Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.027
Filtrar
1.
Int J Biol Sci ; 20(9): 3334-3352, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38993557

RESUMO

Type 2 diabetes mellitus (T2DM) increases the risk of non-alcoholic fatty liver disease (NAFLD) progression to advanced stages, especially upon high-fat diet (HFD). HFD-induced hepatic fibrosis can be marked by oxidative stress, inflammation, and activation of hepatic stellate cells. Sirtuin 1/2 (SIRT1/2), NAD-dependent class III histone deacetylases, are involved in attenuation of fibrosis. In our conducted research, TGF-ß1-activated LX-2 cells, free fatty acid (FFA)-treated simultaneous co-culture (SCC) cells, and HFD-induced hepatic fibrosis in Zucker diabetic fatty (ZDF) rats, a widely used animal model in the study of metabolic syndromes, were used to evaluate the protective effect of Tenovin-1, a SIRT1/2 inhibitor. ZDF rats were divided into chow diet, HFD, and HFD + Tenovin-1 groups. Tenovin-1 reduced hepatic damage, inhibited inflammatory cell infiltration, micro/ macro-vesicular steatosis and prevented collagen deposition HFD-fed rats. Tenovin-1 reduced serum biochemical parameters, triglyceride (TG) and malondialdehyde (MDA) levels but increased glutathione, catalase, and superoxide dismutase levels. Tenovin-1 mitigated proinflammatory cytokines IL-6, IL-1ß, TNFα and fibrosis biomarkers in HFD rats, TGF-ß1-activated LX-2 and FFA treated SCC cells. Additionally, Tenovin-1 suppressed SIRT1/2 expression and inhibited JNK-1 and STAT3 phosphorylation in HFD rats and FFA-treated SCC cells. In conclusion, Tenovin-1 attenuates hepatic fibrosis by stimulating antioxidants and inhibiting inflammatory cytokines under HFD conditions in diabetic rats.


Assuntos
Dieta Hiperlipídica , Cirrose Hepática , Ratos Zucker , Sirtuína 1 , Sirtuína 2 , Animais , Dieta Hiperlipídica/efeitos adversos , Ratos , Cirrose Hepática/metabolismo , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/induzido quimicamente , Sirtuína 1/metabolismo , Sirtuína 2/metabolismo , Sirtuína 2/antagonistas & inibidores , Masculino , Células Estreladas do Fígado/efeitos dos fármacos , Células Estreladas do Fígado/metabolismo , Estresse Oxidativo/efeitos dos fármacos
2.
J Food Drug Anal ; 32(2): 227-238, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38934691

RESUMO

We aimed to investigate the therapeutic potential of ibuprofen against type 2 diabetes (T2D) using obese Zucker diabetic fatty (ZDF) rats as type 2 diabetes model. ZDF rats were hyperglycemic, dyslipidemic and expressed proinflammatory markers in contrast to lean controls, thus reflecting the relationship between obesity and chronic inflammation promoting T2D. Chronic treatment with ibuprofen (2-(4-Isobutylphenyl)propanoic acid) was used to study the impact on pathological T2D conditions as compared to metformin (1,1-dimethylbiguanide) treated ZDF as well as lean controls. Ibuprofen decreased A1c but induced a high insulin release with improved glucose tolerance only after early time points (i.g., 15 and 30 min) resulting in a non-significant decline of AUC values and translating into a high HOMA-IR. In addition, ibuprofen significantly lowered cholesterol, free fatty acids and HDL-C. Some of these effects by ibuprofen might be based on its anti-inflammatory effects through inhibition of cytokine/chemokine signaling (i.g., COX-2, ICAM-1 and TNF-α) as measured in whole blood and epididymal adipose tissue by TaqMan and/or upregulation of anti-inflammatory cytokines (i.g., IL-4 and IL-13) by ELISA analysis in blood. In conclusion, our ZDF animal study showed positive effects of ibuprofen against diabetic complications such as inflammation and dyslipidemia but also demonstrated the risk of causing insulin resistance.


Assuntos
Diabetes Mellitus Tipo 2 , Ibuprofeno , Ratos Zucker , Animais , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Ibuprofeno/farmacologia , Ibuprofeno/administração & dosagem , Ratos , Masculino , Glicemia/metabolismo , Glicemia/efeitos dos fármacos , Humanos , Modelos Animais de Doenças , Insulina/metabolismo , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Citocinas/metabolismo , Resistência à Insulina
3.
Nutrients ; 16(12)2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38931174

RESUMO

Zinc deficiency has been associated with the worsening of diabetes while zinc supplementation has been proposed to ameliorate diabetes. This study examined the effects of marginal zinc deficiency (MZD) and zinc supplementation (ZS) on obesity, glycemic control, pancreatic islets, hepatic steatosis and renal function of Zucker diabetic fatty (ZDF) rats. Male ZDF rats were fed an MZD, zinc control (ZC) or ZS diet (4, 30 and 300 mg Zn/kg diet, respectively), and lean Zucker rats were fed a ZC diet for 8 weeks. MZD and ZS did not alter body weight or whole-body composition in ZDF rats. MZD ZDF rats had reduced zinc concentrations in the femur and pancreas, a greater number of enlarged pancreatic islets and a diminished response to an oral glucose load based on a 1.8-fold greater incremental area-under-the-curve (AUC) for glucose compared to ZC ZDF. ZS ZDF rats had elevated serum, femur and pancreatic zinc concentrations, unchanged pancreatic parameters and a 50% reduction in the AUC for insulin compared to ZC ZDF rats, suggesting greater insulin sensitivity. Dietary zinc intake did not alter hepatic steatosis, creatinine clearance, or levels of proteins that contribute to insulin signaling, inflammation or zinc transport in epididymal fat. Potential adverse effects of ZS were suggested by reduced hepatic copper concentrations and elevated serum urea compared to ZC ZDF rats. In summary, ZS improved the pancreatic insulin response but not the glucose handling. In contrast, reduced zinc status in ZDF rats led to impaired glucose tolerance and a compensatory increase in the number and size of pancreatic islets which could lead to ß-cell exhaustion.


Assuntos
Suplementos Nutricionais , Insulina , Ilhotas Pancreáticas , Ratos Zucker , Zinco , Animais , Zinco/deficiência , Masculino , Insulina/sangue , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/efeitos dos fármacos , Ratos , Glicemia/metabolismo , Obesidade/metabolismo , Resistência à Insulina , Pâncreas/metabolismo , Pâncreas/efeitos dos fármacos , Fígado/metabolismo , Fígado/efeitos dos fármacos , Diabetes Mellitus Experimental/tratamento farmacológico
4.
Bioorg Med Chem Lett ; 109: 129839, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38844173

RESUMO

Activation of pyruvate dehydrogenase (PDH) by inhibition of pyruvate dehydrogenase kinase (PDHK) has the potential for the treatment of diabetes mellitus and its complications, caused by the malfunction of the glycolytic system and glucose oxidation. In this paper, we describe the identification of novel PDHK inhibitors with a fluorene structure. High-throughput screening using our in-house library provided compound 6 as a weak inhibitor that occupied the allosteric lipoyl group binding site in PDHK2. Structure-based drug design (SBDD) while addressing physicochemical properties succeeded in boosting inhibitory activity approximately 700-fold. Thus obtained compound 32 showed favorable pharmacokinetics profiles supported by high membrane permeability and metabolic stability, and exhibited activation of PDH in rat livers and a glucose lowering effect in Zucker fatty rats.


Assuntos
Desenho de Fármacos , Fluorenos , Inibidores de Proteínas Quinases , Proteínas Serina-Treonina Quinases , Piruvato Desidrogenase Quinase de Transferência de Acetil , Ratos Zucker , Animais , Piruvato Desidrogenase Quinase de Transferência de Acetil/antagonistas & inibidores , Piruvato Desidrogenase Quinase de Transferência de Acetil/metabolismo , Ratos , Fluorenos/química , Fluorenos/síntese química , Fluorenos/farmacologia , Relação Estrutura-Atividade , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Estrutura Molecular , Humanos , Relação Dose-Resposta a Droga
5.
J Ethnopharmacol ; 333: 118442, 2024 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-38852640

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Jinmaitong (JMT) is a prescription of Traditional Chinese Medicine that is composed of 12 crude drugs. It has been used in the treatment of diabetic neuropathic pain (DNP) for more than 30 years. AIM OF STUDY: Microglia are thought to play an important role in neuropathic pain. This study aimed to evaluate the protective effect of JMT against DNP and to investigate the underlying mechanisms in which the microglia and JAK2/STAT3 signaling pathway were mainly involved. MATERIALS AND METHODS: The chemical composition of JMT was analyzed using liquid chromatography tandem mass spectrometry. The diabetes model was constructed using 11 to 12-week-old male Zucker diabetic fatty (ZDF) rat (fa/fa). The model rats were divided into 5 groups and were given JMT at three dosages (11.6, 23.2, and 46.4 g/kg, respectively, calculated as the crude drug materials), JAK inhibitor AG490 (positive drug, 10 µg/day), and placebo (deionized water), respectively, for eight weeks (n = 6). Meanwhile, Zucker lean controls (fa/+) were given a placebo (n = 6). Body weight was tested weekly and blood glucose was monitored every 2 weeks. The mechanical allodynia and heat hyperalgesia were assessed using mechanical withdrawal threshold (MWT) and thermal withdrawal latency (TWL) tests. After treatment, the microglia activation marker Iba-1, CD11B, CD68, neuroinflammatory mediators, and mediators of the JAK2/STAT3 signaling pathway were compared between different groups. The mRNA and protein levels of target genes were assessed by quantitative real-time PCR and Western Blot, respectively. RESULTS: We found that JMT significantly inhibited the overactivation of microglia in spinal cords, and suppressed neuroinflammation of DNP model rats, thereby ameliorating neurological dysfunction and injuries. Furthermore, these effects of JMT could be attributed to the inhibition of the JAK2/STAT3 signaling pathway. CONCLUSIONS: Our findings suggested that JMT effectively ameliorated DNP by modulating microglia activation via inhibition of the JAK2/STAT3 signaling pathway. The present study provided a basis for further research on the therapeutic strategies of DNP.


Assuntos
Diabetes Mellitus Experimental , Neuropatias Diabéticas , Medicamentos de Ervas Chinesas , Janus Quinase 2 , Microglia , Fator de Transcrição STAT3 , Transdução de Sinais , Animais , Masculino , Ratos , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/complicações , Neuropatias Diabéticas/tratamento farmacológico , Neuropatias Diabéticas/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Janus Quinase 2/metabolismo , Microglia/efeitos dos fármacos , Microglia/metabolismo , Neuralgia/tratamento farmacológico , Neuralgia/metabolismo , Ratos Zucker , Transdução de Sinais/efeitos dos fármacos , Fator de Transcrição STAT3/metabolismo
6.
Circ Heart Fail ; 17(6): e011107, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38847102

RESUMO

BACKGROUND: Clinical studies demonstrated beneficial effects of sodium-glucose-transporter 2 inhibitors on the risk of cardiovascular death in patients with heart failure with preserved ejection fraction (HFpEF). However, underlying processes for cardioprotection remain unclear. The present study focused on the impact of empagliflozin (Empa) on myocardial function in a rat model with established HFpEF and analyzed underlying molecular mechanisms. METHODS: Obese ZSF1 (Zucker fatty and spontaneously hypertensive) rats were randomized to standard care (HFpEF, n=18) or Empa (HFpEF/Empa, n=18). ZSF1 lean rats (con, n=18) served as healthy controls. Echocardiography was performed at baseline and after 4 and 8 weeks, respectively. After 8 weeks of treatment, hemodynamics were measured invasively, mitochondrial function was assessed and myocardial tissue was collected for either molecular and histological analyses or transmission electron microscopy. RESULTS: In HFpEF Empa significantly improved diastolic function (E/é: con: 17.5±2.8; HFpEF: 24.4±4.6; P<0.001 versus con; HFpEF/Empa: 19.4±3.2; P<0.001 versus HFpEF). This was accompanied by improved hemodynamics and calcium handling and by reduced inflammation, hypertrophy, and fibrosis. Proteomic analysis demonstrated major changes in proteins involved in mitochondrial oxidative phosphorylation. Cardiac mitochondrial respiration was significantly impaired in HFpEF but restored by Empa (Vmax complex IV: con: 0.18±0.07 mmol O2/s/mg; HFpEF: 0.13±0.05 mmol O2/s/mg; P<0.041 versus con; HFpEF/Empa: 0.21±0.05 mmol O2/s/mg; P=0.012 versus HFpEF) without alterations of mitochondrial content. The expression of cardiolipin, an essential stability/functionality-mediating phospholipid of the respiratory chain, was significantly decreased in HFpEF but reverted by Empa (con: 15.9±1.7 nmol/mg protein; HFpEF: 12.5±1.8 nmol/mg protein; P=0.002 versus con; HFpEF/Empa: 14.5±1.8 nmol/mg protein; P=0.03 versus HFpEF). Transmission electron microscopy revealed a reduced size of mitochondria in HFpEF, which was restored by Empa. CONCLUSIONS: The study demonstrates beneficial effects of Empa on diastolic function, hemodynamics, inflammation, and cardiac remodeling in a rat model of HFpEF. These effects were mediated by improved mitochondrial respiratory capacity due to modulated cardiolipin and improved calcium handling.


Assuntos
Compostos Benzidrílicos , Diástole , Modelos Animais de Doenças , Glucosídeos , Insuficiência Cardíaca , Mitocôndrias Cardíacas , Ratos Zucker , Inibidores do Transportador 2 de Sódio-Glicose , Volume Sistólico , Animais , Glucosídeos/farmacologia , Compostos Benzidrílicos/farmacologia , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/fisiopatologia , Insuficiência Cardíaca/metabolismo , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/ultraestrutura , Diástole/efeitos dos fármacos , Volume Sistólico/efeitos dos fármacos , Masculino , Função Ventricular Esquerda/efeitos dos fármacos , Ratos Endogâmicos SHR , Transporte de Elétrons/efeitos dos fármacos , Ratos
7.
CNS Neurosci Ther ; 30(5): e14755, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38752512

RESUMO

BACKGROUND: Depression is a common psychiatric disorder in diabetic patients. Depressive mood associated with obesity/metabolic disorders is related to the inflammatory response caused by long-term consumption of high-fat diets, but its molecular mechanism is unclear. In this study, we investigated whether the antidepressant effect of transcutaneous auricular vagus nerve stimulation (taVNS) in high-fat diet rats works through the P2X7R/NLRP3/IL-1ß pathway. METHODS: We first used 16S rRNA gene sequencing analysis and LC-MS metabolomics assays in Zucker diabetic fatty (ZDF) rats with long-term high-fat diet (Purina #5008) induced significant depression-like behaviors. Next, the forced swimming test (FST) and open field test (OFT) were measured to evaluate the antidepressive effect of taVNS. Immunofluorescence and western blotting (WB) were used to measure the microglia state and the expression of P2X7R, NLRP3, and IL-1ß in PFC. RESULTS: Purina#5008 diet induced significant depression-like behaviors in ZDF rats and was closely related to purine and inflammatory metabolites. Consecutive taVNS increased plasma insulin concentration, reduced glycated hemoglobin and glucagon content in ZDF rats, significantly improved the depressive-like phenotype in ZDF rats through reducing the microglia activity, and increased the expression of P2X7R, NLRP3, and IL-1ß in the prefrontal cortex (PFC). CONCLUSION: The P2X7R/NLRP3/IL-1ß signaling pathway may play an important role in the antidepressant-like behavior of taVNS, which provides a promising mechanism for taVNS clinical treatment of diabetes combined with depression.


Assuntos
Depressão , Dieta Hiperlipídica , Interleucina-1beta , Proteína 3 que Contém Domínio de Pirina da Família NLR , Córtex Pré-Frontal , Receptores Purinérgicos P2X7 , Estimulação do Nervo Vago , Animais , Masculino , Ratos , Depressão/metabolismo , Depressão/terapia , Depressão/etiologia , Dieta Hiperlipídica/efeitos adversos , Interleucina-1beta/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Fenótipo , Córtex Pré-Frontal/metabolismo , Ratos Zucker , Receptores Purinérgicos P2X7/metabolismo
8.
Nutrients ; 16(9)2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38732558

RESUMO

Polyunsaturated fatty acids (PUFAs) can alter adipose tissue function; however, the relative effects of plant and marine n3-PUFAs are less clear. Our objective was to directly compare the n3-PUFAs, plant-based α-linolenic acid (ALA) in flaxseed oil, and marine-based eicosapentaenoic acid (EPA) or docosahexaenoic acid (DHA) in high-purity oils versus n6-PUFA containing linoleic acid (LA) for their effects on the adipose tissue and oral glucose tolerance of obese rats. Male fa/fa Zucker rats were assigned to faALA, faEPA, faDHA, and faLA groups and compared to baseline fa/fa rats (faBASE) and lean Zucker rats (lnLA). After 8 weeks, faEPA and faDHA had 11-14% lower body weight than faLA. The oral glucose tolerance and total body fat were unchanged, but faEPA had less mesenteric fat. faEPA and faDHA had fewer large adipocytes compared to faLA and faALA. EPA reduced macrophages in the adipose tissue of fa/fa rats compared to ALA and DHA, while faLA had the greatest macrophage infiltration. DHA decreased (~10-fold) T-cell infiltration compared to faBASE and faEPA, whereas faALA and faLA had an ~40% increase. The n3-PUFA diets attenuated tumour necrosis factor-α in adipose tissue compared to faBASE, while it was increased by LA in both genotypes. In conclusion, EPA and DHA target different aspects of inflammation in adipose tissue.


Assuntos
Tecido Adiposo , Ácidos Docosa-Hexaenoicos , Ácido Eicosapentaenoico , Macrófagos , Obesidade , Ratos Zucker , Animais , Ácido Eicosapentaenoico/farmacologia , Ácidos Docosa-Hexaenoicos/farmacologia , Obesidade/metabolismo , Masculino , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Tecido Adiposo/metabolismo , Tecido Adiposo/efeitos dos fármacos , Ratos , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo , Ácido alfa-Linolênico/farmacologia , Mesentério
9.
Drug Des Devel Ther ; 18: 1133-1141, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38618281

RESUMO

Type 2 diabetes mellitus (T2DM) is one of the world's principal metabolic diseases characterized by chronic hyperglycemia. The gut incretin hormones, glucagon-like peptide 1 (GLP-1) and gastric inhibitory polypeptide (GIP), which has been proposed as a new treatment for T2DM, are extensively metabolized by Dipeptidyl peptidase 4 (DPP-4). Inhibitors of DPP-4 block the degradation of GLP-1 and GIP and may increase their natural circulating levels, favoring glycemic control in T2DM. A novel and potent selective inhibitor of DPP-4 with an 8-purine derived structure (1) has been developed and tested in vitro and in vivo in Zücker obese diabetic fatty (ZDF) rats, an experimental model of the metabolic syndrome and T2DM to assess the inhibitory activity using vildagliptin as reference standard. ZDF rats were subdivided into three groups (n = 7/group), control (C-ZDF), and those treated with compound 1 (Compound1-ZDF) and with vildagliptin (V-ZDF), both at 10 mg/kg/d rat body weight, in their drinking water for 12 weeks, and a group of lean littermates (ZL) was used. ZDF rats developed DM (fasting hyperglycemia, 425 ± 14.8 mg/dL; chronic hyperglycemia, HbA1c 8.5 ± 0.4%), compared to ZL rats. Compound 1 and vildagliptin reduced sustained HbAl1c (14% and 10.6%, P < 0.05, respectively) and fasting hyperglycemia values (24% and 19%, P < 0.05, respectively) compared to C-ZDF group (P < 0.001). Compound 1 and vildagliptin have shown a potent activity with an IC50 value of 4.92 and 3.21 µM, respectively. These data demonstrate that oral compound 1 administration improves diabetes in ZDF rats by the inhibitory effect on DPP-4, and the potential to be a novel, efficient and tolerable approach for treating diabetes of obesity-related T2DM, in ZDF rats.


Assuntos
Diabetes Mellitus Tipo 2 , Inibidores da Dipeptidil Peptidase IV , Hiperglicemia , Animais , Ratos , Antivirais , Broncodilatadores , Diabetes Mellitus Tipo 2/tratamento farmacológico , Inibidores da Dipeptidil Peptidase IV/farmacologia , Inibidores da Dipeptidil Peptidase IV/uso terapêutico , Peptídeo 1 Semelhante ao Glucagon , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Obesidade/tratamento farmacológico , Inibidores de Proteases , Ratos Zucker , Vasodilatadores , Vildagliptina/farmacologia , Vildagliptina/uso terapêutico
10.
Exp Eye Res ; 243: 109890, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38615833

RESUMO

Phosphodiesterase (PDE) inhibitors - such as vardenafil - are used primarily for treating erectile dysfunction via increasing cyclic guanosine monophosphate (cGMP) levels. Recent studies have also demonstrated their significant cardioprotective effects in several diseases, including diabetes, upon long-term, continuous application. However, PDE inhibitors are not specific for PDE5 and also inhibit the retinal isoform. A sustained rise in cGMP in photoreceptors is known to be toxic; therefore, we hypothesized that long-term vardenafil treatment might result in retinotoxicity. The hypothesis was tested in a clinically relevant animal model of type 2 diabetes mellitus. Histological experiments were performed on lean and diabetic Zucker Diabetic Fatty rats. Half of the animals were treated with vardenafil for six months, and the retinal effects were evaluated. Vardenafil treatment alleviated rod outer segment degeneration but decreased rod numbers in some positions and induced changes in the interphotoreceptor matrix, even in control animals. Vardenafil treatment decreased total retinal thickness in the control and diabetic groups and reduced the number of nuclei in the outer nuclear layer. Müller cell activation was detectable even in the vardenafil-treated control animals, and vardenafil did not improve gliosis in the diabetic group. Vardenafil-treated animals showed complex retinal alterations with improvements in some parameters while deterioration in others. Our results point towards the retinotoxicity of vardenafil, even without diabetes, which raises doubts about the retinal safety of long-term continuous vardenafil administration. This effect needs to be considered when approving PDE inhibitors for alternative indications.


Assuntos
Diabetes Mellitus Experimental , Inibidores da Fosfodiesterase 5 , Ratos Zucker , Dicloridrato de Vardenafila , Dicloridrato de Vardenafila/farmacologia , Dicloridrato de Vardenafila/toxicidade , Animais , Ratos , Inibidores da Fosfodiesterase 5/farmacologia , Masculino , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Retinopatia Diabética/tratamento farmacológico , Retinopatia Diabética/patologia , Retina/efeitos dos fármacos , Retina/patologia , Células Ependimogliais/efeitos dos fármacos , Células Ependimogliais/patologia , Células Ependimogliais/metabolismo
11.
Nutrients ; 16(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38613016

RESUMO

Dietary soy protein and soy isoflavones have anti-inflammatory properties. Previously, we reported that feeding soy protein concentrate diet (SPC) with low or high isoflavone (LIF or HIF) to young (seven-week-old) obese (fa/fa) Zucker rats inhibits lipopolysaccharide (LPS) translocation and decreases liver inflammation compared to a casein control (CAS) diet. The current study investigated whether SPC-LIF and SPC-HIF diets would reduce liver inflammation in adult obese Zucker rats fed a CAS diet. A total of 21 six-week-old male obese (fa/fa) Zucker rats were given CAS diet for 8 weeks to develop obesity then randomly assigned to CAS, SPC-LIF, or SPC-HIF (seven rats/group) diet for an additional 10 weeks. The expression of LPS-translocation, inflammation, and intestinal permeability markers were quantified by qPCR in liver, visceral adipose tissue (VAT), and colon. LPS concentration was determined in both the colon content and fecal samples by a Limulus amebocyte lysate (LAL) test. SPC-LIF and SPC-HIF diets significantly decreased liver LPS-binding protein (LBP) expression compared to CAS diet (p < 0.01 and p < 0.05, respectively). SPC-HIF diet also significantly decreased liver MCP-1 and TNF-α expression (p < 0.05) and had a trend to decrease liver iNOS expression (p = 0.06). In the colon, SPC-HIF diet significantly increased LBP expression compared to CAS diet (p < 0.05). When samples from all three groups were combined, there was a negative correlation between colon LBP expression and liver LBP expression (p = 0.046). SPC diets did not alter the expression of intestinal permeability markers (i.e., occludin, claudin 3, and zonula occludens-1) in the colon or inflammation markers (i.e., TNF-α and iNOS) in VAT or the colon. LPS levels in the colon content did not differ between any groups. Fecal LPS levels were significantly higher in the SPC-LIF and SPC-HIF groups compared to the CAS group (p < 0.01). In conclusion, SPC, particularly SPC with HIF, reduces liver LBP expression and inflammation makers (i.e., TNF-α and MCP-1 expression) in adult obese Zucker rats, likely by reducing LPS translocation.


Assuntos
Proteínas de Fase Aguda , Proteínas de Transporte , Hepatite , Lipopolissacarídeos , Glicoproteínas de Membrana , Masculino , Animais , Ratos , Ratos Zucker , Proteínas de Soja/farmacologia , Fator de Necrose Tumoral alfa , Obesidade , Inflamação , Dieta Redutora , Colo
12.
J Periodontal Res ; 59(4): 712-727, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38501307

RESUMO

OBJECTIVE: This study aims to investigate the mechanisms underlying the impaired healing response by diabetes after periodontal therapy. BACKGROUND: Outcomes of periodontal therapy in patients with diabetes are impaired compared with those in patients without diabetes. However, the mechanisms underlying impaired healing response to periodontal therapy have not been sufficiently investigated. MATERIALS AND METHODS: Zucker diabetic fatty (ZDF) and lean (ZL) rats underwent experimental periodontitis by ligating the mandibular molars for one week. The gingiva at the ligated sites was harvested one day after ligature removal, and gene expression was comprehensively analyzed using RNA-Seq. In patients with and without type 2 diabetes (T2D), the corresponding gene expression was quantified in the gingiva of the shallow sulcus and residual periodontal pocket after non-surgical periodontal therapy. RESULTS: Ligation-induced bone resorption and its recovery after ligature removal were significantly impaired in the ZDF group than in the ZL group. The RNA-Seq analysis revealed 252 differentially expressed genes. Pathway analysis demonstrated the enrichment of downregulated genes involved in the peroxisome proliferator-activated receptor (PPAR) signaling pathway. PPARα and PPARγ were decreased in mRNA level and immunohistochemistry in the ZDF group than in the ZL group. In clinical, probing depth reduction was significantly less in the T2D group than control. Significantly downregulated expression of PPARα and PPARγ were detected in the residual periodontal pocket of the T2D group compared with those of the control group, but not in the shallow sulcus between the groups. CONCLUSIONS: Downregulated PPAR subtypes expression may involve the impaired healing of periodontal tissues by diabetes.


Assuntos
Diabetes Mellitus Tipo 2 , Periodontite , Ratos Zucker , Cicatrização , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/genética , Animais , Ratos , Periodontite/terapia , Periodontite/genética , Cicatrização/genética , Masculino , Humanos , Gengiva/metabolismo , PPAR gama/genética , PPAR gama/metabolismo , PPAR alfa/genética , PPAR alfa/metabolismo , Perda do Osso Alveolar/terapia , Modelos Animais de Doenças , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/terapia , Pessoa de Meia-Idade
13.
Clin Exp Hypertens ; 46(1): 2323532, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38471134

RESUMO

BACKGROUND: Physical activity has profound benefits on health, especially in patients with cardiovascular and metabolic disease. Exercise training can reduce oxidative stress, improve renal function, and thus lower blood pressure. However, the effect of exercise training on angiotensin II type 1 receptors (AT1R) and endothelin subtype B receptors (ETBR)-mediated diuresis and natriuresis in obese Zucker rats is unclear. METHODS: Lean and obese Zucker rats were exercised or placed on a nonmoving treadmill for 8 weeks. Blood pressure was measured by tail-cuff plethysmography, and functions of AT1R and ETBR in the kidney were measured by natriuresis, respectively. RESULTS: Our data showed that exercise training improved glucose and lipid metabolism, renal function and sodium excretion in obese Zucker rats, accompanied by decreased oxidative stress and GRK4 expression in obese Zucker rats. Moreover, exercise training reduced the Candesartan-induced an increase in diuresis and natriuresis and increased ETBR agonists (BQ3020)-mediated diuresis and natriuresis in obese Zucker rats, which were associated with decreased renal AT1R expression and ETBR phosphorylation levels. CONCLUSIONS: The results demonstrate that exercise training lowers blood pressure via improving renal AT1R and ETBR function through modulating GRK4 expression in Obese Zucker Rats and provides potentially effective targets for obesity-related hypertension.


Assuntos
Hipertensão , Rim , Humanos , Ratos , Animais , Ratos Zucker , Rim/metabolismo , Obesidade/complicações , Pressão Sanguínea , Quinase 4 de Receptor Acoplado a Proteína G/metabolismo
14.
Biomed Pharmacother ; 172: 116252, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38325265

RESUMO

PURPOSE: Type 2 diabetes mellitus (T2DM) is associated with a greater risk of Alzheimer's disease. Synaptic impairment and protein aggregates have been reported in the brains of T2DM models. Here, we assessed whether neurodegenerative changes in synaptic vesicle 2 A (SV2A), γ-aminobutyric acid type A (GABAA) receptor, amyloid-ß, tau and receptor for advanced glycosylation end product (RAGE) can be detected in vivo in T2DM rats. METHODS: Positron emission tomography (PET) using [18F]SDM-8 (SV2A), [18F]flumazenil (GABAA receptor), [18F]florbetapir (amyloid-ß), [18F]PM-PBB3 (tau), and [18F]FPS-ZM1 (RAGE) was carried out in 12-month-old diabetic Zucker diabetic fatty (ZDF) and SpragueDawley (SD) rats. Immunofluorescence staining, Thioflavin S staining, proteomic profiling and pathway analysis were performed on the brain tissues of ZDF and SD rats. RESULTS: Reduced cortical [18F]SDM-8 uptake and cortical and hippocampal [18F]flumazenil uptake were observed in 12-month-old ZDF rats compared to SD rats. The regional uptake of [18F]florbetapir and [18F]PM-PBB3 was comparable in the brains of 12-month-old ZDF and SD rats. Immunofluorescence staining revealed Thioflavin S-negative, phospho-tau-positive inclusions in the cortex and hypothalamus in the brains of ZDF rats and the absence of amyloid-beta deposits. The level of GABAA receptors was lower in the cortex of ZDF rats than SD rats. Proteomic analysis further demonstrated that, compared with SD rats, synaptic-related proteins and pathways were downregulated in the hippocampus of ZDF rats. CONCLUSION: These findings provide in vivo evidence for regional reductions in SV2A and GABAA receptor levels in the brains of aged T2DM ZDF rats.


Assuntos
Compostos de Anilina , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Etilenoglicóis , Radioisótopos de Flúor , Piridinas , Pirrolidinas , Ratos , Animais , Flumazenil/metabolismo , Receptores de GABA-A/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Experimental/metabolismo , Vesículas Sinápticas/metabolismo , Proteômica , Ratos Zucker , Tomografia por Emissão de Pósitrons/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Ácido gama-Aminobutírico/metabolismo
15.
Biomed Pharmacother ; 172: 116314, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38387135

RESUMO

Melatonin acute treatment limits obesity of young Zücker diabetic fatty (ZDF) rats by non-shivering thermogenesis (NST). We recently showed melatonin chronically increases the oxidative status of vastus lateralis (VL) in both obese and lean adult male animals. The identification of VL skeletal muscle-based NST by uncoupling of sarcoendoplasmic reticulum Ca2+-ATPase (SERCA)- sarcolipin (SLN) prompted us to investigate whether melatonin is a SERCA-SLN calcium futile cycle uncoupling and mitochondrial biogenesis enhancer. Obese ZDF rats and lean littermates (ZL) of both sexes were subdivided into two subgroups: control (C) and 12 weeks orally melatonin treated (M) (10 mg/kg/day). Compared to the control groups, melatonin decreased the body weight gain and visceral fat in ZDF rats of both sexes. Melatonin treatment in both sex obese rats restored the VL muscle skin temperature and sensitized the thermogenic effect of acute cold exposure. Moreover, melatonin not only raised SLN protein levels in the VL of obese and lean rats of both sexes; also, the SERCA activity. Melatonin treatment increased the SERCA2 expression in obese and lean rats (both sexes), with no effects on SERCA1 expression. Melatonin increased the expression of thermogenic genes and proteins (PGC1-α, PPARγ, and NRF1). Furthermore, melatonin treatment enhanced the expression ratio of P-CaMKII/CaMKII and P-AMPK/AMPK. In addition, it rose mitochondrial biogenesis. These results provided the initial evidence that chronic oral melatonin treatment triggers the CaMKII/AMPK/PGC1α axis by upregulating SERCA2-SLN-mediated NST in ZDF diabetic rats of both sexes. This may further contribute to the body weight control and metabolic benefits of melatonin.


Assuntos
Diabetes Mellitus Experimental , Melatonina , Proteínas Musculares , Proteolipídeos , Feminino , Masculino , Animais , Ratos , Proteínas Quinases Ativadas por AMP , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Melatonina/farmacologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Ratos Zucker , Biogênese de Organelas , Músculo Esquelético , Obesidade/tratamento farmacológico
16.
J Oleo Sci ; 73(2): 231-237, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38311412

RESUMO

Chronic inflammation and insulin resistance lead to metabolic syndrome and there is an urgent need to establish effective treatments and prevention methods. Our previous study reported that obese model Zucker (fa/fa) rats fed with ozonated olive oil alleviated fatty liver and liver damage by suppressing inflammatory factors. However, differences among animal species related to the safety and efficacy of ozonated olive oil administration remain unclear. Therefore, this study investigated the effects of oral intake of ozonated olive oil on lipid metabolism in normal mice and mice in the obesity model. C57BL/6J and db/db mice were fed the following AIN-76 diets for four weeks: the mice were either fed a 0.5% olive oil diet (Control diet) or 0.5% ozonated olive oil diet (Oz-Olive diet) in addition to 6.5% corn oil. The results indicated that four weeks of Oz-Olive intake did not adversely affect growth parameters, hepatic lipids or serum parameters in normal C57BL/6J mice. Subsequent treatment of db/db mice with Oz-Olive for four weeks reduced the levels of hepatic triglycerides, serum alkaline phosphatase, and serum insulin. These effects of Oz-Olive administration might be due to suppression of fatty acid synthesis activity and expression of lipogenic genes, as well as suppression of inflammatory gene expression. In conclusion, this study confirmed the safety of Oz-Olive administration in normal mice and its ability to alleviate hepatic steatosis by inhibiting fatty acid synthesis and inflammation in obese mice.


Assuntos
Fígado Gorduroso , Camundongos , Ratos , Animais , Azeite de Oliva/farmacologia , Azeite de Oliva/uso terapêutico , Azeite de Oliva/metabolismo , Camundongos Endogâmicos C57BL , Ratos Zucker , Fígado Gorduroso/metabolismo , Fígado/metabolismo , Camundongos Endogâmicos , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Ácidos Graxos/metabolismo , Inflamação/metabolismo , Camundongos Obesos
17.
J Neurophysiol ; 131(4): 689-708, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38416718

RESUMO

Metabolic syndrome (MetS) is associated with development of tauopathies that contribute to cognitive decline. Without functional leptin receptors, male obese Zucker rats (OZRs) develop MetS, and they have increased phosphorylated tau (ptau) with impaired cognitive function. In addition to regulating energy balance, leptin enhances activation of the hippocampus, which is essential for spatial learning and memory. Whether spatial learning and memory are always impaired in OZRs or develop with MetS is unknown. We hypothesized that male OZRs develop MetS traits that promote regional increases in ptau and functional deficits associated with those brain regions. In the medulla and cortex, tau-pSer199,202 and tau-pSer396 were comparable in juvenile (7-8 wk old) lean Zucker rats (LZRs) and OZRs but increased in 18- to 19-wk-old OZRs. Elevated tau-pSer396 was concentrated in the dorsal vagal complex of the medulla, and by this age OZRs had hypertension with increased arterial pressure variability. In the hippocampus, tau-pSer199,202 and tau-pSer396 were still comparable in 18- to 19-wk-old OZRs and LZRs but elevated in 28- to 29-wk-old OZRs, with emergence of deficits in Morris water maze performance. Comparable escape latencies observed during acquisition in 18- to 19-wk-old OZRs and LZRs were increased in 28- to 29-wk-old OZRs, with greater use of nonspatial search strategies. Increased ptau developed with changes in the insulin/phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway in the hippocampus and cortex but not medulla, suggesting different underlying mechanisms. These data demonstrate that leptin is not required for spatial learning and memory in male OZRs. Furthermore, early development of MetS-associated autonomic dysfunction by the medulla may be predictive of later hippocampal dysfunction and cognitive impairment.NEW & NOTEWORTHY Male obese Zucker rats (OZRs) lack functional leptin receptors and develop metabolic syndrome (MetS). At 16-19 wk, OZRs are insulin resistant, with increased ptau in dorsal medulla and impaired autonomic regulation of AP. At 28-29 wk OZRs develop increased ptau in hippocampus with deficits in spatial learning and memory. Juvenile OZRs lack elevated ptau and these deficits, demonstrating that leptin is not essential for normal function. Elevated ptau and deficits emerge before the onset of diabetes in insulin-resistant OZRs.


Assuntos
Hipertensão , Síndrome Metabólica , Animais , Ratos , Masculino , Síndrome Metabólica/complicações , Leptina/metabolismo , Ratos Zucker , Fosfatidilinositol 3-Quinases/metabolismo , Receptores para Leptina/metabolismo , Obesidade , Insulina , Prosencéfalo , Modelos Animais de Doenças , Hipocampo/metabolismo
18.
Am J Physiol Endocrinol Metab ; 326(3): E308-E325, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38265288

RESUMO

Hyperglucagonemia is a hallmark of type 2 diabetes (T2DM), yet the role of elevated plasma glucagon (P-GCG) to promote excessive postabsorptive glucose production and contribute to hyperglycemia in patients with this disease remains debatable. We investigated the acute action of P-GCG to safeguard/support postabsorptive endogenous glucose production (EGP) and euglycemia in healthy Zucker control lean (ZCL) rats. Using male Zucker diabetic fatty (ZDF) rats that exhibit the typical metabolic disorders of human T2DM, such as excessive EGP, hyperglycemia, hyperinsulinemia, and hyperglucagonemia, we examined the ability of hyperglucagonemia to promote greater rates of postabsorptive EGP and hyperglycemia. Euglycemic or hyperglycemic basal insulin (INS-BC) and glucagon (GCG-BC) clamps were performed in the absence or during an acute setting of glucagon deficiency (GCG-DF, ∼10% of basal), either alone or in combination with insulin deficiency (INS-DF, ∼10% of basal). Glucose appearance, disappearance, and cycling rates were measured using [2-3H] and [3-3H]-glucose. In ZCL rats, GCG-DF reduced the levels of hepatic cyclic AMP, EGP, and plasma glucose (PG) by 50%, 32%, and 50%, respectively. EGP fell in the presence GCG-DF and INS-BC, but under GCG-DF and INS-DF, EGP and PG increased two- and threefold, respectively. GCG-DF revealed the hyperglucagonemia present in ZDF rats lacked the ability to regulate hepatic intracellular cyclic AMP levels and glucose flux, since EGP and PG levels fell by only 10%. We conclude that the liver in T2DM suffers from resistance to all three major regulatory factors, glucagon, insulin, and glucose, thus leading to a loss of metabolic flexibility.NEW & NOTEWORTHY In postabsorptive state, basal plasma insulin (P-INS) and plasma glucose (PG) act dominantly to increase hepatic glucose cycling and reduce endogenous glucose production (EGP) and PG in healthy rats, which is only counteracted by the acute action of basal plasma glucagon (P-GCG) to support EGP and euglycemia. Hyperglucagonemia, a hallmark of type 2 diabetes (T2DM) present in Zucker diabetic fatty (ZDF) rats, is not the primary mediator of hyperglycemia and high EGP as commonly thought; instead, the liver is resistant to glucagon as well as insulin and glucose.


Assuntos
Diabetes Mellitus Tipo 2 , Hiperglicemia , Animais , Masculino , Ratos , Glicemia/metabolismo , AMP Cíclico , Diabetes Mellitus Tipo 2/metabolismo , Glucagon/metabolismo , Glucose/metabolismo , Hiperglicemia/metabolismo , Insulina/metabolismo , Ratos Zucker
19.
Nutrients ; 16(2)2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38257166

RESUMO

The loss of functional beta-cell mass in diabetes is directly linked to the development of diabetic complications. Although dietary flavonoids have demonstrated antidiabetic properties, their potential effects on pancreatic beta-cell preservation and their synergistic benefits with antidiabetic drugs remain underexplored. We have developed a potential functional food enriched in flavonoids by combining cocoa powder and carob flour (CCB), which has shown antidiabetic effects. Here, we investigated the ability of the CCB, alone or in combination with metformin, to preserve pancreatic beta cells in an established diabetic context and their potential synergistic effect. Zucker diabetic fatty rats (ZDF) were fed a CCB-rich diet or a control diet, with or without metformin, for 12 weeks. Markers of pancreatic oxidative stress and inflammation, as well as relative beta-cell mass and beta-cell apoptosis, were analyzed. Results demonstrated that CCB feeding counteracted pancreatic oxidative stress by enhancing the antioxidant defense and reducing reactive oxygen species. Moreover, the CCB suppressed islet inflammation by preventing macrophage infiltration into islets and overproduction of pro-inflammatory cytokines, along with the inactivation of nuclear factor kappa B (NFκB). As a result, the CCB supplementation prevented beta-cell apoptosis and the loss of beta cells in ZDF diabetic animals. The observed additive effect when combining the CCB with metformin underscores its potential as an adjuvant therapy to delay the progression of type 2 diabetes.


Assuntos
Cacau , Chocolate , Diabetes Mellitus Tipo 2 , Galactanos , Células Secretoras de Insulina , Mananas , Metformina , Gomas Vegetais , Ratos , Animais , Metformina/farmacologia , Ratos Zucker , Flavonoides/farmacologia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Hipoglicemiantes/farmacologia , Alimento Funcional , Inflamação
20.
Fluids Barriers CNS ; 21(1): 10, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38273331

RESUMO

BACKGROUND: Idiopathic intracranial hypertension (IIH) is a syndrome exhibiting elevated intracranial pressure (ICP), visual disturbances, and severe headache. IIH primarily affects young obese women, though it can occur in individuals of any age, BMI, and sex. IIH is characterized by systemic metabolic dysregulation with a profile of increased androgen hormones. However, the contribution of obesity/hormonal perturbations to cerebrospinal fluid (CSF) dynamics remains unresolved. METHODS: We employed obese female Zucker rats and adjuvant testosterone to reveal IIH causal drivers. ICP and CSF dynamics were determined with in vivo experimentation and magnetic resonance imaging, testosterone levels assessed with mass spectrometry, and choroid plexus function revealed with transcriptomics. RESULTS: Obese rats had undisturbed CSF testosterone levels and no changes in ICP or CSF dynamics. Adjuvant testosterone treatment of obese rats elevated the CSF secretion rate, although with no effect on the ICP, due to elevated CSF drainage capacity of these rats. CONCLUSIONS: Obesity in itself therefore does not suffice to recapitulate the IIH symptoms in rats, but modulation of CSF dynamics appears with adjuvant testosterone treatment, which mimics the androgen excess observed in female IIH patients. Obesity-induced androgen dysregulation may thus contribute to the disease mechanism of IIH and could potentially serve as a future therapeutic target.


Assuntos
Pseudotumor Cerebral , Humanos , Feminino , Ratos , Animais , Androgênios , Ratos Zucker , Obesidade , Testosterona
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...