Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 451
Filtrar
1.
Phys Med Biol ; 69(12)2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38776943

RESUMO

Objective.To compare the accuracy with which different hadronic inelastic physics models across ten Geant4 Monte Carlo simulation toolkit versions can predict positron-emitting fragments produced along the beam path during carbon and oxygen ion therapy.Approach.Phantoms of polyethylene, gelatin, or poly(methyl methacrylate) were irradiated with monoenergetic carbon and oxygen ion beams. Post-irradiation, 4D PET images were acquired and parent11C,10C and15O radionuclides contributions in each voxel were determined from the extracted time activity curves. Next, the experimental configurations were simulated in Geant4 Monte Carlo versions 10.0 to 11.1, with three different fragmentation models-binary ion cascade (BIC), quantum molecular dynamics (QMD) and the Liege intranuclear cascade (INCL++) - 30 model-version combinations. Total positron annihilation and parent isotope production yields predicted by each simulation were compared between simulations and experiments using normalised mean squared error and Pearson cross-correlation coefficient. Finally, we compared the depth of the maximum positron annihilation yield and the distal point at which the positron yield decreases to 50% of peak between each model and the experimental results.Main results.Performance varied considerably across versions and models, with no one version/model combination providing the best prediction of all positron-emitting fragments in all evaluated target materials and irradiation conditions. BIC in Geant4 10.2 provided the best overall agreement with experimental results in the largest number of test cases. QMD consistently provided the best estimates of both the depth of peak positron yield (10.4 and 10.6) and the distal 50%-of-peak point (10.2), while BIC also performed well and INCL generally performed the worst across most Geant4 versions.Significance.The best predictions of the spatial distribution of positron annihilations and positron-emitting fragment production along the beam path during carbon and oxygen ion therapy was obtained using Geant4 10.2.p03 with BIC or QMD. These version/model combinations are recommended for future heavy ion therapy research.


Assuntos
Método de Monte Carlo , Elétrons/uso terapêutico , Radioterapia com Íons Pesados/métodos , Tomografia por Emissão de Pósitrons , Imagens de Fantasmas
2.
Biochem Biophys Res Commun ; 718: 150058, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38729076

RESUMO

The therapeutic efficacy of radiotherapy (RT) is primarily driven by two factors: biophysical DNA damage in cancer cells and radiation-induced anti-tumor immunity. However, Anti-tumor immune responses between X-ray RT (XRT) and carbon-ion RT (CIRT) remain unclear. In this study, we, employed mouse models to assess the immunological contribution, especially cytotoxic T-lymphocyte (CTL)-mediated immunity, to the therapeutic effectiveness of XRT and CIRT in shrinking tumors. We irradiated mouse intradermal tumors of B16F10-ovalbumin (OVA) mouse melanoma cells and 3LL-OVA mouse lung cancer cells with carbon-ion beams or X-rays in the presence or absence of CTLs. CTL removal was performed by administration of anti-CD8 monoclonal antibody (mAb) in mice. Based on tumor growth delay, we determined the tumor growth and regression curves. The enhancement ratio (ER) of the slope of regression lines in the presence of CTLs, relative to the absence of CTLs, indicates the dependency of RT on CTLs for shrinking mouse tumors, and the biological effectiveness (RBE) of CIRT relative to XRT were calculated. Tumor growth curves revealed that the elimination of CD8+ CTLs by administrating anti-CD8 mAb accelerated tumor growth compared to the presence of CTLs in both RTs. The ERs were larger in CIRT compared to XRT in the B16F10-OVA tumor models, but not in the 3LL-OVA models, suggesting a greater contribution of CTL-mediated anti-tumor immunity to tumor reduction in CIRT compared to XRT in the B16F10-OVA tumor model. In addition, the RBE values for both models were larger in the presence of CTLs compared to models without CTLs, suggesting that CIRT may utilize CTL-mediated anti-tumor immunity more than X-ray. The findings from this study suggest that although immunological contribution to therapeutic efficacy may vary depending on the type of tumor cell, CIRT utilizes CTL-mediated immunity to a greater extent compared to XRT.


Assuntos
Camundongos Endogâmicos C57BL , Linfócitos T Citotóxicos , Animais , Linfócitos T Citotóxicos/imunologia , Camundongos , Linhagem Celular Tumoral , Melanoma Experimental/imunologia , Melanoma Experimental/radioterapia , Melanoma Experimental/terapia , Melanoma Experimental/patologia , Radioterapia com Íons Pesados/métodos , Terapia por Raios X , Feminino , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/patologia
3.
Phys Med Biol ; 69(12)2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38697212

RESUMO

Objective.Recently, a new and promising approach for range verification was proposed. This method requires the use of two different ion species. Due to their equal magnetic rigidity, fully ionized carbon and helium ions can be simultaneously accelerated in accelerators like synchrotrons. At sufficiently high treatment energies, helium ions can exit the patient distally, reaching approximately three times the range of carbon ions at an equal energy per nucleon. Therefore, the proposal involves adding a small helium fluence to the carbon ion beam and utilizing helium as an online range probe during radiation therapy. This work aims to develop a software framework for treatment planning and motion verification in range-guided radiation therapy using mixed carbon-helium beams.Approach.The developed framework is based on the open-source treatment planning toolkit matRad. Dose distributions and helium radiographs were simulated using the open-source Monte Carlo package TOPAS. Beam delivery system parameters were obtained from the Heidelberg Ion Therapy Center, and imaging detectors along with reconstruction were facilitated by ProtonVDA. Methods for reconstructing the most likely patient positioning error scenarios and the motion phase of 4DCT are presented for prostate and lung cancer sites.Main results.The developed framework provides the capability to calculate and optimize treatment plans for mixed carbon-helium ion therapy. It can simulate the treatment process and generate helium radiographs for simulated patient geometry, including small beam views. Furthermore, motion reconstruction based on these radiographs seems possible with preliminary validation.Significance.The developed framework can be applied for further experimental work with the promising mixed carbon-helium ion implementation of range-guided radiotherapy. It offers opportunities for adaptation in particle therapy, improving dose accumulation, and enabling patient anatomy reconstruction during radiotherapy.


Assuntos
Carbono , Hélio , Planejamento da Radioterapia Assistida por Computador , Hélio/uso terapêutico , Planejamento da Radioterapia Assistida por Computador/métodos , Humanos , Carbono/uso terapêutico , Neoplasias da Próstata/radioterapia , Masculino , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/diagnóstico por imagem , Dosagem Radioterapêutica , Método de Monte Carlo , Radioterapia com Íons Pesados/métodos
4.
Yonsei Med J ; 65(6): 332-340, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38804027

RESUMO

PURPOSE: This systematic review and meta-analysis aimed to investigate the effectiveness of carbon ion radiotherapy (CIRT) compared to that of conventional radiotherapy in patients with various types of solid tumors. MATERIALS AND METHODS: We systematically searched eight electronic databases from inception until August 2022 in accordance with the Preferred Reporting Items for Systematic reviews and Meta-Analyses guidelines. The comparative effectiveness of the different treatment options was assessed by a random-effects meta-analysis. RESULTS: This review included 34 comparative studies and three treatment groups. Overall, the meta-analysis indicated comparable local control rates between the CIRT and control groups [pooled risk ratio (RR)=1.02, 95% confidence interval (CI) 0.90-1.15]. The local control rate in the CIRT group was higher than that in the photon therapy group, but slightly lower than that in the proton radiation therpy (PRT) group. Additionally, the CIRT group had significantly higher overall survival (OS) (RR=1.19, 95% CI=1.01-1.42) and progression-free survival (PFS) (RR=1.50, 95% CI=1.01-2.21) rates compared to the control group. In the subgroup analysis, survival rates were similar between the CIRT and PRT groups. CONCLUSION: CIRT was associated with improved toxicity, local tumor control, OS, and PFS compared to conventional treatments. Therefore, CIRT was found to be a safe and effective option for achieving local control in patients with solid tumors.


Assuntos
Radioterapia com Íons Pesados , Neoplasias , Humanos , Radioterapia com Íons Pesados/efeitos adversos , Radioterapia com Íons Pesados/métodos , Neoplasias/radioterapia , Resultado do Tratamento
5.
Technol Cancer Res Treat ; 23: 15330338241246653, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38773763

RESUMO

Purpose: Head and neck adenoid cystic carcinoma (HNACC) is a radioresistant tumor. Particle therapy, primarily proton beam therapy and carbon-ion radiation, is a potential radiotherapy treatment for radioresistant malignancies. This study aims to conduct a meta-analysis to evaluate the impact of charged particle radiation therapy on HNACC. Methods: A comprehensive search was conducted in Pubmed, Cochrane Library, Web of Science, Embase, and Medline until December 31, 2022. The primary endpoints were overall survival (OS), local control (LC), and progression-free survival (PFS), while secondary outcomes included treatment-related toxicity. Version 17.0 of STATA was used for all analyses. Results: A total of 14 studies, involving 1297 patients, were included in the analysis. The pooled 5-year OS and PFS rates for primary HNACC were 78% (95% confidence interval [CI] = 66-91%) and 62% (95% CI = 47-77%), respectively. For all patients included, the pooled 2-year and 5-year OS, LC, and PFS rates were as follows: 86.1% (95% CI = 95-100%) and 77% (95% CI = 73-82%), 92% (95% CI = 84-100%) and 73% (95% CI = 61-85%), and 76% (95% CI = 68-84%) and 55% (95% CI = 48-62%), respectively. The rates of grade 3 and above acute toxicity were 22% (95% CI = 13-32%), while late toxicity rates were 8% (95% CI = 3-13%). Conclusions: Particle therapy has the potential to improve treatment outcomes and raise the quality of life for HNACC patients. However, further research and optimization are needed due to the limited availability and cost considerations associated with this treatment modality.


Assuntos
Carcinoma Adenoide Cístico , Neoplasias de Cabeça e Pescoço , Humanos , Carcinoma Adenoide Cístico/radioterapia , Carcinoma Adenoide Cístico/mortalidade , Neoplasias de Cabeça e Pescoço/radioterapia , Neoplasias de Cabeça e Pescoço/mortalidade , Terapia com Prótons/efeitos adversos , Terapia com Prótons/métodos , Radioterapia com Íons Pesados/efeitos adversos , Radioterapia com Íons Pesados/métodos , Resultado do Tratamento
6.
J Med Case Rep ; 18(1): 228, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38720351

RESUMO

BACKGROUND: Mesonephric adenocarcinoma is an extremely rare subtype of uterine cervical cancer that is associated with a poor prognosis and for which a standardized treatment protocol has not been established. Carbon ion radiotherapy (CIRT) is an emerging radiotherapy modality that has been shown to have a favorable anti-tumor effect, even for tumors resistant to conventional photon radiotherapy or chemotherapy. However, there is no report on CIRT outcomes for mesonephric adenocarcinoma of the uterine cervix. CASE PRESENTATION: We treated a 47-year-old Japanese woman with mesonephric adenocarcinoma of the uterine cervix (T2bN0M0 and stage IIB according to the 7th edition of the Union for International Cancer Control and International Federation of Gynecology and Obstetrics, respectively) with CIRT combined with brachytherapy and concurrent chemotherapy. CIRT consisted of whole pelvic irradiation and boost irradiation to the gross tumor; 36.0 Gy (relative biological effectiveness [RBE]) in 12 fractions and 19.2 Gy (RBE) in 4 fractions, respectively, performed once a day, four times per week. Computed tomography-based image-guided adaptive brachytherapy was performed after completion of CIRT, for which the D90 (i.e., the dose prescribed to 90% of the target volume) for the high-risk clinical target volume was 20.4 Gy in a total of 3 sessions in 2 weeks. A weekly cisplatin (40 mg/m2) dose was administered concomitantly with the radiotherapy for a total of five courses. From 4 months post-CIRT, the patient developed metastasis of the lung, with a total of 10 lung metastases over 70 months; these lesions were treated on each occasion by photon stereotactic body radiotherapy and/or systemic therapy. At 8 years from initial treatment (i.e., 2 years after the last treatment), the patient is alive without any evidence of recurrence and maintains a high quality of life. CONCLUSIONS: This is the first report of CIRT for treatment of mesonephric adenocarcinoma of the uterine cervix. The present case indicates the potential efficacy of CIRT in combination with brachytherapy for treatment of this disease.


Assuntos
Adenocarcinoma , Braquiterapia , Radioterapia com Íons Pesados , Neoplasias do Colo do Útero , Humanos , Feminino , Pessoa de Meia-Idade , Neoplasias do Colo do Útero/radioterapia , Neoplasias do Colo do Útero/patologia , Adenocarcinoma/radioterapia , Adenocarcinoma/patologia , Radioterapia com Íons Pesados/métodos , Braquiterapia/métodos , Resultado do Tratamento , Quimiorradioterapia/métodos
7.
Cancer Lett ; 591: 216858, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38621460

RESUMO

Radiotherapy (RT) remodels the tumor immune microenvironment (TIME) and modulates the immune response to indirectly destroy tumor cells, in addition to directly killing tumor cells. RT combined with immunotherapy may significantly enhance the efficacy of RT in colorectal cancer by modulating the microenvironment. However, the molecular mechanisms by which RT acts as an immunomodulator to modulate the immune microenvironment remain unclear. Further, the optimal modalities of RT combined with immunotherapy for the treatment of colorectal cancer, such as the time point of combining RT and immunization, the fractionation pattern and dosage of radiotherapy, and other methods to improve the efficacy, are also being explored parallelly. To address these aspects, in this review, we summarized the mechanisms by which RT modulates TIME and concluded the progress of RT combined with immunization in preclinical and clinical trials. Finally, we discussed heavy ion radiation therapy and the efficacy of prediction markers and other immune combination therapies. Overall, combining RT with immunotherapy to enhance antitumor effects will have a significant clinical implication and will help to facilitate individualized treatment modalities.


Assuntos
Neoplasias Colorretais , Imunoterapia , Microambiente Tumoral , Humanos , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/terapia , Neoplasias Colorretais/radioterapia , Neoplasias Colorretais/patologia , Imunoterapia/métodos , Microambiente Tumoral/imunologia , Terapia Combinada/métodos , Animais , Radioterapia com Íons Pesados/métodos
8.
Head Neck ; 46(7): 1766-1776, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38591178

RESUMO

OBJECTIVES: To compare survival outcomes and toxic effects among patients with newly diagnosed nonmetastatic nasopharyngeal carcinoma (NPC) when treated with intensity-modulated radiotherapy (IMRT) versus IMRT + carbon-ion radiotherapy (CIRT). METHODS: We performed a retrospective propensity score matching analysis (1:1) of patients treated with IMRT and IMRT + CIRT. Descriptive statistics were used to examine the baseline characteristics of the patients. Survival was estimated using the Kaplan-Meier method. Univariate and multivariable logistic regression analysis were used to identify the independent predictors of survival. We examined the association between risk factors and adverse events (AEs) using chi-square tests. Cox model and logistic regression were used to analyze AEs. RESULTS: Hundred and nine patients who received IMRT + CIRT were included and the median follow-up time was 20.6 months (range: 4.6-82 months). There were no statistically significant differences in locoregional failure-free survival, distant metastasis-free survival, disease-free survival, or overall survival between the two groups, but potentially better in IMRT + CIRT group (p > 0.05, respectively). Nodal boost was the only significant factor associated with LRFS and DFS on multivariable analysis. Thirty-seven patients (34.0%) developed grade 3 acute OMs and no grade 4 acute OMs were observed in IMRT + CIRT group. All patients in IMRT + CIRT group developed grade 1 dermatitis; while in the match group, 76 patients developed grade 1 dermatitis, 27 patients developed grade 2 dermatitis, 5 patients developed grade 3 dermatitis, 1 patient developed grade 4 dermatitis. IMRT + CIRT treatment was associated with a significant trend of lower grades of OM and dermatitis (p < 0.05, respectively). Any severe (i.e., grade 3) chronic AEs, such as xerostomia, skin fibrosis, temporal lobe necrosis, osteoradionecrosis, or radiation-induced optic neuropathy, was not observed. CONCLUSIONS: In this study, IMRT + CIRT was associated with significantly reduced acute toxicity burden compared with full course of IMRT, with excellent survival outcomes. Patients with persistent disease after treatment and treated with nodal boost had a worse outcome. More accurate assessments of IMRT + CIRT to primary nonmetastatic NPC patients will be imperative.


Assuntos
Radioterapia com Íons Pesados , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas , Pontuação de Propensão , Radioterapia de Intensidade Modulada , Humanos , Radioterapia de Intensidade Modulada/efeitos adversos , Radioterapia de Intensidade Modulada/métodos , Masculino , Feminino , Pessoa de Meia-Idade , Estudos Retrospectivos , Neoplasias Nasofaríngeas/radioterapia , Neoplasias Nasofaríngeas/mortalidade , Neoplasias Nasofaríngeas/patologia , Carcinoma Nasofaríngeo/radioterapia , Carcinoma Nasofaríngeo/mortalidade , Carcinoma Nasofaríngeo/patologia , Adulto , Radioterapia com Íons Pesados/efeitos adversos , Radioterapia com Íons Pesados/métodos , Idoso , Resultado do Tratamento , Estimativa de Kaplan-Meier , Intervalo Livre de Doença
9.
Phys Med Biol ; 69(11)2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38636504

RESUMO

Objective.Treatment plans of ion-beam therapy have been made under an assumption that all cancer cells within a tumour equally respond to a given radiation dose. However, an intra-tumoural cellular radiosensitivity heterogeneity clearly exists, and it may lead to an overestimation of therapeutic effects of the radiation. The purpose of this study is to develop a biological model that can incorporate the radiosensitivity heterogeneity into biological optimization for ion-beam therapy treatment planning.Approach.The radiosensitivity heterogeneity was modeled as the variability of a cell-line specific parameter in the microdosimetric kinetic model following the gamma distribution. To validate the developed intra-tumoural-radiosensitivity-heterogeneity-incorporated microdosimetric kinetic (HMK) model, a treatment plan with H-ion beams was made for a chordoma case, assuming a radiosensitivity heterogeneous region within the tumour. To investigate the effects of the radiosensitivity heterogeneity on the biological effectiveness of H-, He-, C-, O-, and Ne-ion beams, the relative biological effectiveness (RBE)-weighted dose distributions were planned for a cuboid target with the stated ion beams without considering the heterogeneity. The planned dose distributions were then recalculated by taking the heterogeneity into account.Main results. The cell survival fraction and corresponding RBE-weighted dose were formulated based on the HMK model. The first derivative of the RBE-weighted dose distribution was also derived, which is needed for fast biological optimization. For the patient plan, the biological optimization increased the dose to the radiosensitivity heterogeneous region to compensate for the heterogeneity-induced reduction in biological effectiveness of the H-ion beams. The reduction in biological effectiveness due to the heterogeneity was pronounced for low linear energy transfer (LET) beams but moderate for high-LET beams. The RBE-weighted dose in the cuboid target decreased by 7.6% for the H-ion beam, while it decreased by just 1.4% for the Ne-ion beam.Significance.Optimal treatment plans that consider intra-tumoural cellular radiosensitivity heterogeneity can be devised using the HMK model.


Assuntos
Cordoma , Tolerância a Radiação , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Humanos , Planejamento da Radioterapia Assistida por Computador/métodos , Cordoma/radioterapia , Modelos Biológicos , Eficiência Biológica Relativa , Doses de Radiação , Sobrevivência Celular/efeitos da radiação , Radioterapia com Íons Pesados/métodos
10.
Igaku Butsuri ; 44(1): 1-7, 2024.
Artigo em Japonês | MEDLINE | ID: mdl-38583957

RESUMO

At the National Institutes for Quantum Science and Technology (QST), a multi-ion therapy using helium, carbon, oxygen, and neon ions has been studied for charged particle therapy with more optimal biological effects. To make multi-ion therapy clinically feasible, a new treatment system was developed to realize the changes of the ion species in each irradiation using the Heavy Ion Medial Accelerator in Chiba (HIMAC). Since radiation therapy is safety-critical, it is necessary to construct a safety system that includes multiple safety barriers in the new treatment system for multi-ion therapy and to perform a safety analysis for the prevention of serious accidents. In this study, we conducted a safety analysis using event tree analysis (ETA) for newly introduced processes in the treatment planning, accelerator, and irradiation system of the multi-ion therapy. ETA is an optimal method to verify multiple safety barriers that are essential for medical safety and to shorten the time for safety analysis by focusing only on the new processes. Through ETA, we clarified the types of malfunctions and human errors that may lead to serious accidents in the new system for multi-ion therapy, and verified whether safety barriers such as interlock systems and human check procedures are sufficient to prevent such malfunctions and human errors. As a result, 6 initial events which may lead to serious accidents were listed in the treatment planning process, 16 initial events were listed in the accelerator system, and 13 initial events were listed in the irradiation system. Among these 35 initial events, 5 cautionary initial events were identified that could lead to serious final events and they had a probability of occurrence higher than 10-4. Meanwhile, the others were all initial events that do not lead to serious accidents, or the initial events that can lead to serious accidents but were considered to have sufficient safety barriers. The safety analysis using ETA successfully identified the system malfunctions and the human errors that can lead to serious accidents, and the multiple safety barriers against them were systematically analyzed. It became clear that the multiple safety barriers were not sufficient for some initial events. We plan to improve the safety barriers for the five cautionary initial events before the start of the clinical trial. Based on these findings, we achieved our objective to conduct a safety analysis for a new treatment system for multi-ion therapy. The safety analysis procedure using ETA proposed by this study will be effective when new systems for radiotherapy are established at QST and other facilities in the future as well.


Assuntos
Radioterapia com Íons Pesados , Íons Pesados , Humanos , Radioterapia com Íons Pesados/métodos , Íons , Oxigênio/uso terapêutico , Carbono
11.
J Appl Clin Med Phys ; 25(6): e14330, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38478368

RESUMO

BACKGROUND: This study aimed to evaluate the clinical acceptability of rotational gantry-based single-position carbon-ion radiotherapy (CIRT) to reduce the gastrointestinal (GI) dose in pancreatic cancer. We also evaluated the usefulness of the deformable image registration (DIR)-based dosimetry method for CIRT. MATERIAL AND METHODS: Fifteen patients with pancreatic cancer were analyzed. The treatment plans were developed for four beam angles in the supine (SP plan) and prone (PR plan) positions. In the case of using multiple positions, the treatment plan was created with two angles for each of the supine and prone position (SP + PR plan). Dose evaluation for multiple positions was performed in two ways: by directly adding the values of the DVH parameters for each position treatment plan (DVH sum), and by calculating the DVH parameters from the accumulative dose distribution created using DIR (DIR sum). The D2cc and D6cc of the stomach and duodenum were recorded for each treatment plan and dosimetry method and compared. RESULTS: There were no significant differences among any of the treatment planning and dosimetry methods (p > 0.05). The DVH parameters for the stomach and duodenum were higher in the PR plan and SP plan, respectively, and DVH sum tended to be between the SP and PR plans. DVH sum and DIR sum, DVH sum tended to be higher for D2cc and DIR sum tended to be higher for D6cc. CONCLUSION: There were no significant differences in the GI dose, which suggests that treatment with a simple workflow performed in one position should be clinically acceptable. In CIRT, DIR-based dosimetry should be carefully considered because of the potential for increased uncertainty due to the steep dose distributions.


Assuntos
Radioterapia com Íons Pesados , Órgãos em Risco , Neoplasias Pancreáticas , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada , Humanos , Neoplasias Pancreáticas/radioterapia , Neoplasias Pancreáticas/diagnóstico por imagem , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia com Íons Pesados/métodos , Órgãos em Risco/efeitos da radiação , Radioterapia de Intensidade Modulada/métodos , Posicionamento do Paciente , Masculino , Feminino , Processamento de Imagem Assistida por Computador/métodos , Idoso , Pessoa de Meia-Idade , Prognóstico
12.
Anticancer Res ; 44(4): 1773-1780, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38537982

RESUMO

BACKGROUND/AIM: The aging population is expected to increase the occurrences of bone sarcoma (BS) and soft tissue sarcoma (STS). Carbon ion radiotherapy (CIRT) is reported to be effective for BS and several STSs. However, the effect of CIRT on clinical outcomes, functional prognoses, and quality of life (QOL) in older patients who underwent CIRT has not been reported. Therefore, we aimed to evaluate the effect of CIRT on clinical outcomes, functional prognoses and QOL in older patients with BS or STS. PATIENTS AND METHODS: This retrospective cohort study included 235 patients aged >70 years with BS or STS who underwent CIRT. Overall survival (OS), cancer-specific survival (CSS), and local control (LC) were evaluated in chordoma and non-chordoma patients. Furthermore, factors associated with post-CIRT Toronto Extremity Salvage Score (TESS) and EuroQoL 5-dimension 5-level (EQ-5D-5L) index were assessed. RESULTS: The overall 5-year LC, OS, and CSS rates were 81%, 62%, and 76%, respectively. In the chordoma and non-chordoma groups, the 5-year LC, OS, and CSS rates were 84%, 72%, and 87%; and 77%, 47%, and 60%, respectively. The mean post-CIRT TESS and EQ-5D-5L index were 75% and 0.71, respectively. The TESSs and EQ-5D-5L indices tended to be better among males, younger patients (<76 years old), patients with small tumor volumes, and patients with chordoma. CONCLUSION: CIRT is effective for older patients with BS, especially with chordoma, and STS with good LC and survival rates. Furthermore, post-treatment limb function and QOL were comparable with those of the other treatments and age groups.


Assuntos
Neoplasias Ósseas , Cordoma , Radioterapia com Íons Pesados , Osteossarcoma , Sarcoma , Masculino , Humanos , Idoso , Qualidade de Vida , Estudos Retrospectivos , Cordoma/radioterapia , Sarcoma/patologia , Radioterapia com Íons Pesados/efeitos adversos , Radioterapia com Íons Pesados/métodos , Osteossarcoma/etiologia , Neoplasias Ósseas/patologia , Carbono
13.
Phys Med ; 120: 103325, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38493583

RESUMO

PURPOSE: The present study aimed to develop a porous structure with plug-ins (PSP) to broaden the Bragg peak width (BPW, defined as the distance in water between the proximal and distal 80% dose) of the carbon ion beam while maintaining a sharp distal falloff width (DFW, defined as the distance along the beam axis where the dose in water reduces from 80% to 20%). METHODS: The binary voxel models of porous structure (PS) and PSP were established in the Monte Carlo code FLUKA and the corresponding physical models were manufactured by 3D printing. Both experiment and simulation were performed for evaluating the modulation capacity of PS and PSP. BPWs and DFWs derived from each integral depth dose curves were compared. Fluence homogeneity of 430 MeV/u carbon-ion beam passing through the PSP was recorded by analyzing radiochromic films at six different locations downstream the PSP in the experiment. Additionally, by changing the beam spot size and incident position on the PSP, totally 48 different carbon-ion beams were simulated and corresponding deviations of beam metrics were evaluated to test the modulating stability of PSP. RESULTS: According to the measurement data, the use of PSP resulted in an average increase of 0.63 mm in BPW and a decrease of 0.74 mm in DFW compared to PS. The 2D radiation field inhomogeneities were lower than 3 % when the beam passing through a ≥ 10 cm PMMA medium. Furthermore, employing a spot size of ≥ 6 mm ensures that beam metric deviations, including BPW, DFW, and range, remain within a deviation of 0.1 mm across various incident positions. CONCLUSION: The developed PSP demonstrated its capability to effectively broaden the BPW of carbon ion beams while maintaining a sharp DFW comparing to PS. The superior performance of PSP, indicates its potential for clinical use in the future.


Assuntos
Radioterapia com Íons Pesados , Terapia com Prótons , Método de Monte Carlo , Porosidade , Radioterapia com Íons Pesados/métodos , Carbono , Água , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Terapia com Prótons/métodos
14.
Radiother Oncol ; 194: 110180, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38403023

RESUMO

This feasibility study confirmed the initial safety and efficacy of a novel carbon-ion radiotherapy (CIRT) using linear energy transfer (LET) painting for head and neck cancer. This study is the first step toward establishing CIRT with LET painting in clinical practice and making it a standard practice in the future.


Assuntos
Estudos de Viabilidade , Neoplasias de Cabeça e Pescoço , Radioterapia com Íons Pesados , Transferência Linear de Energia , Dosagem Radioterapêutica , Humanos , Neoplasias de Cabeça e Pescoço/radioterapia , Radioterapia com Íons Pesados/métodos , Masculino , Feminino , Idoso , Pessoa de Meia-Idade
15.
Int J Radiat Oncol Biol Phys ; 119(3): 936-945, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38163521

RESUMO

PURPOSE: Personalized liposome-formulated mRNA vaccines (RNA-LPX) are a powerful new tool in cancer immunotherapy. In preclinical tumor models, RNA-LPX vaccines are known to achieve potent results when combined with conventional X-ray radiation therapy (XRT). Densely ionizing radiation used in carbon ion radiation therapy (CIRT) may induce distinct effects in combination with immunotherapy compared with sparsely ionizing X-rays. METHODS AND MATERIALS: Within this study, we investigate the potential of CIRT and isoeffective doses of XRT to mediate tumor growth inhibition and survival in murine colon adenocarcinoma models in conjunction with neoantigen (neoAg)-specific RNA-LPX vaccines encoding both major histocompatibility complex (MHC) class I- and class II-restricted tumor-specific neoantigens. We characterize tumor immune infiltrates and antigen-specific T cell responses by flow cytometry and interferon-γ enzyme-linked immunosorbent spot (ELISpot) analyses, respectively. RESULTS: NeoAg RNA-LPX vaccines significantly potentiate radiation therapy-mediated tumor growth inhibition. CIRT and XRT alone marginally prime neoAg-specific T cell responses detected in the tumors but not in the blood or spleens of mice. Infiltration and cytotoxicity of neoAg-specific T cells is strongly driven by RNA-LPX vaccines and is accompanied by reduced expression of the inhibitory markers PD-1 and Tim-3 on these cells. The neoAg RNA-LPX vaccine shows similar overall therapeutic efficacy in combination with both CIRT and XRT, even if the physical radiation dose is lower for carbon ions than for X-rays. CONCLUSIONS: We hence conclude that the combination of CIRT and neoAg RNA-LPX vaccines is a promising strategy for the treatment of radioresistant tumors.


Assuntos
Antígenos de Neoplasias , Vacinas Anticâncer , Neoplasias do Colo , Radioterapia com Íons Pesados , Animais , Neoplasias do Colo/radioterapia , Neoplasias do Colo/imunologia , Camundongos , Vacinas Anticâncer/uso terapêutico , Vacinas Anticâncer/imunologia , Antígenos de Neoplasias/imunologia , Radioterapia com Íons Pesados/métodos , Fótons/uso terapêutico , Feminino , Adenocarcinoma/radioterapia , Adenocarcinoma/imunologia , Terapia Combinada/métodos , Lipossomos , Vacinas de mRNA/uso terapêutico , Linhagem Celular Tumoral , Imunoterapia/métodos , RNA Mensageiro , Camundongos Endogâmicos C57BL
16.
J Appl Clin Med Phys ; 25(6): e14279, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38259194

RESUMO

BACKGROUND: Local recurrence in locally advanced pancreatic cancer (LAPC) after carbon-ion radiotherapy (CIRT) may partly attribute to low dose-averaged linear energy transfer (LETd), despite high CIRT dose. PURPOSE: This study aimed to investigate the approaches to up-modulate the CIRT LETd and to evaluate the corresponding oxygen enhancement ratio (OER) reduction. METHODS: 10 LAPCs that had been irradiated by CIRT with 67.5 Gy (RBE) in 15 fractions were selected. Their original plans were taken as the control plan for the LETd and OER investigations. Our considerations for up-modulating LETd were: (1) to deliver high doses to gross tumor volume core (GTVcore), while keeping dose constraints of the gastrointestinal (GI) tract in tolerance; (2) to put more Bragg-peak (BP) within the modulated targets; (3) to increase the BP density, high doses were necessary; (4) CIRT LETd could be effectively increased to small volumes; and (5) simultaneous integrated boost technique (SIB) could achieve the aforementioned tasks. The LETd and the corresponding OER distributions of each type of SIB plan were evaluated. RESULTS: We delivered up to 100 Gy (RBE) to GTVcore using SIB. The mean LETd of GTV increased significantly by 21.3% from 47.8 to 58.0 keV/µm (p < 0.05). Meanwhile, the mean OER of GTVcore decreased by 6.6%, from 1.51 to 1.41 (p < 0.05). The GI LETdS in all modulated plans were not more than those in the original plans. CONCLUSIONS: SIB could effectively increase CIRT LETd to LAPC, thus producing reduced OER, which may effectively overcome the radioresistance of LAPCs.


Assuntos
Radioterapia com Íons Pesados , Transferência Linear de Energia , Neoplasias Pancreáticas , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada , Neoplasias Pancreáticas/radioterapia , Humanos , Radioterapia com Íons Pesados/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Órgãos em Risco/efeitos da radiação , Prognóstico
17.
Strahlenther Onkol ; 199(12): 1225-1241, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37872399

RESUMO

The number of patients treated with charged-particle radiotherapy as well as the number of treatment centers is increasing worldwide, particularly regarding protons. However, high-linear energy transfer (LET) particles, mainly carbon ions, are of special interest for application in radiotherapy, as their special physical features result in high precision and hence lower toxicity, and at the same time in increased efficiency in cell inactivation in the target region, i.e., the tumor. The radiobiology of high-LET particles differs with respect to DNA damage repair, cytogenetic damage, and cell death type, and their increased LET can tackle cells' resistance to hypoxia. Recent developments and perspectives, e.g., the return of high-LET particle therapy to the US with a center planned at Mayo clinics, the application of carbon ion radiotherapy using cost-reducing cyclotrons and the application of helium is foreseen to increase the interest in this type of radiotherapy. However, further preclinical research is needed to better understand the differential radiobiological mechanisms as opposed to photon radiotherapy, which will help to guide future clinical studies for optimal exploitation of high-LET particle therapy, in particular related to new concepts and innovative approaches. Herein, we summarize the basics and recent progress in high-LET particle radiobiology with a focus on carbon ions and discuss the implications of current knowledge for charged-particle radiotherapy. We emphasize the potential of high-LET particles with respect to immunogenicity and especially their combination with immunotherapy.


Assuntos
Radioterapia com Íons Pesados , Transferência Linear de Energia , Humanos , Íons , Radioterapia com Íons Pesados/métodos , Radiobiologia , Carbono/uso terapêutico , Eficiência Biológica Relativa
18.
Phys Med Biol ; 68(19)2023 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-37747082

RESUMO

Objective.A new method to estimate the range of an ion beam in a patient during heavy-ion therapy was investigated, which was previously verified for application in proton therapy.Approach.The method consists of placing a hadron tumour marker (HTM) close to the tumour. As the treatment beam impinges on the HTM, the marker undergoes nuclear reactions. When the HTM material is carefully chosen, the activation results in the emission of several delayed, characteristicγrays, whose intensities are correlated with the remaining range inside the patient. When not just one but two reaction channels are investigated, the ratio between these twoγray emissions can be measured, and the ratio is independent of any beam delivery uncertainties.Main results.A proof-of-principle experiment with an16O ion beam and Ag foils as HTM was successfully executed. The107Ag(16O,x)112Sb and the107Ag(16O,x)114Sb reaction channels were identified as suitable for the HTM technique. When only oneγ-ray emission is measured, the resulting range-uncertainty estimation is at the 0.5 mm scale. When both channels are considered, a theoretical limit on the range uncertainty of a clinical fiducal marker was found to be ±290µm.Significance.Range uncertainty of a heavy-ion beam limits the prescribed treatment plan for cancer patients, especially the direction of the ion beam in relation to any organ at risk. An easy to implement range-verification technique which can be utilized during clinical treatment would allow treatment plans to take full advantage of the sharp fall-off of the Bragg peak without the risk of depositing excessive dose into healthy tissue.


Assuntos
Radioterapia com Íons Pesados , Terapia com Prótons , Humanos , Biomarcadores Tumorais , Radioterapia com Íons Pesados/métodos , Terapia com Prótons/métodos , Incerteza , Método de Monte Carlo
19.
In Vivo ; 37(5): 1951-1959, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37652498

RESUMO

BACKGROUND/AIM: To determine the interaction of gemcitabine in chemoradiotherapy with heavy carbon ions in vitro in a mucoepidermoid carcinoma (MEC) cell line. MATERIALS AND METHODS: The human lymphatic MEC metastasis cell line NCI-H292 was used. The cells were treated with photons, carbon ions, and gemcitabine. Survival fractions (SF), apoptosis, and cell cycle progression were analyzed. A paired two-sided t-test was used. Significance was defined as p<0.05. RESULTS: Cell proliferation assays showed a significant reduction in SF for combined photon chemoradiation versus photons only. The linear-quadratic fits of combined therapy with carbon ion dose of 0 to 2.5 Gy led to reductions of mean 15% in SF. The LD50 (lethal radiation dose required to reduce cell survival by 50%) for carbon ions only was 0.7 Gy and for carbon ions with gemcitabine 0.6 Gy. The LD50 for photons (with gemcitabine) was 2.8 Gy (2.0 Gy) and for carbon ions (with gemcitabine) 0.7 Gy (0.6 Gy), resulting in a relative biological effectiveness at 10% cell survival (RBE10) of 3.0 (2.7). Carbon ions and photons reduced S phase and increased G2/M phase cell distribution. Isolated treatment with gemcitabine as well as combination with photons led to prolonged S phase transit, whereas combined treatment with carbon ions led to early accumulation in G2/M phase. A significant increase in the sub-G1 population as a hint of relevant number of apoptotic cells was not observed. CONCLUSION: Gemcitabine showed radiosensitizing effects in combination with photons. The combination of gemcitabine and carbon ions had independent additive effects. Carbon ions only had a RBE10 of 3.0, compared to photons only. The combination of gemcitabine, photon, and carbon ions in patients with MEC seems promising and warrants further investigation.


Assuntos
Carcinoma Mucoepidermoide , Radioterapia com Íons Pesados , Humanos , Gencitabina , Desoxicitidina/farmacologia , Carcinoma Mucoepidermoide/tratamento farmacológico , Linhagem Celular Tumoral , Radioterapia com Íons Pesados/métodos , Quimiorradioterapia/métodos , Fótons/uso terapêutico , Carbono/uso terapêutico , Íons
20.
Med Phys ; 50(11): 7167-7176, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37434465

RESUMO

BACKGROUND: Combining carbon ion therapy with on-bed MR imaging has the potential to bring particle therapy to a new level of precision. However, the introduction of magnetic fields brings challenges for dosimetry and quality assurance. For protons, a small, but significant change in detector response was shown in the presence of magnetic fields previously. For carbon ion beams, so far no such experiments have been performed. PURPOSE: To investigate the influence of external magnetic fields on the response of air-filled ionization chambers. METHODS: Four commercially available ionization chambers, three thimble type (Farmer, Semiflex, and PinPoint), and a plane parallel (Bragg peak) detector were investigated. Detectors were aligned in water such that their effective point of measurement was located at 2 cm depth. Irradiations were performed using 10 × 10 cm 2 $10\times 10\nobreakspace \mathrm{cm}^2$ square fields for carbon ions of 186.1, 272.5, and 402.8 MeV/u employing magnetic field strengths of 0, 0.25, 0.5, and 1 T. In addition, the detector response for protons and carbon ions was compared taking into account the secondary electron spectra and employing protons of 252.7 MeV for comparison. RESULTS: For all four detectors, a statistically significant change in detector response, dependent on the magnetic field strength, was found. The effect was more pronounced for higher energies. The highest effects were found at 0.5 T for the PinPoint detector with a change in detector response of 1.1%. The response of different detector types appeared to be related to the cavity diameter. For proton and carbon ion irradiation with similar secondary electron spectra, the change in detector response was larger for carbon ions compared to protons. CONCLUSION: A small, but significant dependence of the detector response was found for carbon ion irradiation in a magnetic field. The effect was found to be larger for smaller cavity diameters and at medium magnetic field strengths. Changes in detector response were more pronounced for carbon ions compared to protons.


Assuntos
Radioterapia com Íons Pesados , Prótons , Radiometria/métodos , Radioterapia com Íons Pesados/métodos , Carbono/uso terapêutico , Campos Magnéticos , Imageamento por Ressonância Magnética , Método de Monte Carlo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...