Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cladistics ; 36(5): 447-457, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-34618951

RESUMO

Temperate South American-Asian disjunct distributions are the most unusual in organisms, and challenging to explain. Here, we address the origin of this unusual disjunction in Lardizabalaceae using explicit models and molecular data. The family (c.40 species distributed in ten genera) also provides an opportunity to explore the historical assembly of East Asian subtropical evergreen broadleaved forests, a typical and luxuriant vegetation in East Asia. DNA sequences of five plastid loci of 42 accessions representing 23 species of Lardizabalaceae (c. 57.5% of estimated species diversity), and 19 species from the six other families of Ranunculales, were used to perform phylogenetic analyses. By dating the branching events and reconstructing ancestral ranges, we infer that extant Lardizabalaceae dated to the Upper Cretaceous of East Asia and that the temperate South American lineage might have split from its East Asian sister group at c. 24.4 Ma. A trans-Pacific dispersal possibly by birds from East Asia to South America is plausible to explain the establishment of the temperate South American-East Asian disjunction in Lardizabalaceae. Diversification rate analyses indicate that net diversification rates of Lardizabalaceae experienced a significant increase around c. 7.5 Ma. Our findings suggest that the rapid rise of East Asian subtropical evergreen broadleaved forests occurred in the late Miocene, associated with the uplift of the Tibetan Plateau and the intensified East Asian monsoon, as well as the higher winter temperature and atmospheric CO2 levels.


Assuntos
Ranunculales/classificação , Ranunculales/genética , DNA de Plantas , Ásia Oriental , Florestas , Oceano Pacífico , Filogenia , Plastídeos/genética , Análise de Sequência de DNA
2.
Phytother Res ; 33(6): 1689-1696, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30932278

RESUMO

The tumor suppressor p53 plays essential roles in cellular protection mechanisms against a variety of stress stimuli and its activation induces apoptosis or autophagy in certain cancer cells. Here, we identified protopine, an isoquinoline alkaloid isolated from Nandina domestica, as an activator of the p53 pathway from cell-based natural compound screening based on p53-responsive transcription. Protopine increased the p53-mediated transcriptional activity and promoted p53 phosphorylation at the Ser15 residue, resulting in stabilization of p53 protein. Moreover, protopine up-regulated the expression of p21WAF1/CIP1 and BAX, downstream genes of p53, and inhibited the proliferation of HCT116 colon cancer cells. Apoptosis was elicited by protopine as indicated by caspase-3/7 activation, poly ADP ribose polymerase cleavage, and increased population of Annexin V-FITC-positive cells. Furthermore, protopine induced the formation of microtubule-associated protein 1 light chain 3 (LC3) puncta and LC3-II turnover, typical biochemical markers of autophagy, in HCT116 cells. Our findings suggest that protopine exerts its antiproliferative activity by stimulating the p53 pathway and may have potential as a chemopreventive agent for human colon cancer.


Assuntos
Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Benzofenantridinas/isolamento & purificação , Benzofenantridinas/uso terapêutico , Alcaloides de Berberina/isolamento & purificação , Alcaloides de Berberina/uso terapêutico , Neoplasias do Colo/tratamento farmacológico , Ranunculales/química , Apoptose/fisiologia , Autofagia/fisiologia , Benzofenantridinas/farmacologia , Berberidaceae/química , Berberidaceae/classificação , Alcaloides de Berberina/farmacologia , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Relação Dose-Resposta a Droga , Células HCT116 , Humanos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Estabilidade Proteica/efeitos dos fármacos , Ranunculales/classificação , Células Tumorais Cultivadas , Proteína Supressora de Tumor p53/metabolismo , Regulação para Cima/efeitos dos fármacos
3.
Mol Phylogenet Evol ; 127: 978-987, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29981470

RESUMO

Species of Podophylloideae (Berberidaceae, Ranunculales) are of great pharmacogenetic importance and represent the classic biogeographic disjunction between eastern Asia (EA; 10 ssp.) and eastern North America (ENA; 2 ssp.). However, previous molecular studies of this group suffered from low phylogenetic resolution and/or insufficient marker variability. This study is the first to report whole-plastome sequence data for all 12 species of Podophylloideae (14 individuals) and a close relative, Achlys triphylla. These 15 plastomes proved highly similar in overall size (156,240-157,370 bp), structure, gene order and content, also when compared to other Ranunculales, but also revealed some structural variations caused by the expansion or contraction of the inverted repeats (IRs) into or out of adjacent single-copy regions. Our phylogenomic analysis, based on 63 plastome-derived protein-coding genes (CDS), supported the monophyly of Podophylloideae and its two major genera (EA: Dysosma, EA/ENA: Diphylleia), with Podophyllum peltatum L. (ENA) being more closely related to Diphylleia than to the group's earliest diverging species, Sinopodophyllum hexandrum (EA). Furthermore, within this subfamily/dataset, matK was identified as the fastest evolving gene, which proved to be under positive selection especially in more recently derived, lower-elevation lineages of Dysosma, possibly reflecting an adaptive response to novel environmental (i.e. subtropical compared to higher-elevation/alpine) conditions. Finally, several highly variable noncoding regions were identified in the plastomes of Podophylloideae and Ranunculales. These highly variable loci should be the best choices for future phylogenetic, phylogeographic, and population-level genetic studies. Overall, our results demonstrate the power of plastid phylogenomics to improve phylogenetic resolution, and contribute to a better understanding of plastid gene evolution in Podophylloideae.


Assuntos
Berberidaceae/genética , Evolução Molecular , Genes de Plantas , Genomas de Plastídeos , Filogenia , Plastídeos/genética , Ásia Oriental , Humanos , Repetições de Microssatélites/genética , Filogeografia , Polimorfismo Genético , Ranunculales/classificação , Sequências Repetitivas de Ácido Nucleico/genética , Seleção Genética
4.
Sci Rep ; 7(1): 10073, 2017 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-28855603

RESUMO

Decaisnea insignis is a wild resource plant and is used as an ornamental, medicinal, and fruit plant. High-throughput sequencing of chloroplast genomes has provided insight into the overall evolutionary dynamics of chloroplast genomes and has enhanced our understanding of the evolutionary relationships within plant families. In the present study, we sequenced the complete chloroplast genome of D. insignis and used the data to assess its genomic resources. The D. insignis chloroplast genome is 158,683 bp in length and includes a pair of inverted repeats of 26,167 bp that are separated by small and large single copy regions of 19,162 bp and 87,187 bp, respectively. We identified 83 simple sequence repeats and 18 pairs of large repeats. Most simple-sequence repeats were located in the noncoding sections of the large single-copy/small single-copy region and exhibited a high A/T content. The D. insignis chloroplast genome bias was skewed towards A/T on the basis of codon usage. A phylogenetic tree based on 82 protein-coding genes of 33 angiosperms showed that D. insignis was clustered with Akebia in Lardizabalaceae. Overall, the results of this study will contribute to better understanding the evolution, molecular biology and genetic improvement of D. insignis.


Assuntos
Cloroplastos/genética , Genes de Plantas , Genoma de Cloroplastos , Filogenia , Ranunculales/genética , Sequência Rica em At , Composição de Bases , Evolução Biológica , Mapeamento Cromossômico , Códon , Tamanho do Genoma , Sequenciamento de Nucleotídeos em Larga Escala , Repetições de Microssatélites , Folhas de Planta/química , Folhas de Planta/genética , Ranunculales/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...