Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.407
Filtrar
1.
Eur J Pharmacol ; 974: 176630, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38692426

RESUMO

Osteoporosis is the most common bone disorder, in which an imbalance between osteoclastic bone resorption and osteoblastic bone formation disrupts bone homeostasis. Osteoporosis management using anti-osteoclastic agents is a promising strategy; however, this remains an unmet need. Sphingosine-1-phosphate (S1P) and its receptors (S1PRs) are essential for maintaining bone homeostasis. Here, we identified that Siponimod, a Food and Drug Administration-approved S1PR antagonist for the treatment of multiple sclerosis, shows promising therapeutic effects against osteoporosis by inhibiting osteoclast formation and function. We found that Siponimod inhibited osteoclast formation in a dose-dependent manner without causing cytotoxicity. Podosome belt staining and bone resorption assays indicated that Siponimod treatment impaired osteoclast function. Western blot and qPCR assays demonstrated that Siponimod suppressed the expression of osteoclast-specific markers, including C-Fos, Nftac1, and Ctsk. Mechanistically, we validated that Siponimod downregulated receptor activator of nuclear factor kappa B ligand (RANKL)-induced Mitogen-activated protein kinases (MAPKs) and nuclear factor kappa B (NF-κB) signaling pathways during osteoclastogenesis. Moreover, in a preclinical mouse model, Siponimod prevented ovariectomy-induced bone loss by suppressing osteoclast activity in vivo. Collectively, these results suggest that Siponimod could serve as an alternative therapeutic agent for the treatment of osteoporosis.


Assuntos
Azetidinas , Compostos de Benzil , Reposicionamento de Medicamentos , Esclerose Múltipla , Osteoclastos , Osteoporose , Animais , Camundongos , Osteoporose/tratamento farmacológico , Osteoporose/metabolismo , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , Compostos de Benzil/farmacologia , Compostos de Benzil/uso terapêutico , Azetidinas/farmacologia , Azetidinas/uso terapêutico , Esclerose Múltipla/tratamento farmacológico , Feminino , Moduladores do Receptor de Esfingosina 1 Fosfato/farmacologia , Moduladores do Receptor de Esfingosina 1 Fosfato/uso terapêutico , Osteogênese/efeitos dos fármacos , NF-kappa B/metabolismo , Camundongos Endogâmicos C57BL , Células RAW 264.7 , Reabsorção Óssea/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Ligante RANK/metabolismo , Humanos
2.
J Histochem Cytochem ; 72(6): 373-385, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38804525

RESUMO

Osteoporosis poses a significant global health concern, affecting both the elderly and young individuals, including athletes. Despite the development of numerous antiosteoporotic drugs, addressing the unique needs of young osteoporosis patients remains challenging. This study focuses on young rats subjected to ovariectomy (OVX) to explore the impact of high-molecular-weight hyaluronan (HA) on preventing OVX-induced osteoporosis. Twenty-four rats underwent OVX, while 12 underwent sham procedures (sham control group). Among the OVX rats, half received subcutaneous injections of HA (MW: 2700 kDa) at 10 mg/kg/week into their backs (OVX-HA group), whereas the other half received saline injections (0.5 ml/week) at the same site (OVX-saline group). OVX-HA group exhibited significantly higher percentages of osteoclast surface (Oc. S/BS), osteoblast surface per bone surface (Ob. S/BS), and bone volume/tissue volume (BV/TV) compared with OVX-saline group at the same age. The proportions of Ob. S/BS and BV/TV in the OVX-HA group closely resembled those of the sham control group, whereas the proportion of Oc. S/BS in the OVX-HA group was notably higher than that in the sham control group. In summary, the administration of HA significantly mitigated bone resorption and enhanced bone formation, suggesting a crucial role for HA in the treatment of young adult osteoporosis.


Assuntos
Reabsorção Óssea , Ácido Hialurônico , Osteogênese , Osteoporose , Ratos , Reabsorção Óssea/tratamento farmacológico , Osteogênese/efeitos dos fármacos , Osteoporose/tratamento farmacológico , Ovariectomia , Feminino , Ratos Sprague-Dawley , Osteoclastos/efeitos dos fármacos , Osso e Ossos/citologia , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/patologia , Osteoblastos/efeitos dos fármacos , Modelos Animais de Doenças , Ácido Hialurônico/farmacologia , Ácido Hialurônico/uso terapêutico , Conservadores da Densidade Óssea/farmacologia , Conservadores da Densidade Óssea/uso terapêutico
3.
J Med Chem ; 67(10): 8271-8295, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38717088

RESUMO

A series of heterocyclic ring-fused derivatives of bisnoralcohol (BA) were synthesized and evaluated for their inhibitory effects on RANKL-induced osteoclastogenesis. Most of these derivatives possessed potent antiosteoporosis activities in a dose-dependent manner. Among these compounds, 31 (SH442, IC50 = 0.052 µM) exhibited the highest potency, displaying 100% inhibition at 1.0 µM and 82.8% inhibition at an even lower concentration of 0.1 µM, which was much more potent than the lead compound BA (IC50 = 2.325 µM). Cytotoxicity tests suggested that the inhibitory effect of these compounds on RANKL-induced osteoclast differentiation did not result from their cytotoxicity. Mechanistic studies revealed that SH442 inhibited the expression of osteoclastogenesis-related marker genes and proteins, including TRAP, TRAF6, c-Fos, CTSK, and MMP9. Especially, SH442 could significantly attenuate bone loss of ovariectomy mouse in vivo. Therefore, these BA derivatives could be used as promising leads for the development of a new type of antiosteoporosis agent.


Assuntos
Osteoclastos , Osteoporose , Animais , Feminino , Camundongos , Reabsorção Óssea/tratamento farmacológico , Diferenciação Celular/efeitos dos fármacos , Cumarínicos/farmacologia , Cumarínicos/química , Cumarínicos/síntese química , Compostos Heterocíclicos/farmacologia , Compostos Heterocíclicos/química , Compostos Heterocíclicos/síntese química , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , Osteogênese/efeitos dos fármacos , Osteoporose/tratamento farmacológico , Ovariectomia , Ligante RANK/metabolismo , Ligante RANK/antagonistas & inibidores , Células RAW 264.7 , Bibliotecas de Moléculas Pequenas/farmacologia , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/química , Relação Estrutura-Atividade
4.
Biochem Pharmacol ; 224: 116202, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38615917

RESUMO

As bone-resorbing cells rich in mitochondria, osteoclasts require high iron uptake to promote mitochondrial biogenesis and maintain a high-energy metabolic state for active bone resorption. Given that abnormal osteoclast formation and activation leads to imbalanced bone remodeling and osteolytic bone loss, osteoclasts may be crucial targets for treating osteolytic diseases such as periodontitis. Isobavachin (IBA), a natural flavonoid compound, has been confirmed to be an inhibitor of receptor activator of nuclear factor κB ligand (RANKL)-induced osteoclast differentiation from bone marrow-derived macrophages (BMMs). However, its effects on periodontitis-induced bone loss and the potential mechanism of its anti-osteoclastogenesis effect remain unclear. Our study demonstrated that IBA suppressed RANKL-induced osteoclastogenesis in BMMs and RAW264.7 cells and inhibited osteoclast-mediated bone resorption in vitro. Transcriptomic analysis indicated that iron homeostasis and reactive oxygen species (ROS) metabolic process were enriched among the differentially expressed genes following IBA treatment. IBA exerted its anti-osteoclastogenesis effect by inhibiting iron accumulation in osteoclasts. Mechanistically, IBA attenuated iron accumulation in RANKL-induced osteoclasts by inhibiting the mitogen-activated protein kinase (MAPK) pathway to upregulate ferroportin1 (Fpn1) expression and promote Fpn1-mediated intracellular iron efflux. We also found that IBA inhibited mitochondrial biogenesis and function, and reduced RANKL-induced ROS generation in osteoclasts. Furthermore, IBA attenuated periodontitis-induced bone loss by reducing osteoclastogenesis in vivo. Overall, these results suggest that IBA may serve as a promising therapeutic strategy for bone diseases characterized by osteoclastic bone resorption.


Assuntos
Ferro , Camundongos Endogâmicos C57BL , Mitocôndrias , Biogênese de Organelas , Osteoclastos , Periodontite , Animais , Camundongos , Ferro/metabolismo , Células RAW 264.7 , Periodontite/tratamento farmacológico , Periodontite/metabolismo , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Osteogênese/efeitos dos fármacos , Masculino , Reabsorção Óssea/metabolismo , Reabsorção Óssea/tratamento farmacológico , Reabsorção Óssea/prevenção & controle , Reabsorção Óssea/etiologia , Perda do Osso Alveolar/metabolismo , Perda do Osso Alveolar/tratamento farmacológico , Perda do Osso Alveolar/prevenção & controle , Perda do Osso Alveolar/etiologia , Perda do Osso Alveolar/patologia
5.
Bioorg Chem ; 147: 107364, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38636434

RESUMO

Osteoporosis is particularly prevalent among postmenopausal women and the elderly. In the present study, we investigated the effect of the novel small molecule E0924G (N-(4-methoxy-pyridine-2-yl)-5-methylfuran-2-formamide) on osteoporosis. E0924G significantly increased the protein expression levels of osteoprotegerin (OPG) and runt-related transcription factor 2 (RUNX2), and thus significantly promoted osteogenesis in MC3T3-E1 cells. E0924G also significantly decreased osteoclast differentiation and inhibited bone resorption and F-actin ring formation in receptor activator of NF-κB ligand (RANKL)-induced osteoclasts from RAW264.7 macrophages. Importantly, oral administration of E0924G in both ovariectomized (OVX) rats and SAMP6 senile mice significantly increased bone mineral density and decreased bone loss compared to OVX controls or SAMR1 mice. Further mechanistic studies showed that E0924G could bind to and then activate peroxisome proliferator-activated receptor delta (PPARδ), and the pro-osteoblast effect and the inhibition of osteoclast differentiation induced by E0924G were significantly abolished when PPARδ was knocked down or inhibited. In conclusion, these data strongly suggest that E0924G has the potential to prevent OVX-induced and age-related osteoporosis by dual regulation of bone formation and bone resorption through activation of the PPARδ signaling pathway.


Assuntos
Reabsorção Óssea , Osteogênese , Ovariectomia , PPAR delta , Transdução de Sinais , Animais , Camundongos , Reabsorção Óssea/tratamento farmacológico , Reabsorção Óssea/prevenção & controle , Reabsorção Óssea/metabolismo , Ratos , PPAR delta/metabolismo , Feminino , Osteogênese/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Relação Estrutura-Atividade , Estrutura Molecular , Células RAW 264.7 , Osteoporose/tratamento farmacológico , Osteoporose/prevenção & controle , Osteoporose/metabolismo , Relação Dose-Resposta a Droga , Bibliotecas de Moléculas Pequenas/farmacologia , Bibliotecas de Moléculas Pequenas/química , Ratos Sprague-Dawley , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , Diferenciação Celular/efeitos dos fármacos
6.
Phytomedicine ; 129: 155559, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38579642

RESUMO

BACKGROUND: Osteoclast plays an important role in maintaining the balance between bone anabolism and bone catabolism. The abnormality of osteoclast is closely related to osteolytic bone diseases such as osteoporosis, rheumatoid arthritis and tumor bone metastasis. PURPOSE: We aim to search for natural compound that may suppress osteoclast formation and function. STUDY DESIGN: In this study, we assessed the impact of Dauricine (Dau) on the formation and function of osteoclasts in vitro, as well as its potential in preventing bone loss in an ovariectomy mouse model in vivo. METHODS: Multiple in vitro experiments were carried out, including osteoclastogenesis, podosomal belt formation, bone resorption assay, RNA-sequencing, real-time quantitative PCR, ROS level detection, surface plasmon resonance assay, luciferase assay and western blot. To verify the effect in vivo, an ovariectomized mouse model (OVX model) was constructed, and bone parameters were measured using micro-CT and histology. Furthermore, metabolomics analysis was performed on blood serum samples from the OVX model. RESULTS: In vitro experiments demonstrated that Dau inhibits RANKL-induced osteoclastogenesis, podosomal belt formation, and bone resorption function. RNA-sequencing results revealed that Dau significantly suppresses genes related to osteoclast. Functional enrichment analysis indicated that Dau's inhibition of osteoclasts may be associated with NF-κB signaling pathway and reactive oxygen metabolism pathway. Molecular docking, surface plasmon resonance assay and western blot analysis further confirmed that Dau inhibits RANKL-induced osteoclastogenesis by modulating the ROS/NF-κB/NFATc1 pathway. Moreover, administration of Dau to OVX-induced mice validated its efficacy in treating bone loss disease. CONCLUSION: Dau prevents OVX-induced bone loss by inhibiting osteoclast activity and bone resorption, potentially offering a new approach for preventing and treating metabolic bone diseases such as osteoporosis. This study provides innovative insights into the inhibitory effects of Dau in an in vivo OVX model and elucidates the underlying mechanism.


Assuntos
Benzilisoquinolinas , NF-kappa B , Fatores de Transcrição NFATC , Osteoclastos , Osteogênese , Ovariectomia , Ligante RANK , Espécies Reativas de Oxigênio , Animais , Benzilisoquinolinas/farmacologia , Feminino , Ligante RANK/metabolismo , Camundongos , NF-kappa B/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Osteogênese/efeitos dos fármacos , Osteoclastos/efeitos dos fármacos , Fatores de Transcrição NFATC/metabolismo , Modelos Animais de Doenças , Reabsorção Óssea/tratamento farmacológico , Camundongos Endogâmicos C57BL , Células RAW 264.7 , Osteoporose/tratamento farmacológico , Osteoporose/prevenção & controle , Humanos , Tetra-Hidroisoquinolinas
7.
Curr Osteoporos Rep ; 22(3): 353-365, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38652430

RESUMO

PURPOSE OF REVIEW: This review aims to provide a theoretical basis and insights for quercetin's clinical application in the prevention and treatment of osteoporosis (OP), analyzing its roles in bone formation promotion, bone resorption inhibition, anti-inflammation, antioxidant effects, and potential mechanisms. RECENT FINDINGS: OP, a prevalent bone disorder, is marked by reduced bone mineral density and impaired bone architecture, elevating the risk of fractures in patients. The primary approach to OP management is pharmacotherapy, with quercetin, a phytochemical compound, emerging as a focus of recent interest. This natural flavonoid exerts regulatory effects on bone marrow mesenchymal stem cells, osteoblasts, and osteoclasts and promotes bone health and metabolic equilibrium via anti-inflammatory and antioxidative pathways. Although quercetin has demonstrated significant potential in regulating bone metabolism, there is a need for further high-quality clinical studies focused on medicinal quercetin.


Assuntos
Antioxidantes , Osteoporose , Quercetina , Quercetina/uso terapêutico , Quercetina/farmacologia , Humanos , Osteoporose/tratamento farmacológico , Antioxidantes/uso terapêutico , Antioxidantes/farmacologia , Osteoclastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Densidade Óssea/efeitos dos fármacos , Anti-Inflamatórios/uso terapêutico , Reabsorção Óssea/tratamento farmacológico , Osteoblastos/efeitos dos fármacos , Células-Tronco Mesenquimais , Conservadores da Densidade Óssea/uso terapêutico , Conservadores da Densidade Óssea/farmacologia
8.
Biochem Pharmacol ; 224: 116230, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38643905

RESUMO

One of the effective therapeutic strategies to treat rheumatoid arthritis (RA)-related bone resorption is to target excessive activation of osteoclasts. We discovered that 6-O-angeloylplenolin (6-OAP), a pseudoguaianolide from Euphorbia thymifolia Linn widely used for the treatment of RA in traditional Chinese medicine, could inhibit RANKL-induced osteoclastogenesis and bone resorption in both RAW264.7 cells and BMMs from 1 µM and protect a collagen-induced arthritis (CIA) mouse model from bone destruction in vivo. The severity of arthritis and bone erosion observed in paw joints and the femurs of the CIA model were attenuated by 6-OAP administered at both dosages (1 or 5 mg/kg, i.g.). BMD, Tb.N and BV/TV were also improved by 6-OAP treatment. Histological analysis and TRAP staining of femurs further confirmed the protective effects of 6-OAP on bone erosion, which is mainly due to reduced osteoclasts. Molecular docking indicated that c-Src might be a target of 6-OAP and phosphorylation of c-Src was suppressed by 6-OAP treatment. CETSA and SPR assay further confirmed the potential interaction between 6-OAP and c-Src. Three signaling molecules downstream of c-Src that are vital to the differentiation and function of osteoclasts, NF-κB, c-Fos and NFATc1, were also suppressed by 6-OAP in vitro. In summary, the results demonstrated that the function of c-Src was disrupted by 6-OAP, which led to the suppression of downstream signaling vital to osteoclast differentiation and function. In conclusion, 6-OAP has the potential to be further developed for the treatment of RA-related bone erosion.


Assuntos
Artrite Experimental , Reabsorção Óssea , NF-kappa B , Fatores de Transcrição NFATC , Osteoclastos , Osteogênese , Animais , Camundongos , Fatores de Transcrição NFATC/metabolismo , Células RAW 264.7 , Reabsorção Óssea/tratamento farmacológico , Reabsorção Óssea/metabolismo , Reabsorção Óssea/prevenção & controle , Artrite Experimental/tratamento farmacológico , Artrite Experimental/patologia , Artrite Experimental/metabolismo , Artrite Experimental/induzido quimicamente , Osteogênese/efeitos dos fármacos , NF-kappa B/metabolismo , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , Masculino , Transdução de Sinais/efeitos dos fármacos , Proteína Tirosina Quinase CSK/metabolismo , Simulação de Acoplamento Molecular , Quinases da Família src/metabolismo , Quinases da Família src/antagonistas & inibidores
9.
Biomolecules ; 14(4)2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38672518

RESUMO

Glycogen synthase kinase 3-beta (GSK3ß) is a highly conserved protein kinase originally involved in glucose metabolism, insulin activity, and energy homeostasis. Recent scientific evidence demonstrated the significant role of GSK3ß in regulating bone remodelling through involvement in multiple signalling networks. Specifically, the inhibition of GSK3ß enhances the conversion of osteoclast progenitors into mature osteoclasts. GSK3ß is recognised as a pivotal regulator for the receptor activator of nuclear factor-kappa B (RANK)/receptor activator of nuclear factor-kappa B ligand (RANKL)/osteoprotegerin (OPG), phosphatidylinositol-3-kinase (PI3K)/protein kinase B (AKT), nuclear factor-kappa B (NF-κB), nuclear factor-erythroid 2-related factor 2 (NRF2)/Kelch-like ECH-associated protein 1 (KEAP1), canonical Wnt/beta (ß)-catenin, and protein kinase C (PKC) signalling pathways during osteoclastogenesis. Conversely, the inhibition of GSK3ß has been shown to prevent bone loss in animal models with complex physiology, suggesting that the role of GSK3ß may be more significant in bone formation than bone resorption. Divergent findings have been reported regarding the efficacy of GSK3ß inhibitors as bone-protecting agents. Some studies demonstrated that GSK3ß inhibitors reduced osteoclast formation, while one study indicated an increase in osteoclast formation in RANKL-stimulated bone marrow macrophages (BMMs). Given the discrepancies observed in the accumulated evidence, further research is warranted, particularly regarding the use of GSK3ß silencing or overexpression models. Such efforts will provide valuable insights into the direct impact of GSK3ß on osteoclastogenesis and bone resorption.


Assuntos
Glicogênio Sintase Quinase 3 beta , Osteoclastos , Osteogênese , Humanos , Animais , Osteoclastos/metabolismo , Osteoclastos/efeitos dos fármacos , Osteoclastos/citologia , Glicogênio Sintase Quinase 3 beta/metabolismo , Glicogênio Sintase Quinase 3 beta/antagonistas & inibidores , Osteogênese/efeitos dos fármacos , Reabsorção Óssea/metabolismo , Reabsorção Óssea/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Ligante RANK/metabolismo , Ligante RANK/farmacologia
10.
J Nanobiotechnology ; 22(1): 153, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580995

RESUMO

BACKGROUND: Osteoporosis is characterized by an imbalance in bone homeostasis, resulting in the excessive dissolution of bone minerals due to the acidified microenvironment mediated by overactive osteoclasts. Oroxylin A (ORO), a natural flavonoid, has shown potential in reversing osteoporosis by inhibiting osteoclast-mediated bone resorption. The limited water solubility and lack of targeting specificity hinder the effective accumulation of Oroxylin A within the pathological environment of osteoporosis. RESULTS: Osteoclasts' microenvironment-responsive nanoparticles are prepared by incorporating Oroxylin A with amorphous calcium carbonate (ACC) and coated with glutamic acid hexapeptide-modified phospholipids, aiming at reinforcing the drug delivery efficiency as well as therapeutic effect. The obtained smart nanoparticles, coined as OAPLG, could instantly neutralize acid and release Oroxylin A in the extracellular microenvironment of osteoclasts. The combination of Oroxylin A and ACC synergistically inhibits osteoclast formation and activity, leading to a significant reversal of systemic bone loss in the ovariectomized mice model. CONCLUSION: The work highlights an intelligent nanoplatform based on ACC for spatiotemporally controlled release of lipophilic drugs, and illustrates prominent therapeutic promise against osteoporosis.


Assuntos
Reabsorção Óssea , Osteoporose , Camundongos , Animais , Osteoclastos , Nanomedicina , Osteoporose/tratamento farmacológico , Reabsorção Óssea/tratamento farmacológico , Osso e Ossos/patologia , Diferenciação Celular
11.
Biochem Biophys Res Commun ; 710: 149860, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38604070

RESUMO

Schizophyllan (SPG), a ß-glucan from Schizophyllum commune, is recognized for its antioxidant, immunoregulatory, and anticancer activities. In this study, its effects on bone cells, particularly osteoclasts and osteoblasts, were examined. We demonstrated that SPG dose-dependently inhibited osteoclastogenesis and reduced gene expression associated with osteoclast differentiation. SPG also decreased bone resorption and F-actin ring formation. This inhibition could have been due to the downregulation of transcription factors c-Fos and nuclear factor of activated T cells 1 (NFATc1) via the MAPKs (JNK and p38), IκBα, and PGC1ß/PPARγ pathways. In coculture, SPG lowered osteoclastogenic activity in calvaria-derived osteoblasts by reducing macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor-κB ligand (RANKL) expression. In addition, SPG slightly enhanced osteoblast differentiation, as evidenced by increased differentiation marker gene expression and alizarin red staining. It also exhibited antiresorptive effects in a lipopolysaccharide-induced calvarial bone loss model. These results indicated a dual role of SPG in bone cell regulation by suppressing osteoclastogenesis and promoting osteoblast differentiation. Thus, SPG could be a therapeutic agent for bone resorption-related diseases such as osteoporosis, rheumatoid arthritis, and periodontitis.


Assuntos
Reabsorção Óssea , Sizofirano , Humanos , Osteoclastos/metabolismo , Sizofirano/metabolismo , Sizofirano/farmacologia , Fatores de Transcrição NFATC/metabolismo , Osteoblastos/metabolismo , Diferenciação Celular , Reabsorção Óssea/tratamento farmacológico , Reabsorção Óssea/metabolismo , Osteogênese , Ligante RANK/metabolismo
12.
J Med Chem ; 67(9): 7585-7602, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38630440

RESUMO

An efficient protocol for the synthesis of ß-trifluoroethoxydimethyl selenides was achieved under mild reaction conditions, and 39 compounds were prepared. All compounds were evaluated for their abilities to inhibit RANKL-induced osteoclastogenesis, compound 4aa exhibited the most potent activity. Further investigations revealed that 4aa could inhibit F-actin ring generation, bone resorption, and osteoclast-specific gene expression in vitro. Western blot analyses demonstrated that compound 4aa abrogated the RANKL-induced mitogen-activated protein kinase and NF-kB-signaling pathways. In addition, 4aa also displayed a notable impact on the osteoblastogenesis of MC3T3-E1 preosteoblasts. In vivo experiments revealed that compound 4aa significantly ameliorated bone loss in an ovariectomized (OVX) mice model. Furthermore, the surface plasmon resonance experiment results revealed that 4aa probably bound to RANKL. Collectively, the above-mentioned findings suggested that compound 4aa as a potential RANKL inhibitor averted OVX-triggered osteoporosis by regulating the inhibition of osteoclast differentiation and stimulation of osteoblast differentiation.


Assuntos
Desenho de Fármacos , Osteoclastos , Osteoporose , Ligante RANK , Animais , Camundongos , Osteoporose/tratamento farmacológico , Ligante RANK/metabolismo , Ligante RANK/antagonistas & inibidores , Feminino , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Diferenciação Celular/efeitos dos fármacos , Ovariectomia , Compostos Organosselênicos/farmacologia , Compostos Organosselênicos/síntese química , Compostos Organosselênicos/química , Relação Estrutura-Atividade , Osteogênese/efeitos dos fármacos , Reabsorção Óssea/tratamento farmacológico , NF-kappa B/metabolismo , NF-kappa B/antagonistas & inibidores , Camundongos Endogâmicos C57BL
13.
J Bone Miner Res ; 39(4): 484-497, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38477789

RESUMO

Rebound bone loss following denosumab discontinuation is an important clinical challenge. Current treatment strategies to prevent this fail to suppress the rise and overshoot in osteoclast-mediated bone resorption. In this study, we use a murine model of denosumab treatment and discontinuation to show the temporal changes in osteoclast formation and activity during RANKL inhibition and withdrawal. We show that the cellular processes that drive the formation of osteoclasts and subsequent bone resorption following withdrawal of RANKL inhibition precede the rebound bone loss. Furthermore, a rise in serum TRAP and RANKL levels is detected before markers of bone turnover used in current clinical practice. These mechanistic advances may provide insight into a more defined window of opportunity to intervene with sequential therapy following denosumab discontinuation.


Stopping denosumab, a medication commonly used to improve bone mass by blocking formation of bone resorbing osteoclasts, leads to a rebound loss in the bone which was gained during treatment. Current strategies to prevent this bone loss fail in most cases as they are unable to prevent the rise and overshoot in bone resorption by osteoclasts. Thie stems from an incomplete understanding of how osteoclasts behave during denosumab treatment and after treatment is discontinued. We use a mouse model of this phenomenon to show how osteoclast formation and activity changes throughout this process. We show that increases in the processes that drive the formation of osteoclasts can be detected in the circulation before bone loss occurs. These findings could therefore provide insight into a targeted 'window of opportunity' to intervene and prevent the rebound bone loss following stopping denosumab in patients.


Assuntos
Reabsorção Óssea , Denosumab , Osteoclastos , Ligante RANK , Animais , Osteoclastos/metabolismo , Osteoclastos/efeitos dos fármacos , Ligante RANK/antagonistas & inibidores , Ligante RANK/metabolismo , Denosumab/farmacologia , Camundongos , Reabsorção Óssea/patologia , Reabsorção Óssea/tratamento farmacológico , Reabsorção Óssea/sangue , Fatores de Tempo , Fosfatase Ácida Resistente a Tartarato/metabolismo , Feminino , Camundongos Endogâmicos C57BL , Biomarcadores/metabolismo , Biomarcadores/sangue
14.
Matrix Biol ; 129: 15-28, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38548090

RESUMO

Cathepsin K (CtsK) is a cysteine protease with potent collagenase activity. CtsK is highly expressed by bone-resorbing osteoclasts and plays an essential role in resorption of bone matrix. Although CtsK is known to bind heparan sulfate (HS), the structural details of the interaction, and how HS regulates the biological functions of CtsK, remains largely unknown. In this report, we discovered that HS is a multifaceted regulator of the structure and function of CtsK. Structurally, HS forms a highly stable complex with CtsK and induces its dimerization. Co-crystal structures of CtsK with bound HS oligosaccharides reveal the location of the HS binding site and suggest how HS may support dimerization. Functionally, HS plays a dual role in regulating the enzymatic activity of CtsK. While it preserves the peptidase activity of CtsK by stabilizing its active conformation, it inhibits the collagenase activity of CtsK in a sulfation level-dependent manner. These opposing effects can be explained by our finding that the HS binding site is remote from the active site, which allows HS to specifically inhibit the collagenase activity without affecting the peptidase activity. At last, we show that structurally defined HS oligosaccharides effectively block osteoclast resorption of bone in vitro without inhibiting osteoclast differentiation, which suggests that HS-based oligosaccharide might be explored as a new class of selective CtsK inhibitor for many diseases involving exaggerated bone resorption.


Assuntos
Catepsina K , Colagenases , Heparitina Sulfato , Osteoclastos , Catepsina K/metabolismo , Catepsina K/antagonistas & inibidores , Catepsina K/química , Catepsina K/genética , Heparitina Sulfato/metabolismo , Heparitina Sulfato/química , Colagenases/metabolismo , Humanos , Animais , Osteoclastos/metabolismo , Osteoclastos/efeitos dos fármacos , Sítios de Ligação , Camundongos , Cristalografia por Raios X , Reabsorção Óssea/metabolismo , Reabsorção Óssea/tratamento farmacológico , Ligação Proteica , Domínio Catalítico , Modelos Moleculares , Multimerização Proteica
15.
Calcif Tissue Int ; 114(4): 430-443, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38483547

RESUMO

Autosomal Dominant Osteopetrosis type II (ADO2) is a rare bone disease of impaired osteoclastic bone resorption caused by heterozygous missense mutations in the chloride channel 7 (CLCN7). Adenylate cyclase, which catalyzes the formation of cAMP, is critical for lysosomal acidification in osteoclasts. We found reduced cAMP levels in ADO2 osteoclasts compared to wild-type (WT) osteoclasts, leading us to examine whether regulating cAMP would improve ADO2 osteoclast activity. Although forskolin, a known activator of adenylate cyclase and cAMP levels, negatively affected osteoclast number, it led to an overall increase in ADO2 and WT osteoclast resorption activity in vitro. Next, we examined cAMP hydrolysis by the phosphodiesterase 4 (PDE4) proteins in ADO2 versus WT osteoclasts. QPCR analysis revealed higher expression of the three major PDE4 subtypes (4a, 4b, 4d) in ADO2 osteoclasts compared in WT, consistent with reduced cAMP levels in ADO2 osteoclasts. In addition, we found that the PDE4 antagonists, rolipram and roflumilast, stimulated ADO2 and WT osteoclast formation in a dose-dependent manner. Importantly, roflumilast and rolipram displayed a concentration-dependent increase in osteoclast resorption activity which was greater in ADO2 than WT osteoclasts. Moreover, treatment with roflumilast rescued cAMP levels in ADO2 OCLs. The key findings from our studies demonstrate that osteoclasts from ADO2 mice exhibit reduced cAMP levels and PDE4 inhibition rescues cAMP levels and ADO2 osteoclast activity dysfunction in vitro. The mechanism of action of PDE4 inhibitors and their ability to reduce the high bone mass of ADO2 mice in vivo are currently under investigation. Importantly, these studies advance the understanding of the mechanisms underlying the ADO2 osteoclast dysfunction which is critical for the development of therapeutic approaches to treat clinically affected ADO2 patients.


Assuntos
Aminopiridinas , Benzamidas , Reabsorção Óssea , Inibidores da Fosfodiesterase 4 , Humanos , Camundongos , Animais , Rolipram/farmacologia , Rolipram/metabolismo , Inibidores da Fosfodiesterase 4/farmacologia , Inibidores da Fosfodiesterase 4/metabolismo , Osteoclastos/metabolismo , Adenilil Ciclases/metabolismo , Reabsorção Óssea/tratamento farmacológico , Reabsorção Óssea/metabolismo , Canais de Cloreto/genética , Ciclopropanos
16.
Cell Commun Signal ; 22(1): 160, 2024 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-38439009

RESUMO

BACKGROUND: Estrogen deficiency-mediated hyperactive osteoclast represents the leading role during the onset of postmenopausal osteoporosis. The activation of a series of signaling cascades triggered by RANKL-RANK interaction is crucial mechanism underlying osteoclastogenesis. Vorinostat (SAHA) is a broad-spectrum pan-histone deacetylase inhibitor (HDACi) and its effect on osteoporosis remains elusive. METHODS: The effects of SAHA on osteoclast maturation and bone resorptive activity were evaluated using in vitro osteoclastogenesis assay. To investigate the effect of SAHA on the osteoclast gene networks during osteoclast differentiation, we performed high-throughput transcriptome sequencing. Molecular docking and the assessment of RANKL-induced signaling cascades were conducted to confirm the underlying regulatory mechanism of SAHA on the action of RANKL-activated osteoclasts. Finally, we took advantage of a mouse model of estrogen-deficient osteoporosis to explore the clinical potential of SAHA. RESULTS: We showed here that SAHA suppressed RANKL-induced osteoclast differentiation concentration-dependently and disrupted osteoclastic bone resorption in vitro. Mechanistically, SAHA specifically bound to the predicted binding site of RANKL and blunt the interaction between RANKL and RANK. Then, by interfering with downstream NF-κB and MAPK signaling pathway activation, SAHA negatively regulated the activity of NFATc1, thus resulting in a significant reduction of osteoclast-specific gene transcripts and functional osteoclast-related protein expression. Moreover, we found a significant anti-osteoporotic role of SAHA in ovariectomized mice, which was probably realized through the inhibition of osteoclast formation and hyperactivation. CONCLUSION: These data reveal a high affinity between SAHA and RANKL, which results in blockade of RANKL-RANK interaction and thereby interferes with RANKL-induced signaling cascades and osteoclastic bone resorption, supporting a novel strategy for SAHA application as a promising therapeutic agent for osteoporosis.


Assuntos
Reabsorção Óssea , Osteoporose , Feminino , Animais , Camundongos , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Vorinostat/farmacologia , Vorinostat/uso terapêutico , Simulação de Acoplamento Molecular , Reabsorção Óssea/tratamento farmacológico , Transdução de Sinais , Osteoporose/tratamento farmacológico , Osteoporose/etiologia , Estrogênios
17.
Invest New Drugs ; 42(2): 207-220, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38427117

RESUMO

It has previously been demonstrated that the polybisphosphonate osteodex (ODX) inhibits bone resorption in organ-cultured mouse calvarial bone. In this study, we further investigate the effects by ODX on osteoclast differentiation, formation, and function in several different bone organ and cell cultures. Zoledronic acid (ZOL) was used for comparison. In retinoid-stimulated mouse calvarial organ cultures, ODX and ZOL significantly reduced the numbers of periosteal osteoclasts without affecting Tnfsf11 or Tnfrsf11b mRNA expression. ODX and ZOL also drastically reduced the numbers of osteoclasts in cell cultures isolated from the calvarial bone and in vitamin D3-stimulated mouse crude bone marrow cell cultures. These data suggest that ODX can inhibit osteoclast formation by inhibiting the differentiation of osteoclast progenitor cells or by directly targeting mature osteoclasts. We therefore assessed if osteoclast formation in purified bone marrow macrophage cultures stimulated by RANKL was inhibited by ODX and ZOL and found that the initial formation of mature osteoclasts was not affected, but that the bisphosphonates enhanced cell death of mature osteoclasts. In agreement with these findings, ODX and ZOL did not affect the mRNA expression of the osteoclastic genes Acp5 and Ctsk and the osteoclastogenic transcription factor Nfatc1. When bone marrow macrophages were incubated on bone slices, ODX and ZOL inhibited RANKL-stimulated bone resorption. In conclusion, ODX does not inhibit osteoclast formation but inhibits osteoclastic bone resorption by decreasing osteoclast numbers through enhanced cell death of mature osteoclasts.


Assuntos
Reabsorção Óssea , Osteoclastos , Animais , Camundongos , Osteoclastos/metabolismo , Osteogênese , Medula Óssea , Células Cultivadas , Reabsorção Óssea/tratamento farmacológico , Reabsorção Óssea/metabolismo , Macrófagos/metabolismo , Diferenciação Celular , Morte Celular , Ácido Zoledrônico/farmacologia , Ácido Zoledrônico/metabolismo , RNA Mensageiro/metabolismo , Ligante RANK/farmacologia , Ligante RANK/metabolismo
18.
J Orthop Surg Res ; 19(1): 197, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38528611

RESUMO

BACKGROUND: Patellofemoral osteoarthritis (PFJOA) is a subtype of knee OA, which is one of the main causes of anterior knee pain. The current study found an increased prevalence of OA in postmenopausal women, called postmenopausal OA. Therefore, we designed the ovariectomized rat model of patella baja-induced PFJOA. Alendronate (ALN) inhibits osteoclast-mediated bone loss, and has been reported the favorable result of a potential intervention option of OA treatment. However, the potential effects of ALN treatment on PFJOA in the ovariectomized rat model are unknown and need further investigation prior to exploration in the clinical research setting. In this study, the effects of ALN on articular cartilage degradation and subchondral bone microstructure were assessed in the ovariectomized PFJOA rat model for 10 weeks. METHODS: Patella baja and estrogen withdrawal were induced by patellar ligament shortening (PLS) and bilateral ovariectmomy surgeries in 3-month-old female Sprague-Dawley rats, respectively. Rats were randomly divided into five groups (n = 8): Sham + V; OVX + V, Sham + PLS + V, OVX + PLS + V, OVX + PLS + ALN (ALN: 70 µg/kg/week). Radiography was performed to evaluate patellar height ratios, and the progression of PFJOA was assessed by macroscopic and microscopic analyses, immunohistochemistry and micro-computed tomography (micro-CT). RESULTS: Our results found that the patella baja model prepared by PLS can successfully cause degeneration of articular cartilage and subchondral bone, resulting in changes of PFJOA. OVX caused a decrease in estrogen levels in rats, which aggravated the joint degeneration caused by PFJOA. Early application of ALN can delay the degenerative changes of articular cartilage and subchondral bone microstructure in castrated PFJOA rat to a certain extent, improve and maintain the micrometabolism and structural changes of cartilage and subchondral bone. CONCLUSION: The early application of ALN can delay the destruction of articular cartilage and subchondral bone microstructure in castrated PFJOA rat to a certain extent.


Assuntos
Reabsorção Óssea , Cartilagem Articular , Osteoartrite do Joelho , Humanos , Ratos , Feminino , Animais , Lactente , Alendronato/farmacologia , Ratos Sprague-Dawley , Patela/diagnóstico por imagem , Microtomografia por Raio-X , Osteoartrite do Joelho/diagnóstico por imagem , Osteoartrite do Joelho/tratamento farmacológico , Osteoartrite do Joelho/metabolismo , Cartilagem Articular/metabolismo , Reabsorção Óssea/tratamento farmacológico , Modelos Animais de Doenças , Estrogênios
19.
Bone Res ; 12(1): 18, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38514644

RESUMO

The autonomic nervous system plays a crucial role in regulating bone metabolism, with sympathetic activation stimulating bone resorption and inhibiting bone formation. We found that fractures lead to increased sympathetic tone, enhanced osteoclast resorption, decreased osteoblast formation, and thus hastened systemic bone loss in ovariectomized (OVX) mice. However, the combined administration of parathyroid hormone (PTH) and the ß-receptor blocker propranolol dramatically promoted systemic bone formation and osteoporotic fracture healing in OVX mice. The effect of this treatment is superior to that of treatment with PTH or propranolol alone. In vitro, the sympathetic neurotransmitter norepinephrine (NE) suppressed PTH-induced osteoblast differentiation and mineralization, which was rescued by propranolol. Moreover, NE decreased the PTH-induced expression of Runx2 but enhanced the expression of Rankl and the effect of PTH-stimulated osteoblasts on osteoclastic differentiation, whereas these effects were reversed by propranolol. Furthermore, PTH increased the expression of the circadian clock gene Bmal1, which was inhibited by NE-ßAR signaling. Bmal1 knockdown blocked the rescue effect of propranolol on the NE-induced decrease in PTH-stimulated osteoblast differentiation. Taken together, these results suggest that propranolol enhances the anabolic effect of PTH in preventing systemic bone loss following osteoporotic fracture by blocking the negative effects of sympathetic signaling on PTH anabolism.


Assuntos
Anabolizantes , Reabsorção Óssea , Fraturas por Osteoporose , Camundongos , Animais , Hormônio Paratireóideo/farmacologia , Anabolizantes/farmacologia , Fraturas por Osteoporose/tratamento farmacológico , Propranolol/farmacologia , Fatores de Transcrição ARNTL , Reabsorção Óssea/tratamento farmacológico , Antagonistas Adrenérgicos beta/farmacologia
20.
Sci Rep ; 14(1): 7358, 2024 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-38548807

RESUMO

Cathepsin K (CatK), an essential collagenase in osteoclasts (OCs), is a potential therapeutic target for the treatment of osteoporosis. Using live-cell imaging, we monitored the bone resorptive behaviour of OCs during dose-dependent inhibition of CatK by an ectosteric (Tanshinone IIA sulfonate) and an active site inhibitor (odanacatib). CatK inhibition caused drastic reductions in the overall resorption speed of OCs. At IC50 CatK-inhibitor concentration, OCs reduced about 40% of their trench-forming capacity and at fourfold IC50 concentrations, a > 95% reduction was observed. The majority of CatK-inhibited OCs (~ 75%) were involved in resorption-migration-resorption episodes forming adjacent pits, while ~ 25% were stagnating OCs which remained associated with the same excavation. We also observed fusions of OCs during the resorption process both in control and inhibitor-treated conditions, which increased their resorption speeds by 30-50%. Inhibitor IC50-concentrations increased OC-fusion by twofold. Nevertheless, more fusion could not counterweigh the overall loss of resorption activity by inhibitors. Using an activity-based probe, we demonstrated the presence of active CatK at the resorbing front in pits and trenches. In conclusion, our data document how OCs respond to CatK-inhibition with respect to movement, bone resorption activity, and their attempt to compensate for inhibition by activating fusion.


Assuntos
Conservadores da Densidade Óssea , Reabsorção Óssea , Osteoporose , Humanos , Osteoclastos , Conservadores da Densidade Óssea/farmacologia , Reabsorção Óssea/tratamento farmacológico , Osteoporose/tratamento farmacológico , Catepsina K
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...