Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plant Physiol Biochem ; 155: 780-788, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32866791

RESUMO

Raffinose (Raf) protects plant cells during seed desiccation and under different abiotic stress conditions. The biosynthesis of Raf starts with the production of UDP-galactose by UDP-sugar pyrophosphorylase (USPPase) and continues with the synthesis of galactinol by galactinol synthase (GolSase). Galactinol is then used by Raf synthase to produce Raf. In this work, we report the biochemical characterization of USPPase (BdiUSPPase) and GolSase 1 (BdiGolSase1) from Brachypodium distachyon. The catalytic efficiency of BdiUSPPase was similar with galactose 1-phosphate and glucose 1-phosphate, but 5- to 17-fold lower with other sugar 1-phosphates. The catalytic efficiency of BdiGolSase1 with UDP-galactose was three orders of magnitude higher than with UDP-glucose. A structural model of BdiGolSase1 allowed us to determine the residues putatively involved in the binding of substrates. Among these, we found that Cys261 lies within the putative catalytic pocket. BdiGolSase1 was inactivated by oxidation with diamide and H2O2. The activity of the diamide-oxidized enzyme was recovered by reduction with dithiothreitol or E. coli thioredoxin, suggesting that BdiGolSase1 is redox-regulated.


Assuntos
Brachypodium/enzimologia , Galactosiltransferases/metabolismo , Nucleotidiltransferases/metabolismo , Rafinose/biossíntese , Peróxido de Hidrogênio , Proteínas de Plantas/metabolismo , Proteínas Recombinantes/metabolismo
2.
PLoS One ; 12(1): e0169595, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28068432

RESUMO

Coffea arabica L. is an important crop in several developing countries. Despite its economic importance, minimal transcriptome data are available for fruit tissues, especially during fruit development where several compounds related to coffee quality are produced. To understand the molecular aspects related to coffee fruit and grain development, we report a large-scale transcriptome analysis of leaf, flower and perisperm fruit tissue development. Illumina sequencing yielded 41,881,572 high-quality filtered reads. De novo assembly generated 65,364 unigenes with an average length of 1,264 bp. A total of 24,548 unigenes were annotated as protein coding genes, including 12,560 full-length sequences. In the annotation process, we identified nine candidate genes related to the biosynthesis of raffinose family oligossacarides (RFOs). These sugars confer osmoprotection and are accumulated during initial fruit development. Four genes from this pathway had their transcriptional pattern validated by quantitative reverse transcription polymerase chain reaction (qRT-PCR). Furthermore, we identified ~24,000 putative target sites for microRNAs (miRNAs) and 134 putative transcriptionally active transposable elements (TE) sequences in our dataset. This C. arabica transcriptomic atlas provides an important step for identifying candidate genes related to several coffee metabolic pathways, especially those related to fruit chemical composition and therefore beverage quality. Our results are the starting point for enhancing our knowledge about the coffee genes that are transcribed during the flowering and initial fruit development stages.


Assuntos
Coffea/genética , Coffea/metabolismo , Flores/genética , Frutas/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Folhas de Planta/genética , Rafinose/biossíntese , Biologia Computacional/métodos , Elementos de DNA Transponíveis , Anotação de Sequência Molecular , Fases de Leitura Aberta , Especificidade de Órgãos/genética , Transcriptoma
3.
J Agric Food Chem ; 61(20): 4943-52, 2013 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-23621405

RESUMO

To develop genetic improvement strategies to modulate raffinose family oligosaccharides (RFO) concentration in chickpea ( Cicer arietinum L.) seeds, RFO and their precursor concentrations were analyzed in 171 chickpea genotypes from diverse geographical origins. The genotypes were grown in replicated trials over two years in the field (Patancheru, India) and in the greenhouse (Saskatoon, Canada). Analysis of variance revealed a significant impact of genotype, environment, and their interaction on RFO concentration in chickpea seeds. Total RFO concentration ranged from 1.58 to 5.31 mmol/100 g and from 2.11 to 5.83 mmol/100 g in desi and kabuli genotypes, respectively. Sucrose (0.60-3.59 g/100 g) and stachyose (0.18-2.38 g/100 g) were distinguished as the major soluble sugar and RFO, respectively. Correlation analysis revealed a significant positive correlation between substrate and product concentration in RFO biosynthesis. In chickpea seeds, raffinose, stachyose, and verbascose showed a moderate broad sense heritability (0.25-0.56), suggesting the use of a multilocation trials based approach in chickpea seed quality improvement programs.


Assuntos
Cicer/crescimento & desenvolvimento , Cicer/genética , Meio Ambiente , Genótipo , Rafinose/biossíntese , África , Ásia , Cicer/metabolismo , Oligossacarídeos/metabolismo , Rafinose/análise , Sementes/genética , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , América do Sul , Sacarose/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA