitizer-40 (denoted as IRnR-40) is developed, based on encapsulating the clinically approved drugs cisplatin (DDP) and indocyanine green (ICG) within a gelatin shell to achieve second near-infrared fluorescence (NIR-II FL) imaging-guided safe-dose synergetic chemo-radiotherapy. The high concentration of matrix metalloproteinase-9 (MMP-9) in the RA microenvironment plays a pivotal role in triggering the responsive degradation of IRnR-40, leading to the rapid release of functional molecules DDP and ICG. The released ICG serves the dual purpose of illuminating the inflamed joints to facilitate accurate target volume delineation for guiding radiotherapy, as well as acting as a real-time reporter for quantifying the release of DDP to monitor efficacy. Meanwhile, the released DDP achieves highly effective synergistic chemotherapy and radiosensitization for RA via the dual reactive oxygen species (ROS)-mediated mitochondrial apoptotic pathway. To sum up, this activatable nanoradiosensitizer IRnR-40 is believed to be the first attempt to achieve efficient NIR-II FL imaging-guided safe-dose chemo-radiotherapy for RA, which provides a new paradigm for precise theranostics of refractory benign diseases.


Assuntos
Artrite Reumatoide , Cisplatino , Verde de Indocianina , Imagem Óptica , Artrite Reumatoide/diagnóstico por imagem , Artrite Reumatoide/tratamento farmacológico , Animais , Verde de Indocianina/administração & dosagem , Camundongos , Imagem Óptica/métodos , Cisplatino/administração & dosagem , Cisplatino/uso terapêutico , Modelos Animais de Doenças , Radiossensibilizantes/administração & dosagem , Radiossensibilizantes/uso terapêutico , Humanos , Quimiorradioterapia/métodos
10.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1869(4): 159468, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38408538

RESUMO

Radiotherapy is one of the most commonly used cancer therapies with many benefits including low toxicity to healthy tissues. However, a major problem in radiotherapy is cancer radioresistance. To enhance the effect of this kind of therapy several approaches have been proposed such as the use of radiosensitizers. A combined treatment of radiotherapy and radiosensitizing drugs leads to a greater effect on cancer cells than anticipated from the addition of both responses (synergism). In this study, high-definition FT-IR imaging was applied to follow lipid accumulation in prostate cancer cells as a response to X-ray irradiation, radiosensitizing drugs, and a combined treatment of X-rays and the drugs. Lipid accumulation induced in the cells by an increasing X-ray dose and the presence of the drugs was analyzed using Principal Component Analysis and lipid staining. Finally, the synergistic effect of the combined therapy (X-rays and radiosensitizers) was confirmed by calculations of the integral intensity of the 2850 cm-1 band.


Assuntos
Neoplasias da Próstata , Radiossensibilizantes , Masculino , Humanos , Radiossensibilizantes/farmacologia , Radiossensibilizantes/uso terapêutico , Raios X , Espectroscopia de Infravermelho com Transformada de Fourier , Linhagem Celular Tumoral , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/radioterapia , Lipídeos/uso terapêutico
11.
Mol Cancer Ther ; 23(5): 662-671, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38224566

RESUMO

Radioresistance of melanoma brain metastases limits the clinical utility of conventionally fractionated brain radiation in this disease, and strategies to improve radiation response could have significant clinical impact. The catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) is critical for repair of radiation-induced DNA damage, and inhibitors of this kinase can have potent effects on radiation sensitivity. In this study, the radiosensitizing effects of the DNA-PKcs inhibitor peposertib were evaluated in patient-derived xenografts of melanoma brain metastases (M12, M15, M27). In clonogenic survival assays, peposertib augmented radiation-induced killing of M12 cells at concentrations ≥100 nmol/L, and a minimum of 16 hours exposure allowed maximal sensitization. This information was integrated with pharmacokinetic modeling to define an optimal dosing regimen for peposertib of 125 mpk dosed just prior to and 7 hours after irradiation. Using this drug dosing regimen in combination with 2.5 Gy × 5 fractions of radiation, significant prolongation in median survival was observed in M12-eGFP (104%; P = 0.0015) and M15 (50%; P = 0.03), while more limited effects were seen in M27 (16%, P = 0.04). These data support the concept of developing peposertib as a radiosensitizer for brain metastases and provide a paradigm for integrating in vitro and pharmacokinetic data to define an optimal radiosensitizing regimen for potent DNA repair inhibitors.


Assuntos
Neoplasias Encefálicas , Proteína Quinase Ativada por DNA , Melanoma , Radiossensibilizantes , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Humanos , Neoplasias Encefálicas/secundário , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/radioterapia , Camundongos , Proteína Quinase Ativada por DNA/antagonistas & inibidores , Radiossensibilizantes/farmacologia , Radiossensibilizantes/farmacocinética , Radiossensibilizantes/uso terapêutico , Melanoma/tratamento farmacológico , Melanoma/patologia , Linhagem Celular Tumoral , Sulfonas/farmacologia , Feminino , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/farmacocinética , Inibidores de Proteínas Quinases/uso terapêutico
12.
Int J Nanomedicine ; 19: 709-725, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38283195

RESUMO

Background: Radiotherapy is a widely used clinical tool for tumor treatment but can cause systemic toxicity if excessive radiation is administered. Although numerous nanoparticles have been developed as radiosensitizers to reduce the required dose of X-ray irradiation, they often have limitations, such as passive reliance on radiation-induced apoptosis in tumors, and little consider the unique tumor microenvironment that contributes radiotherapy resistance. Methods: In this study, we developed and characterized a novel self-assembled nanoparticle containing dysprosium ion and manganese ion (Dy/Mn-P). We systematically investigated the potential of Dy/Mn-P nanoparticles (NPs) as a reactive oxygen species (ROS) amplifier and radiosensitizer to enhance radiation therapy and modulate the tumor microenvironment at the cellular level. Additionally, we evaluated the effect of Dy/Mn-P on the stimulator of interferon genes (STING), an innate immune signaling pathway. Results: Physicochemical analysis demonstrated the prepared Dy/Mn-P NPs exhibited excellent dispersibility and stability, and degraded rapidly at lower pH values. Furthermore, Dy/Mn-P was internalized by cells and exhibited selective toxicity towards tumor cells compared to normal cells. Our findings also revealed that Dy/Mn-P NPs improved the tumor microenvironment and significantly increased ROS generation under ionizing radiation, resulting in a ~70% increase in ROS levels compared to radiation therapy alone. This enhanced ROS generation inhibited ~92% of cell clone formation and greatly contributed to cytoplasmic DNA exposure. Subsequently, the activation of the STING pathway was observed, leading to the secretion of pro-inflammatory immune factors and maturation of dendritic cells (DCs). Conclusion: Our study demonstrates that Dy/Mn-P NPs can potentiate tumor radiotherapy by improving the tumor microenvironment and increasing endogenous ROS levels within the tumor. Furthermore, Dy/Mn-P can amplify the activation of the STING pathway during radiotherapy, thereby triggering an anti-tumor immune response. This novel approach has the potential to expand the application of radiotherapy in tumor treatment.


Assuntos
Nanopartículas , Neoplasias , Radiossensibilizantes , Humanos , Espécies Reativas de Oxigênio/metabolismo , Microambiente Tumoral , Neoplasias/radioterapia , Neoplasias/tratamento farmacológico , Radiossensibilizantes/uso terapêutico , Nanopartículas/química , Concentração de Íons de Hidrogênio
13.
Phytother Res ; 38(2): 464-469, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36897074

RESUMO

Curcumin has antineoplastic properties and is considered a chemotherapeutic and chemopreventive agent. Curcumin may be associated with radiation therapy (RT) as a radiosensitizer for cancer cells and a radioprotector for normal cells. In principle, it may result in a reduction of RT dosage for the same therapeutic effect on cancer cells, and further reduced damage to normal cells. Though the overall level of evidence is modest, limited to in vivo and in vitro experiences and practically no clinical trials, as the risks of adverse effects are extremely low, it is reasonable to promote the general supplementation with curcumin during RT targeting the reduction of side effects through anti-inflammatory mechanisms.


Assuntos
Antineoplásicos , Curcumina , Radiossensibilizantes , Curcumina/farmacologia , Curcumina/uso terapêutico , Antineoplásicos/farmacologia , Radiossensibilizantes/farmacologia , Radiossensibilizantes/uso terapêutico
14.
Adv Sci (Weinh) ; 11(6): e2306190, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38049204

RESUMO

Radiotherapy (RT) resistance is an enormous challenge in glioblastoma multiforme (GBM) treatment, which is largely associated with DNA repair, poor distribution of reactive radicals in tumors, and limited delivery of radiosensitizers to the tumor sites. Inspired by the aberrant upregulation of RAD51 (a critical protein of DNA repair), scavenger receptor B type 1 (SR-B1), and C-C motif chemokine ligand 5 (CCL5) in GBM patients, a reduction-sensitive nitric oxide (NO) donor conjugate of gemcitabine (RAD51 inhibitor) (NG) is synthesized as radio-sensitizer and a CCL5 peptide-modified bioinspired lipoprotein system of NG (C-LNG) is rationally designed, aiming to preferentially target the tumor sites and overcome the RT resistance. C-LNG can preferentially accumulate at the orthotopic GBM tumor sites with considerable intratumor permeation, responsively release the gemcitabine and NO, and then generate abundant peroxynitrite (ONOO- ) upon X-ray radiation, thereby producing a 99.64% inhibition of tumor growth and a 71.44% survival rate at 120 days in GL261-induced orthotopic GBM tumor model. Therefore, the rationally designed bioinspired lipoprotein of NG provides an essential strategy to target GBM and overcome RT resistance.


Assuntos
Glioblastoma , Oxidiazóis , Radiossensibilizantes , Humanos , Glioblastoma/tratamento farmacológico , Glioblastoma/radioterapia , Glioblastoma/genética , Gencitabina , Linhagem Celular Tumoral , Radiossensibilizantes/farmacologia , Radiossensibilizantes/uso terapêutico , Lipoproteínas
15.
Anticancer Agents Med Chem ; 24(1): 50-57, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37921146

RESUMO

BACKGROUND: Numerous studies have proven the efficacy and safety of natural products, and are widely used as attractive cancer treatments. The investigation of effective natural products for improving cancer treatment is a promising strategy. Combination treatment with radiosensitizers and radiotherapy (RT) is considered necessary for therapeutic improvement in head and neck squamous cell carcinoma(HNSCC). OBJECTIVE: This study aims to investigate whether Ephedra sinica (ES) extract could induce selective cell death in cancer cells and serve as a radiosensitizer for HNSCC. METHODS: HNSCC cells were pretreated with ES extract before radiation, and the radiosensitizing activity was assessed using a colony formation assay. Radiation-induced cell death was evaluated using an annexinV-FITC assay. Western blotting was performed to confirm cell death-related gene expression, including apoptosis and necrosis markers. RESULTS: ES extract significantly inhibited HNSCC cell viability (FaDu and SNU1076), while having minimal effect on normal HaCaT cells. When HNSCC cells were irradiated with 2, 4, or 8 Gy and cultured with ES extract (25 µg/mL), they exhibited increased radiation sensitivity compared to non-treated cells. The combination of ES extract and radiation resulted in increased cell death compared to non-treated, ES-treated, or irradiated cells. The apoptosis marker BAX and necrosis marker p-MLKL expression levels were also elevated following the combination treatment. CONCLUSION: ES extract demonstrated significant cytotoxic potential in HNSCC cells without affecting normal cells. It enhanced the radiosensitivity of HNSCC cells by upregulating BAX and p-MLKL expression, leading to increased cell death. These results suggest ES extract exhibits a potential radiosensitizing capacity in HNSCC.


Assuntos
Produtos Biológicos , Carcinoma de Células Escamosas , Ephedra sinica , Neoplasias de Cabeça e Pescoço , Radiossensibilizantes , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Proteína X Associada a bcl-2/genética , Carcinoma de Células Escamosas/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/radioterapia , Linhagem Celular Tumoral , Morte Celular , Apoptose , Radiossensibilizantes/farmacologia , Radiossensibilizantes/uso terapêutico , Necrose , Produtos Biológicos/farmacologia , Proteínas Quinases/farmacologia , Proteínas Quinases/uso terapêutico
16.
Biomaterials ; 305: 122452, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38154440

RESUMO

Radiotherapy is still the recommended treatment for cervical cancer. However, radioresistance and radiation-induced side effects remain one of the biggest clinical problems. Selenium (Se) has been confirmed to exhibit radiation-enhancing effects for cancer treatment. However, Se species dominate the biological activities and which form of Se possesses better radiosensitizing properties and radiation safety remains elusive. Here, different Se species (the valence state of Se ranged from - 2, 0, +4 to + 6) synergy screen was carried out to identify the potential radiosensitizing effects and radiation safety of Se against cervical cancer. We found that the therapeutic effects varied with the changes in the Se valence state. Sodium selenite (+4) displayed strong cancer-killing effects but also possessed severe cytotoxicity. Sodium selenate (+6) neither enhanced the killing effects of X-ray nor possessed anticancer activity by its alone treatment. Although nano-selenium (0), especially Let-SeNPs, has better radiosensitizing activity, the - 2 organic Se, such as selenadiazole derivative SeD (-2) exhibited more potent anticancer effects and possessed a higher safe index. Overall, the selected Se drugs were able to synergize with X-ray to inhibit cell growth, clone formation, and cell migration by triggering G2/M phase arrest and apoptosis, and SeD (-2) was found to exhibit more potent enhancing capacity. Further mechanism studies showed that SeD mediated p53 pathway activation by inducing DNA damage through promoting ROS production. Additionally, SeD combined with X-ray therapy can induce an anti-tumor immune response in vivo. More importantly, SeD combined with X-ray significantly inhibited the liver metastasis of tumor cells and alleviated the side effects caused by radiation therapy in tumor-bearing mice. Taken together, this study demonstrates the radiosensitization and radiation safety effects of different Se species, which may shed light on the application of such Se-containing drugs serving as side effects-reducing agents for cervical cancer radiation treatment.


Assuntos
Neoplasias Hepáticas , Radiossensibilizantes , Selênio , Neoplasias do Colo do Útero , Humanos , Feminino , Camundongos , Animais , Selênio/farmacologia , Selênio/uso terapêutico , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/radioterapia , Proteína Supressora de Tumor p53 , Radiossensibilizantes/farmacologia , Radiossensibilizantes/uso terapêutico , Neoplasias Hepáticas/tratamento farmacológico
17.
Int J Radiat Oncol Biol Phys ; 118(5): 1308-1314, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38104868

RESUMO

PURPOSE: Small cell lung cancer (SCLC) is an aggressive and lethal form of lung cancer and the overall 5-year survival (OS) for patients is a dismal 7%. Radiation therapy (RT) provides some benefit for selected patients with SCLC but could be improved with radiosensitizing agents. In this study, we identified novel radiosensitizers for SCLC by a CRISPR-Cas9 screen and evaluated the efficacy of ATM inhibitor AZD1390 as a radiosensitizer of SCLC. METHODS AND MATERIALS: We transduced the SCLC cell line SBC5 with a custom CRISPR sgRNA library focused on druggable gene targets and treated cells with RT. Cells collected at multiple timepoints were subjected to next-generation sequencing. We determined radiosensitization both in vitro with cell lines assessed by short-term viability and clonogenic assays, and in vivo mouse models by tumor growth delay. Pharmacodynamic effects of AZD1390 were quantified by ATM-Ser1981 phosphorylation, and RT-induced DNA damage by comet assay. RESULTS: Using a CRISPR dropout screen, we identified multiple radiosensitizing genes for SCLC at various timepoints with ATM as a top determinant gene for radiosensitivity. Validation by ATM knockout (KO) demonstrated increased radiosensitivity by short-term viability assay (dose modification factor [DMF]50 = 3.25-3.73 in SBC5 ATM-KO) and clonogenic assays (DMF37 1.25-1.65 in SBC5 ATM-KO). ATM inhibition by AZD1390 effectively abrogated ATM Ser1981 phosphorylation in SCLC cell lines and increased RT-induced DNA damage. AZD1390 synergistically increased the radiosensitivity of SCLC cell lines (cell viability assay: SBC5 DMF37 = 2.19, SHP77 DMF37 = 1.56, H446 DMF37 = 3.27, KP1 DMF37 = 1.65 at 100nM; clonogenic assay: SBC5 DMF37 = 4.23, H1048 DMF37 = 1.91), and in vivo murine syngeneic, KP1, and patient-derived xenograft (PDX) models, JHU-LX108 and JHU-LX33. CONCLUSIONS: In this study, we demonstrated that genetically and pharmacologically (AZD1390) inhibiting ATM markedly enhanced RT against SCLC, providing a novel pharmacologically tractable radiosensitizing strategy for patients with SCLC.


Assuntos
Neoplasias Pulmonares , Piridinas , Quinolonas , Radiossensibilizantes , Carcinoma de Pequenas Células do Pulmão , Humanos , Animais , Camundongos , Carcinoma de Pequenas Células do Pulmão/genética , Carcinoma de Pequenas Células do Pulmão/radioterapia , Carcinoma de Pequenas Células do Pulmão/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/tratamento farmacológico , RNA Guia de Sistemas CRISPR-Cas , Radiossensibilizantes/farmacologia , Radiossensibilizantes/uso terapêutico , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Linhagem Celular Tumoral , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo
18.
Radiother Oncol ; 191: 110059, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38135186

RESUMO

BACKGROUND AND PURPOSE: Due to the high intrinsic radioresistance of pancreatic ductal adenocarcinoma (PDAC), radiotherapy (RT) is only beneficial in 30% of patients. Therefore, this study aimed to identify targets to improve the efficacy of RT in PDAC. MATERIALS AND METHODS: Alamar Blue proliferation and colony formation assay (CFA) were used to determine the radioresponse of a cohort of 38 murine PDAC cell lines. A gene set enrichment analysis was performed to reveal differentially expressed pathways. CFA, cell cycle distribution, γH2AX FACS analysis, and Caspase 3/7 SYTOX assay were used to examine the effect of a combination treatment using KIRA8 as an IRE1α-inhibitor and Ceapin-A7 as an inhibitor against ATF6. RESULTS: The unfolded protein response (UPR) was identified as a pathway highly expressed in radioresistant cell lines. Using the IRE1α-inhibitor KIRA8 or the ATF6-inhibitor Ceapin-A7 in combination with radiation, a radiosensitizing effect was observed in radioresistant cell lines, but no substantial alteration of the radioresponse in radiosensitive cell lines. Mechanistically, increased apoptosis by KIRA8 in combination with radiation and a cell cycle arrest in the G1 phase after ATF6 inhibition and radiation have been observed in radioresistant cell lines. CONCLUSION: So, our data show evidence that the UPR is involved in radioresistance of PDAC. Increased apoptosis and a G1 cell cycle arrest seem to be responsible for the radiosensitizing effect of UPR inhibition. These findings are supportive for developing novel combination treatment concepts in PDAC to overcome radioresistance.


Assuntos
Benzenossulfonamidas , Carcinoma Ductal Pancreático , Naftalenos , Neoplasias Pancreáticas , Radiossensibilizantes , Humanos , Animais , Camundongos , Endorribonucleases/genética , Endorribonucleases/metabolismo , Endorribonucleases/farmacologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/farmacologia , Linhagem Celular Tumoral , Neoplasias Pancreáticas/radioterapia , Carcinoma Ductal Pancreático/radioterapia , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Resposta a Proteínas não Dobradas , Radiossensibilizantes/farmacologia , Radiossensibilizantes/uso terapêutico , Apoptose , Proliferação de Células
19.
ACS Nano ; 17(24): 25147-25156, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38063344

RESUMO

X-ray-induced radiodynamic therapy (RDT) that can significantly reduce radiation dose with an improved anticancer effect has emerged as an attractive and promising therapeutic modality for tumors. However, it is highly significant to develop safe and efficient radiosensitizing agents for tumor radiation therapy. Herein, we present a smart nanotheranostic system FA-Au-CH that consists of gold nanoradiosensitizers, photosensitizer chlorin e6 (Ce6), and folic acid (FA) as a folate-receptor-targeting ligand for improved tumor specificity. FA-Au-CH nanoparticles have been demonstrated to be able to simultaneously serve as radiosensitizers and RDT agents for enhanced computed tomography (CT) imaging-guided radiotherapy (RT) of colon carcinoma, owing to the strong X-ray attenuation capability of high-Z elements Au and Hf, as well as the characteristics of Hf that can transfer radiation energy to Ce6 to generate ROS from Ce6 under X-ray irradiation. The integration of RT and RDT in this study demonstrates great efficacy and offers a promising therapeutic modality for the treatment of malignant tumors.


Assuntos
Carcinoma , Neoplasias do Colo , Fotoquimioterapia , Porfirinas , Radiossensibilizantes , Humanos , Porfirinas/uso terapêutico , Háfnio , Ouro , Neoplasias do Colo/diagnóstico por imagem , Neoplasias do Colo/radioterapia , Radiossensibilizantes/farmacologia , Radiossensibilizantes/uso terapêutico , Linhagem Celular Tumoral
20.
Curr Oncol ; 30(11): 9895-9905, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37999139

RESUMO

Radiotherapy (RT) and electrochemotherapy (ECT) are established local treatments for cancer. While effective, both therapies have limitations, especially in treating bulky and poorly oxygenated tumors. ECT has emerged as a promising palliative treatment, raising interest in exploring its combination with RT to enhance tumor response. However, the potential benefits and challenges of combining these treatments remain unclear. A systematic review was conducted following PRISMA guidelines. PubMed, Scopus, and Cochrane libraries were searched. Studies were screened and selected based on predefined inclusion and exclusion criteria. Ten studies were included, comprising in vitro and in vivo experiments. Different tumor types were treated with ECT alone or in combination with RT. ECT plus RT demonstrated superior tumor response compared to that under single therapies or other combinations, regardless of the cytotoxic agent and RT dose. However, no study demonstrated a clear superadditive effect in cell survival curves, suggesting inconclusive evidence of specific ECT-induced radiosensitization. Toxicity data were limited. In conclusion, the combination of ECT and RT consistently improved tumor response compared to that with individual therapies, supporting the potential benefit of their combination. However, evidence for a specific ECT-induced radiosensitization effect is currently lacking. Additional investigations are necessary to elucidate the potential benefits of this combination therapy.


Assuntos
Antineoplásicos , Eletroquimioterapia , Neoplasias , Radiossensibilizantes , Humanos , Radiossensibilizantes/farmacologia , Radiossensibilizantes/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/radioterapia , Antineoplásicos/uso terapêutico , Cuidados Paliativos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...