Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.332
Filtrar
1.
Pak J Biol Sci ; 27(5): 276-282, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38840468

RESUMO

<b>Background and Objective:</b> Gamma irradiation induces genotoxicity, characterized by the formation of extra-nuclear bodies and left behind during the anaphase stage of cell division, often referred to as a micronucleus (MN). The present work aims to monitor exposure to ionizing radiation as a genotoxic agent in the lymphocytes of workers at radiation energy centers. <b>Materials and Methods:</b> The lymphocyte cytokinesis block micronucleus assay used and analyzed the correlation between the Nuclear Division Index (NDI), age, blood type and the number of micronuclei (MN). Blood samples were collected from 20 volunteers in heparin tubes, exposed to 2 Gy gamma rays and cultured <i>in vitro</i>. <b>Results:</b> A significant difference in the number of micronuclei between blood group A and blood groups A, B and AB. The Nuclear Division Index (NDI) value for lymphocytes of radiation energy center workers after gamma radiation was significant (1.74±0.1) but still within the normal range. Neither MN frequency nor NDI values correlated with age, but MN frequency showed a correlation with blood type. <b>Conclusion:</b> The gamma irradiation did not induce a cytostatic effect but proved genotoxic to the lymphocytes of radiation energy center workers. Notably, blood type A demonstrated higher sensitivity to gamma radiation.


Assuntos
Citocinese , Raios gama , Linfócitos , Testes para Micronúcleos , Exposição Ocupacional , Humanos , Raios gama/efeitos adversos , Linfócitos/efeitos da radiação , Linfócitos/metabolismo , Testes para Micronúcleos/métodos , Citocinese/efeitos da radiação , Exposição Ocupacional/efeitos adversos , Adulto , Masculino , Pessoa de Meia-Idade , Micronúcleos com Defeito Cromossômico/efeitos da radiação , Feminino
2.
Front Public Health ; 12: 1387330, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38841686

RESUMO

Background: Owing to the long penetration depth of gamma (γ)-rays, individuals working in ionizing radiation environments are chronically exposed to low-dose γ-radiation, resulting in cognitive changes. Dose rate significantly affects radiation-induced biological effects; however, its role in chronic low-dose γ-irradiation-induced cognitive impairment remains unclear. We aimed to investigate whether chronic low-dose γ-irradiation at low-dose-rate (LDR) could induce cognitive impairment and to compare the cognitive alteration caused by chronic low-dose γ-irradiation at LDR and high-dose-rate (HDR). Methods: The rats were exposed to γ-irradiation at a LDR of 6 mGy/h and a HDR of 20 mGy/h for 30 days (5 h/day). Functional imaging was performed to assess the brain inflammation and blood-brain barrier (BBB) destruction of rats. Histological and immunofluorescence analyses were used to reveal the neuron damage and the activation of microglia and astrocytes in the hippocampus. RNA sequencing was conducted to investigate changes in gene expression in hippocampus. Results: The rats in the LDR group exhibited more persistent cognitive impairment than those in the HDR group. Furthermore, irradiated rats showed brain inflammation and a compromised BBB. Histologically, the number of hippocampal neurons were comparable in the LDR group but were markedly decreased in the HDR. Additionally, activated M1-like microglia and A1-like astrocytes were observed in the hippocampus of rats in the LDR group; however, only M1-like microglia were activated in the HDR group. Mechanistically, the PI3K-Akt signaling pathway contributed to the different cognitive function change between the LDR group and HDR group. Conclusion: Compared with chronic low-dose γ-irradiation at HDR, LDR induced more severe cognitive impairment which might involve PI3K/Akt signaling pathway.


Assuntos
Disfunção Cognitiva , Raios gama , Animais , Raios gama/efeitos adversos , Ratos , Disfunção Cognitiva/etiologia , Masculino , Hipocampo/efeitos da radiação , Ratos Sprague-Dawley , Relação Dose-Resposta à Radiação , Barreira Hematoencefálica/efeitos da radiação
3.
Sci Rep ; 14(1): 13571, 2024 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-38866887

RESUMO

The identification and validation of radiation biomarkers is critical for assessing the radiation dose received in exposed individuals and for developing radiation medical countermeasures that can be used to treat acute radiation syndrome (ARS). Additionally, a fundamental understanding of the effects of radiation injury could further aid in the identification and development of therapeutic targets for mitigating radiation damage. In this study, blood samples were collected from fourteen male nonhuman primates (NHPs) that were exposed to 7.2 Gy ionizing radiation at various time points (seven days prior to irradiation; 1, 13, and 25 days post-irradiation; and immediately prior to the euthanasia of moribund (preterminal) animals). Plasma was isolated from these samples and was analyzed using a liquid chromatography tandem mass spectrometry approach in an effort to determine the effects of radiation on plasma proteomic profiles. The primary objective was to determine if the radiation-induced expression of specific proteins could serve as an early predictor for health decline leading to a preterminal phenotype. Our results suggest that radiation induced a complex temporal response in which some features exhibit upregulation while others trend downward. These statistically significantly altered features varied from pre-irradiation levels by as much as tenfold. Specifically, we found the expression of integrin alpha and thrombospondin correlated in peripheral blood with the preterminal stage. The differential expression of these proteins implicates dysregulation of biological processes such as hemostasis, inflammation, and immune response that could be leveraged for mitigating radiation-induced adverse effects.


Assuntos
Raios gama , Macaca mulatta , Proteômica , Animais , Raios gama/efeitos adversos , Masculino , Proteômica/métodos , Biomarcadores/sangue , Irradiação Corporal Total/efeitos adversos , Síndrome Aguda da Radiação/sangue , Síndrome Aguda da Radiação/etiologia , Proteínas Sanguíneas/análise , Proteínas Sanguíneas/metabolismo , Proteoma/análise , Proteoma/metabolismo
4.
Bull Exp Biol Med ; 176(5): 645-648, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38727954

RESUMO

Using the method of dominant lethal mutations, we assessed the frequency of the death of Drosophila melanogaster embryos under combined exposure to ionizing γ-radiation and non-ionizing pulsed magnetic field at various doses and modes of exposure. Mutagenic effect of combined exposure is antagonistic in nature. The antagonism is more pronounced when the following mode of exposure was used: exposure to non-ionizing pulsed magnetic field for 5 h followed by exposure to γ-radiation at doses of 3, 10, and 60 Gy. In case of reverse sequence of exposures, the antagonistic effect was statistically significant after exposure to γ-radiation at doses of 3 and 10 Gy, whereas at a dose of 20 Gy, a synergistic interaction was noted.


Assuntos
Drosophila melanogaster , Raios gama , Animais , Drosophila melanogaster/efeitos da radiação , Drosophila melanogaster/genética , Raios gama/efeitos adversos , Radiação Eletromagnética , Relação Dose-Resposta à Radiação , Campos Eletromagnéticos/efeitos adversos , Embrião não Mamífero/efeitos da radiação , Radiação Ionizante , Mutação/efeitos da radiação , Mutagênese/efeitos da radiação
5.
Sci Rep ; 14(1): 12160, 2024 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-38802452

RESUMO

The knowledge on responses of human lens epithelial cells (HLECs) to ionizing radiation exposure is important to understand mechanisms of radiation cataracts that are of concern in the field of radiation protection and radiation therapy. However, biological effects in HLECs following protracted exposure have not yet fully been explored. Here, we investigated the temporal kinetics of γ-H2AX foci as a marker for DNA double-strand breaks (DSBs) and cell survival in HLECs after exposure to photon beams at various dose rates (i.e., 150 kVp X-rays at 1.82, 0.1, and 0.033 Gy/min, and 137Cs γ-rays at 0.00461 Gy/min (27.7 cGy/h) and 0.00081 Gy/min (4.9 cGy/h)), compared to those in human lung fibroblasts (WI-38). In parallel, we quantified the recovery for DSBs and cell survival using a biophysical model. The study revealed that HLECs have a lower DSB repair rate than WI-38 cells. There is no significant impact of dose rate on cell survival in both cell lines in the dose-rate range of 0.033-1.82 Gy/min. In contrast, the experimental residual γ-H2AX foci showed inverse dose rate effects (IDREs) compared to the model prediction, highlighting the importance of the IDREs in evaluating radiation effects on the ocular lens.


Assuntos
Sobrevivência Celular , Quebras de DNA de Cadeia Dupla , Relação Dose-Resposta à Radiação , Células Epiteliais , Histonas , Cristalino , Humanos , Células Epiteliais/efeitos da radiação , Células Epiteliais/metabolismo , Cristalino/efeitos da radiação , Cristalino/citologia , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Histonas/metabolismo , Sobrevivência Celular/efeitos da radiação , Radiação Ionizante , Linhagem Celular , Reparo do DNA/efeitos da radiação , Fibroblastos/efeitos da radiação , Fibroblastos/metabolismo , Raios X , Raios gama/efeitos adversos
6.
Sci Rep ; 14(1): 11524, 2024 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773212

RESUMO

The biological mechanisms triggered by low-dose exposure still need to be explored in depth. In this study, the potential mechanisms of low-dose radiation when irradiating the BEAS-2B cell lines with a Cs-137 gamma-ray source were investigated through simulations and experiments. Monolayer cell population models were constructed for simulating and analyzing distributions of nucleus-specific energy within cell populations combined with the Monte Carlo method and microdosimetric analysis. Furthermore, the 10 × Genomics single-cell sequencing technology was employed to capture the heterogeneity of individual cell responses to low-dose radiation in the same irradiated sample. The numerical uncertainties can be found both in the specific energy distribution in microdosimetry and in differential gene expressions in radiation cytogenetics. Subsequently, the distribution of nucleus-specific energy was compared with the distribution of differential gene expressions to guide the selection of differential genes bioinformatics analysis. Dose inhomogeneity is pronounced at low doses, where an increase in dose corresponds to a decrease in the dispersion of cellular-specific energy distribution. Multiple screening of differential genes by microdosimetric features and statistical analysis indicate a number of potential pathways induced by low-dose exposure. It also provides a novel perspective on the selection of sensitive biomarkers that respond to low-dose radiation.


Assuntos
Relação Dose-Resposta à Radiação , Análise de Célula Única , Análise de Célula Única/métodos , Humanos , Método de Monte Carlo , Radiometria/métodos , Linhagem Celular , Raios gama/efeitos adversos
7.
Mol Med Rep ; 30(1)2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38785154

RESUMO

Although there are several types of radiation exposure, it is debated whether low­dose­rate (LDR) irradiation (IR) affects the body. Since the small intestine is a radiation­sensitive organ, the present study aimed to evaluate how it changes when exposed to LDR IR and identify the genes sensitive to these doses. After undergoing LDR (6.0 mGy/h) γ radiation exposure, intestinal RNA from BALB/c mice was extracted 1 and 24 h later. Mouse whole genome microarrays were used to explore radiation­induced transcriptional alterations. Reverse transcription­quantitative (RT­q) PCR was used to examine time­ and dose­dependent radiation responses. The histopathological status of the jejunum in the radiated mouse was not changed by 10 mGy of LDR IR; however, 23 genes were upregulated in response to LDR IR of the jejunum in mice after 1 and 24 h of exposure. Upregulated genes were selected to validate the results of the RNA sequencing analysis for RT­qPCR detection and results showed that only Na+/K+ transporting subunit α4, glucose­6­phosphatase catalytic subunit 2 (G6PC2), mucin 6 (MUC6) and transient receptor potential cation channel subfamily V member 6 levels significantly increased after 24 h of LDR IR. Furthermore, G6PC2 and MUC6 were notable genes induced by LDR IR exposure according to protein expression via western blot analysis. The mRNA levels of G6PC2 and MUC6 were significantly elevated within 24 h under three conditions: i) Exposure to LDR IR, ii) repeated exposure to LDR IR and iii) exposure to LDR IR in the presence of inflammatory bowel disease. These results could contribute to an improved understanding of immediate radiation reactions and biomarker development to identify radiation­susceptible individuals before histopathological changes become noticeable. However, further investigation into the specific mechanisms involving G6PC2 and MUC6 is required to accomplish this.


Assuntos
Glucose-6-Fosfatase , Doenças Inflamatórias Intestinais , Mucina-6 , Animais , Masculino , Camundongos , Relação Dose-Resposta à Radiação , Raios gama/efeitos adversos , Glucose-6-Fosfatase/metabolismo , Glucose-6-Fosfatase/genética , Doenças Inflamatórias Intestinais/metabolismo , Doenças Inflamatórias Intestinais/patologia , Doenças Inflamatórias Intestinais/genética , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efeitos da radiação , Mucosa Intestinal/patologia , Intestinos/efeitos da radiação , Intestinos/patologia , Jejuno/efeitos da radiação , Jejuno/metabolismo , Jejuno/patologia , Camundongos Endogâmicos BALB C , Mucina-6/metabolismo , Mucina-6/genética
8.
Int J Radiat Biol ; 100(6): 890-902, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38631047

RESUMO

Purpose: Continuous exposure to ionizing radiation at a low dose rate poses significant health risks to humans on deep space missions, prompting the need for mechanistic studies to identify countermeasures against its deleterious effects. Mitochondria are a major subcellular locus of radiogenic injury, and may trigger secondary cellular responses through the production of reactive oxygen species (mtROS) with broader biological implications. Methods and Materials: To determine the contribution of mtROS to radiation-induced cellular responses, we investigated the impacts of protracted γ-ray exposures (IR; 1.1 Gy delivered at 0.16 mGy/min continuously over 5 days) on mitochondrial function, gene expression, and the protein secretome of human HCA2-hTERT fibroblasts in the presence and absence of a mitochondria-specific antioxidant mitoTEMPO (MT; 5 µM). Results: IR increased fibroblast mitochondrial oxygen consumption (JO2) and H2O2 release rates (JH2O2) under energized conditions, which corresponded to higher protein expression of NADPH Oxidase (NOX) 1, NOX4, and nuclear DNA-encoded subunits of respiratory chain Complexes I and III, but depleted mtDNA transcripts encoding subunits of the same complexes. This was associated with activation of gene programs related to DNA repair, oxidative stress, and protein ubiquination, all of which were attenuated by MT treatment along with radiation-induced increases in JO2 and JH2O2. IR also increased secreted levels of interleukin-8 and Type I collagens, while decreasing Type VI collagens and enzymes that coordinate assembly and remodeling of the extracellular matrix. MT treatment attenuated many of these effects while augmenting others, revealing complex effects of mtROS in fibroblast responses to IR. Conclusion: These results implicate mtROS production in fibroblast responses to protracted radiation exposure, and suggest potentially protective effects of mitochondrial-targeted antioxidants against radiogenic tissue injury in vivo.


Assuntos
Fibroblastos , Raios gama , Mitocôndrias , Espécies Reativas de Oxigênio , Humanos , Fibroblastos/efeitos da radiação , Fibroblastos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Mitocôndrias/efeitos da radiação , Mitocôndrias/metabolismo , Raios gama/efeitos adversos , Linhagem Celular , Exposição à Radiação/efeitos adversos , Compostos Organofosforados , Piperidinas
9.
Int J Radiat Biol ; 100(6): 940-964, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38647648

RESUMO

PURPOSE: The primary objective of this study was to conduct a comparative analysis of the anti-inflammatory activity between Etoricoxib (ETO) and Matcha green tea (MG) in the context of acute kidney injury (AKI) induced by ionizing gamma radiation (IR) in female rats. Furthermore, the potential impact of whole body IR exposure on the intestinal system and serum estradiol levels was investigated. Additionally, it was acknowledged that the ETO and MG treatments might have exerted favorable effects on the intestinal and hormonal responses. MATERIALS AND METHODS: Six groups of rats were assigned to different treatments: control, ETO, MG, irradiation (IRR), ETO + IRR, and MG + IRR. The evaluation included measuring the total phenolic and flavonoid contents of ETO and MG, as well as assessing their antioxidant activity, radical scavenging capacity, reducing power, and total antioxidant capacity. Kidney function was assessed through serum creatinine and urea levels. Oxidative stress markers, including superoxide dismutase, glutathione, malondialdehyde, and catalase, were measured to evaluate the antioxidant effects of ETO and MG. The anti-inflammatory potential of the treatments was evaluated by measuring STAT-3 and interleukins (IL-6, IL-23, and IL-17) using an ELISA assay. Prostaglandin E2 receptor (PGE-2) mRNA expression, histopathological examination, and immunohistochemistry for NF-κB inhibitors were performed to investigate the underlying mechanisms in kidney tissue homogenates. Histopathological changes and DNA fragmentation in the intestinal tissues were determined, and the characterization of Matcha green tea was performed using liquid chromatography-mass spectrometry (LC-MS). This allowed for the identification and quantification of various compounds present in Matcha green tea. Furthermore, the study assessed the effect of IR and treatments on estrogen levels in female rats. RESULTS: Data showed that both ETO and MG had the potential to mitigate the adverse effects of AKI induced by IR. Notably, MG exhibited greater efficacy in attenuating oxidative stress and inflammation associated with renal injury. These findings revealed and compared the effects of ETO and MG in alleviating AKI caused by IR. MG demonstrated greater anti-inflammatory and antioxidant properties, highlighting its potential as a natural therapeutic agent. CONCLUSIONS: These results contribute to the growing evidence supporting the use of MG in managing IR-induced renal complications. Future studies should focus on elucidating the molecular mechanisms and optimizing the application of MG in clinical settings.


This study is of significant importance as it compares the therapeutic potential of ETO and MG in mitigating AKI and intestinal damage induced by IR. The findings reveal that MG exhibits greater anti-inflammatory and antioxidant properties compared to ETO. These results provide valuable insights into the potential use of MG as a natural therapeutic agent for managing IR-induced renal and intestinal complications. As radiation therapy is commonly used in cancer treatment, identifying effective agents to protect the kidneys from radiation damage is crucial. The study contributes to the growing evidence supporting the application of MG in clinical settings, offering a promising alternative approach with potential benefits in terms of reduced side effects and improved patient outcomes.


Assuntos
Injúria Renal Aguda , Anti-Inflamatórios , Etoricoxib , Raios gama , Chá , Animais , Ratos , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/prevenção & controle , Feminino , Raios gama/efeitos adversos , Etoricoxib/farmacologia , Anti-Inflamatórios/farmacologia , Chá/química , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/efeitos da radiação , Ratos Wistar , Piridinas/farmacologia , Sulfonas/farmacologia
10.
J Cancer Res Ther ; 20(1): 261-267, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38554331

RESUMO

BACKGROUND AND OBJECTIVE: Radiation therapy is a routine clinical practice that has been used for a long time in the treatment of cancer patients. The most important dose-limiting organ in patients receiving radiotherapy for various conditions is the brain. The mechanisms underlying brain and pituitary gland damage caused by radiation are largely unknown. It is of great importance to use radioprotective agents to protect against damage. This study aims to evaluate the neuroprotective effects of quercetin in experimental radiation-induced brain and pituitary gland damage. MATERIALS AND METHODS: A total of 60 adult male Wistar-albino rats were randomly divided into six groups (control, sham, radiation, quercetin, radiation + quercetin, and quercetin + radiation groups, with ten rats in each group). Quercetin was given to rats by oral gavage at 50 mg/kg/day. A whole-body single dose of 10 Gy radiation was applied to the rats. Tissue samples belonging to the groups were compared after excision. Histopathological changes in the brain tissue and pituitary gland were examined with hematoxylin-tissue samples in the groups and compared histologically and immunohistochemically. RESULTS: The histopathological examination of the brain and anterior pituitary gland sections showed marked damage in the radiation-treated rats, while the quercetin-administered groups showed normal tissue architecture. While neuropeptid Y immunoreactivity was increased, synaptophysin immunoreactivity was decreased in the brains of radiation-treated rats. However, when neuropeptide Y and synaptophysin expression were assessed in the anterior pituitary gland, there was no significant difference between the groups. CONCLUSION: Consequently, quercetin may be a potential pharmacological agent in modulating radiation-induced damage in rats. However, extra experimental and preclinical studies are needed to confirm our findings before they can be used clinically.


Assuntos
Fármacos Neuroprotetores , Quercetina , Humanos , Ratos , Masculino , Animais , Quercetina/farmacologia , Quercetina/uso terapêutico , Raios gama/efeitos adversos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Sinaptofisina , Ratos Wistar , Estresse Oxidativo , Antioxidantes/farmacologia
11.
Radiat Res ; 201(5): 479-486, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38407403

RESUMO

High-LET-type cell survival curves have been observed in cells that were allowed to incorporate 125I-UdR into their DNA. Incorporation of tritiated thymidine into the DNA of cells has also been shown to result in an increase in relative biological effectiveness in cell survival experiments, but the increase is smaller than observed after incorporation of 125I-UdR. These findings are explained in the literature by the overall complexity of the induced DNA damage resulting from energies of the ejected electron(s) during the decay of 3H and 125I. Chromosomal aberrations (CA) are defined as morphological or structural changes of one or more chromosomes, and can be induced by ionizing radiation. Whether the number of CA is associated with the linear energy transfer (LET) of the radiation and/or the actual complexity of the induced DNA double-strand breaks (DSB) remains elusive. In this study, we investigated whether DNA lesions induced at different cell cycle stages and by different radiation types [Auger-electrons (125I), ß- particles (3H), or γ radiation (137Cs)] have an impact on the number of CA induced after induction of the same number of DSB as determined by the γ-H2AX foci assay. Cells were synchronized and pulse-labeled in S phase with low activities of 125I-UdR or tritiated thymidine. For decay accumulation, cells were cryopreserved either after pulse-labeling in S phase or after progression to G2/M or G1 phase. Experiments with γ irradiation (137Cs) were performed with synchronized and cryopreserved cells in S, G2/M or G1 phase. After thawing, a CA assay was performed. All experiments were performed after a similar number of DSB were induced. CA induction after 125I-UdR was incorporated was 2.9-fold and 1.7-fold greater compared to exposure to γ radiation and radiation from incorporated tritiated thymidine, respectively, when measured in G2/M cells. In addition, measurement of CA in G2/M cells after incorporation of 125I-UdR was 2.5-fold greater when compared to cells in G1 phase. In contrast, no differences were observed between the three radiation qualities with respect to exposure after cryopreservation in S or G1 phase. The data indicate that the 3D organization of replicated DNA in G2/M cells seems to be more sensitive to induction of more complex DNA lesions compared to the DNA architecture in S or G1 cells. Whether this is due to the DNA organization itself or differences in DNA repair capability remains unclear.


Assuntos
Partículas beta , Radioisótopos de Césio , Aberrações Cromossômicas , Raios gama , Radioisótopos do Iodo , Trítio , Aberrações Cromossômicas/efeitos da radiação , Raios gama/efeitos adversos , Animais , Transferência Linear de Energia , Cricetulus , Elétrons , Humanos , Ciclo Celular/efeitos da radiação , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Cricetinae , Células CHO
12.
Ecotoxicol Environ Saf ; 273: 116128, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38387144

RESUMO

BACKGROUND: Low-dose ionizing radiation-induced protection and damage are of great significance among radiation workers. We aimed to study the role of glutathione S-transferase Pi (GSTP1) in low-dose ionizing radiation damage and clarify the impact of ionizing radiation on the biological activities of cells. RESULTS: In this study, we collected peripheral blood samples from healthy adults and workers engaged in radiation and radiotherapy and detected the expression of GSTP1 by qPCR. We utilized γ-rays emitted from uranium tailings as a radiation source, with a dose rate of 14 µGy/h. GM12878 cells subjected to this radiation for 7, 14, 21, and 28 days received total doses of 2.4, 4.7, 7.1, and 9.4 mGy, respectively. Subsequent analyses, including flow cytometry, MTS, and other assays, were performed to assess the ionizing radiation's effects on cellular biological functions. In peripheral blood samples collected from healthy adults and radiologic technologist working in a hospital, we observed a decreased expression of GSTP1 mRNA in radiation personnel compared to the healthy controls. In cultured GM12878 cells exposed to low-dose ionizing radiation from uranium tailings, we noted significant changes in cell morphology, suppression of proliferation, delay in cell cycle progression, and increased apoptosis. These effects were partially reversed by overexpression of GSTP1. Moreover, low-dose ionizing radiation increased GSTP1 gene methylation and downregulated GSTP1 expression. Furthermore, low-dose ionizing radiation affected the expression of GSTP1-related signaling molecules. CONCLUSIONS: This study shows that low-dose ionizing radiation damages GM12878 cells and affects their proliferation, cell cycle progression, and apoptosis. In addition, GSTP1 plays a modulating role under low-dose ionizing radiation damage conditions. Low-dose ionizing radiation affects the expression of Nrf2, JNK, and other signaling molecules through GSTP1.


Assuntos
Glutationa S-Transferase pi , Urânio , Adulto , Humanos , Glutationa S-Transferase pi/genética , Radiação Ionizante , Raios gama/efeitos adversos , Apoptose
13.
BMC Pharmacol Toxicol ; 25(1): 22, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38414079

RESUMO

BACKGROUND: Radiation triggers salivary gland damage and excess iron accumulates in tissues induces cell injury. Flavonoids are found in some fruits and are utilized as potent antioxidants and radioprotective agents. This study aimed to evaluate the antioxidant and anti-inflammatory effects of hesperidin and rutin on gamma radiation and iron overload induced submandibular gland (SMG) damage and to evaluate their possible impact on mitigating the alteration in mTOR signaling pathway and angiogenesis. METHODS: Forty-eight adult male Wistar albino rats were randomly assigned to six groups: group C received a standard diet and distilled water; group H received hesperidin at a dose of 100 mg/kg; four times a week for four weeks; group U received rutin at a dose of 50 mg/kg; three times a week for three weeks; group RF received a single dose (5 Gy) of gamma radiation followed by iron at a dose of 100 mg/kg; five times a week for four weeks; group RFH received radiation and iron as group RF and hesperidin as group H; group RFU received radiation and iron as group RF and rutin as group U. SMG specimens from all groups were removed at the end of the experiment; and some were used for biochemical analysis, while others were fixed for histological and immunohistochemical examination. RESULTS: In the RF group, several genes related to antioxidants (Nrf-2 and SOD) and DNA damage (BRCA1) were significantly downregulated, while several genes related to inflammation and angiogenesis (TNFα, IL-1ß and VEGF) and the mTOR signaling pathway (PIK3ca, AKT and mTOR) were significantly upregulated. Acinar cytoplasmic vacuolation, nuclear pyknosis, and interacinar hemorrhage with distinct interacinar spaces were observed as histopathological changes in SMGs. The duct system suffered significant damage, eventually degenerating entirely as the cells were shed into the lumina. VEGF and NF-κB were also significantly overexpressed. Hesperidin and rutin cotreatment generated partial recovery as indicated by significant upregulation of Nrf-2, SOD and BRCA1 and considerable downregulation of TNF-α, IL-1ß, VEGF, PIK3ca, AKT, and mTOR. Although some acini and ducts continued to deteriorate, most of them had a normal appearance. There was a notable decrease in the expression of VEGF and NF-κB. CONCLUSIONS: In γ-irradiated rats with iron overload, the administration of hesperidin and rutin may mitigate salivary gland damage.


Assuntos
Hesperidina , Sobrecarga de Ferro , Ratos , Masculino , Animais , Hesperidina/farmacologia , Hesperidina/uso terapêutico , Rutina/farmacologia , Rutina/uso terapêutico , Rutina/metabolismo , Ratos Wistar , Glândula Submandibular/metabolismo , NF-kappa B/metabolismo , Raios gama/efeitos adversos , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Antioxidantes/metabolismo , Sobrecarga de Ferro/tratamento farmacológico , Sobrecarga de Ferro/metabolismo , Superóxido Dismutase/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Ferro/metabolismo , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Estresse Oxidativo
14.
Int J Radiat Biol ; 100(4): 627-649, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38319050

RESUMO

PURPOSE: Sustainable wheat production and higher genetic gains can be realized by broadening the genetic base and improving the well adapted varieties. In the present study, a multi-year experiment involving induced mutagenesis was conducted to create genetic variation, assess trait associations and genetic divergence in four wheat varieties with differential grain texture treated with six doses of gamma rays and ethyl methane sulfonate using ten agro-morphological traits. MATERIALS AND METHODS: Healthy selfed seeds of four bread wheat varieties with differential texture were irradiated using six doses ranging from 175 Gy-300 Gy of gamma rays (Co60: BARC, Mumbai) and six concentrations of ethyl methanesulfonate (0.3-1.3%) (Sigma-Aldrich, Bangalore, India) to evaluate variability, character association and degree of genetic diversity induced among the mutagenic treatments of wheat varieties with differential grain texture. RESULTS: Significant inter-population differences were observed for almost all the traits. The sample mean of twelve mutant populations in each of the cultivar exhibited superior quantitative phenotypic traits and increased values of the genetic parameters. Based on association and variability studies, plant height, spike length, grain filling period, biological yield per plant and harvest index can be used as early generation criteria for maximum genetic improvement. Multivariate studies indicated the contribution of various traits towards divergence and indicated the efficiency of mutagens in generating variability. Gamma-irradiation dosages between 200-250 Gy and 0.5-1.1% EMS for soft-textured varieties, whereas doses between 225-275 Gy and 0.5-0.9% EMS were found to be most potent for semi-hard-textured varieties. CONCLUSIONS: Assessment of mutagen sensitivity showed that semi-hard wheat varieties were responsive to both mutagens, particularly EMS and generated higher variability and divergence than the soft textured varieties. Hence, gamma rays were proved to be more effective in generating higher variability than ethyl methanesulfonate. A total of 117 putative mutants were identified with desirable agro-morphological attributes. Among these, mutants with higher inter-cluster distance can be used as parents in hybridization programs and serve as important genetic resources in future wheat improvement programs.


Assuntos
Pão , Triticum , Metanossulfonato de Etila/farmacologia , Triticum/genética , Raios gama/efeitos adversos , Índia , Genótipo , Fenótipo , Mutagênicos/farmacologia
15.
Radiat Res ; 201(5): 371-383, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38253059

RESUMO

A complex cascade of systemic and tissue-specific responses induced by exposure to ionizing radiation can lead to functional impairment over time in the surviving population. Current methods for management of survivors of unintentional radiation exposure episodes rely on monitoring individuals over time for the development of adverse clinical symptoms due to the lack of predictive biomarkers for tissue injury. In this study, we report on changes in metabolomic and lipidomic profiles in multiple tissues of nonhuman primates (NHPs) that received either 4.0 Gy or 5.8 Gy total-body irradiation (TBI) of 60Co gamma rays, and 4.0 or 5.8 Gy partial-body irradiation (PBI) from LINAC-derived photons and were treated with a promising radiation countermeasure, gamma-tocotrienol (GT3). These include small molecule alterations that correlate with radiation effects in the jejunum, lung, kidney, and spleen of animals that either survived or succumbed to radiation toxicities over a 30-day period. Radiation-induced metabolic changes in tissues were observed in animals exposed to both doses and types of radiation, but were partially alleviated in GT3-treated and irradiated animals, with lung and spleen being most responsive. The majority of the pathways protected by GT3 treatment in these tissues were related to glucose metabolism, inflammation, and aldarate metabolism, suggesting GT3 may exert radioprotective effects in part by sparing these pathways from radiation-induced dysregulation. Taken together, the results of our study demonstrate that the prophylactic administration of GT3 results in metabolic and lipidomic shifts that likely provide an overall advantage against radiation injury. This investigation is among the first to highlight the use of a molecular phenotyping approach in a highly translatable NHP model of partial- and total-body irradiation to determine the underlying physiological mechanisms involved in the radioprotective efficacy of GT3.


Assuntos
Macaca mulatta , Metabolômica , Irradiação Corporal Total , Animais , Irradiação Corporal Total/efeitos adversos , Masculino , Metaboloma/efeitos da radiação , Vitamina E/metabolismo , Vitamina E/análogos & derivados , Protetores contra Radiação/farmacologia , Raios gama/efeitos adversos , Cromanos
16.
J Radiat Res ; 65(2): 194-204, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38264835

RESUMO

Enterogenic infection is a common complication for patients with radiation injury and requires efficient therapeutics in the clinic. Herein, we evaluated the promising drug candidate T7E21RHD5, which is a peptide derived from intestinal Paneth cell-secreted human defensin 5. Oral administration of this peptide alleviated the diarrhea symptoms of mice that received total abdominal irradiation (TAI, γ-ray, 12 Gy) and improved survival. Pathologic analysis revealed that T7E21RHD5 elicited an obvious mitigation of ionizing radiation (IR)-induced epithelial damage and ameliorated the reduction in the levels of claudin, zonula occluden 1 and occludin, three tight junction proteins in the ileum. Additionally, T7E21RHD5 regulated the gut microbiota in TAI mice by remodeling ß diversity, manifested as a reversal of the inverted proportion of Bacteroidota to Firmicutes caused by IR. T7E21RHD5 treatment also decreased the abundance of pathogenic Escherichia-Shigella but significantly increased the levels of Alloprevotella and Prevotellaceae_NK3B31, two short-chain fatty acid-producing bacterial genera in the gut. Accordingly, the translocation of enterobacteria and lipopolysaccharide to the blood, as well as the infectious inflammatory responses in the intestine after TAI, was all suppressed by T7E21RHD5 administration. Hence, this versatile antimicrobial peptide possesses promising application prospects in the treatment of IR-induced enterogenic infection.


Assuntos
Defensinas , Peptídeos , Humanos , Camundongos , Animais , Raios gama/efeitos adversos
17.
Radiat Environ Biophys ; 63(1): 17-26, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38212569

RESUMO

The aim of the present study was to assess the risk of primary central nervous system (CNS) tumour incidence in a cohort of 22,377 Mayak Production Association workers chronically exposed to ionising radiation. There were 96 primary CNS tumours, including 42 cases of glioma and 44 cases of meningioma, registered during the whole follow-up period (1948-2018). The study demonstrated that the risk of primary CNS tumour incidence was associated with sex, attained age, calendar period, tall body height, age at the beginning of exposure, and facility type. There was no association found between risk of CNS tumour incidence and body mass index, smoking (males) and alcohol consumption status. The study did not find an effect of the total external gamma radiation dose absorbed in the brain on risk of CNS tumour incidence irrespective of whether an adjustment for the total external neutron dose absorbed in the brain was included or not. Excess relative risk per 1 Gy of external gamma brain dose was 0.05 (95% confidence interval (CI) -0.30; 0.70) for all CNS tumours, -0.18 (95% CI -; 0.44) for gliomas, and 0.38 (95% CI -0.32; 2.08) for meningiomas without adjustment for total neutron brain dose. There was no effect modification by sex, attained age, age at hire or facility.


Assuntos
Neoplasias do Sistema Nervoso Central , Glioma , Exposição Ocupacional , Masculino , Humanos , Incidência , Radiação Ionizante , Neoplasias do Sistema Nervoso Central/epidemiologia , Neoplasias do Sistema Nervoso Central/etiologia , Risco , Raios gama/efeitos adversos , Exposição Ocupacional/efeitos adversos , Federação Russa/epidemiologia
18.
Life Sci Space Res (Amst) ; 40: 97-105, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38245354

RESUMO

Health effects of space radiation are a serious concern for astronauts on long-duration missions. The lens of the eye is one of the most radiosensitive tissues in the body and, therefore, ocular health risks for astronauts is a significant concern. Studies in humans and animals indicate that ionizing radiation exposure to the eye produces characteristic lens changes, termed "radiation cataract," that can affect visual function. Animal models of radiation cataractogenesis have previously utilized inbred mouse or rat strains. These studies were essential for determining morphological changes and dose-response relationships between radiation exposure and cataract. However, the relevance of these studies to human radiosensitivity is limited by the narrow phenotypic range of genetically homogeneous animal models. To model radiation cataract in genetically diverse populations, longitudinal cataract phenotyping was nested within a lifetime carcinogenesis study in male and female heterogeneous stock (HS/Npt) mice exposed to 0.4 Gy HZE ions (n = 609) or 3.0 Gy γ-rays (n = 602) and in unirradiated controls (n = 603). Cataractous change was quantified in each eye for up to 2 years using Merriam-Focht grading criteria by dilated slit lamp examination. Virtual Optomotry™ measurement of visual acuity and contrast sensitivity was utilized to assess visual function in a subgroup of mice. Prevalence and severity of posterior lens opacifications were 2.6-fold higher in HZE ion and 2.3-fold higher in γ-ray irradiated mice compared to unirradiated controls. Male mice were at greater risk for spontaneous and radiation associated cataracts. Risk for cataractogenesis was associated with family structure, demonstrating that HS/Npt mice are well-suited to evaluate genetic determinants of ocular radiosensitivity. Last, mice were extensively evaluated for cataract and tumor formation, which revealed an overlap between individual susceptibility to both cancer and cataract.


Assuntos
Catarata , Cristalino , Lesões por Radiação , Camundongos , Ratos , Masculino , Feminino , Humanos , Animais , Catarata/etiologia , Catarata/epidemiologia , Catarata/patologia , Lesões por Radiação/epidemiologia , Cristalino/patologia , Cristalino/efeitos da radiação , Raios gama/efeitos adversos , Íons , Relação Dose-Resposta à Radiação
19.
Naunyn Schmiedebergs Arch Pharmacol ; 397(7): 5193-5205, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38252300

RESUMO

Perturbations produced by ionizing radiation on intestinal tissue are considered one of highly drastic challenges in radiotherapy. Animals were randomized into five groups. The first group was allocated as control, and the second was subjected to whole body γ-irradiation (10 Gy). The third was administered HA NP (17.6 mg/kg/day; i.p.) and then irradiated. The fourth one received MitoQ (2 mg/kg/day; i.p.) and then irradiated. The last group received MitoQ/HA NP (2 mg/kg/day; i.p.) for 5 days prior to irradiation. Mice were sacrificed a week post-γ-irradiation for evaluation. MitoQ/HA NP ameliorated mitochondrial oxidative stress as indicated by rising (TAC) and glutathione peroxidase and decreasing malondialdehyde, showing its distinguished antioxidant yield. That impacted the attenuation of apoptosis, which was revealed by the restoration of the anti-apoptotic marker and lessening proapoptotic caspase-3. Inflammatory parameters dwindled via treatment with MitoQ/HA NP. Moreover, this new NP exerts its therapeutic action through a distinguished radioprotective pathway (Hmgb1/TLR-4.) Subsequently, these antioxidants and their nanoparticles conferred protection to intestinal tissue as manifested by histopathological examination. These findings would be associated with its eminent antioxidant potential through high mitochondria targeting, enhanced cellular uptake, and ROS scavenging. This research underlines MitoQ/HA NP as a new treatment for the modulation of intestinal damage caused by radiotherapy modalities.


Assuntos
Antioxidantes , Apoptose , Raios gama , Ácido Hialurônico , Compostos Organofosforados , Estresse Oxidativo , Protetores contra Radiação , Ubiquinona , Animais , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/efeitos da radiação , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Raios gama/efeitos adversos , Camundongos , Compostos Organofosforados/farmacologia , Masculino , Protetores contra Radiação/farmacologia , Protetores contra Radiação/uso terapêutico , Antioxidantes/farmacologia , Ubiquinona/análogos & derivados , Ubiquinona/farmacologia , Ácido Hialurônico/farmacologia , Lesões Experimentais por Radiação/prevenção & controle , Lesões Experimentais por Radiação/patologia , Lesões Experimentais por Radiação/tratamento farmacológico , Lesões Experimentais por Radiação/metabolismo , Nanopartículas , Intestinos/efeitos dos fármacos , Intestinos/efeitos da radiação , Intestinos/patologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos da radiação
20.
Naunyn Schmiedebergs Arch Pharmacol ; 397(1): 521-534, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37480487

RESUMO

The danger of ionizing radiation exposure to human health is a concern. Since its wide use in medicine and industry, the development of radioprotectors has been very significant. Adenosine exerts anti-inflammatory actions and promotes tissue protection and repair, by activating the P1 receptors (A1, A2A, A2B, and A3). Zebrafish (Danio rerio) is an appropriate tool in the fields of toxicology and pharmacology, including the evaluation of radiobiological outcomes and in the search for radioprotector agents. This study aims to evaluate the effect of adenosine in the toxicity induced by radiation in zebrafish. Embryos were treated with 1, 10, or 100 µM adenosine, 30 min before the exposure to 15 Gy of gamma radiation. Adenosine potentiated the effects of radiation in heart rate, body length, and pericardial edema. We evaluated oxidative stress, tissue remodeling and inflammatory. It was seen that 100 µM adenosine reversed the inflammation induced by radiation, and that A2A2 and A2B receptors are involved in these anti-inflammatory effects. Our results indicate that P1R activation could be a promising pharmacological strategy for radioprotection.


Assuntos
Adenosina , Peixe-Zebra , Humanos , Animais , Adenosina/farmacologia , Raios gama/efeitos adversos , Frequência Cardíaca , Anti-Inflamatórios
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...