Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.015
Filtrar
1.
Commun Biol ; 7(1): 829, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38977904

RESUMO

Modern plant breeding, such as genomic selection and gene editing, is based on the knowledge of the genetic architecture of desired traits. Quantitative trait loci (QTL) analysis, which combines high throughput phenotyping and genotyping of segregating populations, is a powerful tool to identify these genetic determinants and to decipher the underlying mechanisms. However, meiotic recombination, which shuffles genetic information between generations, is limited: Typically only one to two exchange points, called crossovers, occur between a pair of homologous chromosomes. Here we test the effect on QTL analysis of boosting recombination, by mutating the anti-crossover factors RECQ4 and FIGL1 in Arabidopsis thaliana full hybrids and lines in which a single chromosome is hybrid. We show that increasing recombination ~6-fold empowers the detection and resolution of QTLs, reaching the gene scale with only a few hundred plants. Further, enhanced recombination unmasks some secondary QTLs undetected under normal recombination. These results show the benefits of enhanced recombination to decipher the genetic bases of traits.


Assuntos
Arabidopsis , Mapeamento Cromossômico , Locos de Características Quantitativas , Recombinação Genética , Arabidopsis/genética , Mapeamento Cromossômico/métodos , Proteínas de Arabidopsis/genética , Fenótipo , RecQ Helicases/genética , Melhoramento Vegetal/métodos , Cromossomos de Plantas/genética , Troca Genética
2.
BMC Geriatr ; 24(1): 603, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39009979

RESUMO

BACKGROUND: High-grade endometrial stromal sarcoma (HG-ESS) is a rare malignant tumor with poor prognosis. To overcome the limitations of current treatment for advanced patients, the intervention of targeted drug therapy is urgently needed. CASE PRESENTATION: A 74-year-old married woman who presented with abdominal distension and lower abdominal pain was admitted to Hebei General Hospital. After surgery, immunohistochemical staining revealed a malignant tumor which was consistent with HG-ESS. Tumor recurrence occurred 2 months after surgery. Then the patient underwent chemotherapy with two courses but responded poorly. Subsequently we observed ATM, BLM, and CDH1 co-mutations by Next Generation Sequencing (NGS). Then the patient received pamiparib, which resulted in a 10-month progression-free survival (PFS) and is now stable with the administration of sintilimab in combination with pamiparib and anlotinib. CONCLUSIONS: Due to the successful use of poly ADP-ribose polymerase inhibitor (PARPi) on HG-ESS, we suggest that the selection of effective targeted drugs combined with anti- programmed death-1 (PD-1) drug therapy based on genetic testing may become a new option for the treatment of homologous repair deficient (HR-deficient) HG-ESS.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia , Caderinas , Neoplasias do Endométrio , RecQ Helicases , Sarcoma do Estroma Endometrial , Humanos , Feminino , Idoso , Neoplasias do Endométrio/genética , Neoplasias do Endométrio/tratamento farmacológico , Neoplasias do Endométrio/patologia , Sarcoma do Estroma Endometrial/genética , Sarcoma do Estroma Endometrial/tratamento farmacológico , Sarcoma do Estroma Endometrial/diagnóstico , Proteínas Mutadas de Ataxia Telangiectasia/genética , RecQ Helicases/genética , Caderinas/genética , Antígenos CD/genética , Mutação
3.
Cells ; 13(13)2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38994931

RESUMO

James German's work to establish the natural history and cancer risk associated with Bloom syndrome (BS) has had a strong influence on the generation of scientists and clinicians working to understand other RECQ deficiencies and heritable cancer predisposition syndromes. I summarize work by us and others below, inspired by James German's precedents with BS, to understand and compare BS with the other heritable RECQ deficiency syndromes with a focus on Werner syndrome (WS). What we know, unanswered questions and new opportunities are discussed, as are potential ways to treat or modify WS-associated disease mechanisms and pathways.


Assuntos
Síndrome de Bloom , RecQ Helicases , Síndrome de Werner , Humanos , RecQ Helicases/genética , RecQ Helicases/metabolismo , RecQ Helicases/deficiência , Síndrome de Bloom/genética , Síndrome de Werner/genética , História do Século XX
4.
Mol Biol Rep ; 51(1): 754, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38874681

RESUMO

BACKGROUND: Telomeropathies are a group of inherited disorders caused by germline pathogenic variants in genes involved in telomere maintenance, resulting in excessive telomere attrition that affects several tissues, including hematopoiesis. RecQ and RTEL1 helicases contribute to telomere maintenance by unwinding telomeric structures such as G-quadruplexes (G4), preventing replication defects. Germline RTEL1 variants also are etiologic in telomeropathies. METHODS AND RESULTS: Here we investigated the expression of RecQ (RECQL1, BLM, WRN, RECQL4, and RECQL5) and RTEL1 helicase genes in peripheral blood mononuclear cells (PBMCs) from human telomeropathy patients. The mRNA expression levels of all RecQ helicases, but not RTEL1, were significantly downregulated in patients' primary cells. Reduced RecQ expression was not attributable to cell proliferative exhaustion, as RecQ helicases were not attenuated in T cells exhausted in vitro. An additional fifteen genes involved in DNA damage repair and RecQ functional partners also were downregulated in the telomeropathy cells. CONCLUSION: These findings indicate that the expression of RecQ helicases and functional partners involved in DNA repair is downregulated in PBMCs of telomeropathy patients.


Assuntos
Leucócitos Mononucleares , RecQ Helicases , Adulto , Feminino , Humanos , Masculino , DNA Helicases/genética , DNA Helicases/metabolismo , Reparo do DNA/genética , Leucócitos Mononucleares/metabolismo , RecQ Helicases/genética , RecQ Helicases/metabolismo , Telômero/metabolismo , Telômero/genética , Homeostase do Telômero/genética
5.
Nat Commun ; 15(1): 5044, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38890315

RESUMO

Homology-dependent targeted DNA integration, generally referred to as gene targeting, provides a powerful tool for precise genome modification; however, its fundamental mechanisms remain poorly understood in human cells. Here we reveal a noncanonical gene targeting mechanism that does not rely on the homologous recombination (HR) protein Rad51. This mechanism is suppressed by Rad52 inhibition, suggesting the involvement of single-strand annealing (SSA). The SSA-mediated gene targeting becomes prominent when DSB repair by HR or end-joining pathways is defective and does not require isogenic DNA, permitting 5% sequence divergence. Intriguingly, loss of Msh2, loss of BLM, and induction of a target-site DNA break all significantly and synergistically enhance SSA-mediated targeted integration. Most notably, SSA-mediated integration is cell cycle-independent, occurring in the G1 phase as well. Our findings provide unequivocal evidence for Rad51-independent targeted integration and unveil multiple mechanisms to regulate SSA-mediated targeted as well as random integration.


Assuntos
Ciclo Celular , Marcação de Genes , Proteína 2 Homóloga a MutS , Rad51 Recombinase , Proteína Rad52 de Recombinação e Reparo de DNA , Humanos , Rad51 Recombinase/metabolismo , Rad51 Recombinase/genética , Proteína Rad52 de Recombinação e Reparo de DNA/metabolismo , Proteína Rad52 de Recombinação e Reparo de DNA/genética , Ciclo Celular/genética , Proteína 2 Homóloga a MutS/metabolismo , Proteína 2 Homóloga a MutS/genética , RecQ Helicases/metabolismo , RecQ Helicases/genética , Recombinação Homóloga , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Reparo do DNA por Junção de Extremidades , Fase G1/genética
6.
DNA Repair (Amst) ; 140: 103709, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38861762

RESUMO

To identify new molecular components of the Brh2-governed homologous recombination (HR)-network in the highly radiation-resistant fungus Ustilago maydis, we undertook a genetic screen for suppressors of blm-KR hydroxyurea (HU)-sensitivity. Twenty DNA-damage sensitive mutants were obtained, three of which showing slow-growth phenotypes. Focusing on the "normally" growing candidates we identified five mutations, two in previously well-defined genes (Rec2 and Rad51) and the remaining three in completely uncharacterized genes (named Rec3, Bls9 and Zdr1). A common feature among these novel factors is their prominent role in DNA repair. Rec3 contains the P-loop NTPase domain which is most similar to that found in U. maydis Rec2 protein, and like Rec2, Rec3 plays critical roles in induced allelic recombination, is crucial for completion of meiosis, and with regard to DNA repair Δrec3 and Δrec2 are epistatic to one another. Importantly, overexpression of Brh2 in Δrec3 can effectively restore DNA-damage resistance, indicating a close functional connection between Brh2 and Rec3. The Bls9 does not seem to have any convincing domains that would give a clue as to its function. Nevertheless, we present evidence that, besides being involved in DNA-repair, Bls9 is also necessary for HR between chromosome homologs. Moreover, Δbls9 showed epistasis with Δbrh2 with respect to killing by DNA-damaging agents. Both, Rec3 and Bls9, play an important role in protecting the genome from mutations. Zdr1 is Cys2-His2 zinc finger (C2H2-ZF) protein, whose loss does not cause a detectable change in HR. Also, the functions of both Bls9 and Zdr1 genes are dispensable in meiosis and sporulation. However, Zdr1 appears to have overlapping activities with Blm and Mus81 in protecting the organism from methyl methanesulfonate- and diepoxybutane-induced DNA-damage. Finally, while deletion of Rec3 and Zdr1 can suppress HU-sensitivity of blm-KR, Δgen1, and Δmus81 mutants, interestingly loss of Bls9 does not rescue HU-sensitivity of Δgen1.


Assuntos
Reparo do DNA , Proteínas Fúngicas , RecQ Helicases , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , RecQ Helicases/metabolismo , RecQ Helicases/genética , Hidroxiureia/farmacologia , Dano ao DNA , Mutação , Recombinação Homóloga , Meiose , Basidiomycota
7.
Biochem Biophys Res Commun ; 723: 150214, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-38850810

RESUMO

Generation of O6-methylguanine (O6-meG) by DNA-alkylating agents such as N-methyl N-nitrosourea (MNU) activates the multiprotein mismatch repair (MMR) complex and the checkpoint response involving ATR/CHK1 and ATM/CHK2 kinases, which may in turn trigger cell cycle arrest and apoptosis. The Bloom syndrome DNA helicase BLM interacts with the MMR complex, suggesting functional relevance to repair and checkpoint responses. We observed a strong interaction of BLM with MMR proteins in HeLa cells upon treatment with MNU as evidenced by co-immunoprecipitation as well as colocalization in the nucleus as revealed by dual immunofluorescence staining. Knockout of BLM sensitized HeLa MR cells to MNU-induced cell cycle disruption and enhanced expression of the apoptosis markers cleaved caspase-9 and PARP1. MNU-treated BLM-deficient cells also exhibited a greater number of 53BP1 foci and greater phosphorylation levels of H2AX at S139 and RPA32 at S8, indicating the accumulation of DNA double-strand breaks. These findings suggest that BLM prevents double-strand DNA breaks during the MMR-dependent DNA damage response and mitigates O6-meG-induced apoptosis.


Assuntos
Apoptose , Reparo de Erro de Pareamento de DNA , RecQ Helicases , Humanos , RecQ Helicases/metabolismo , RecQ Helicases/genética , Células HeLa , Quebras de DNA de Cadeia Dupla , Metilnitrosoureia/toxicidade , Síndrome de Bloom/genética , Síndrome de Bloom/metabolismo , Síndrome de Bloom/patologia , Poli(ADP-Ribose) Polimerase-1/metabolismo , Poli(ADP-Ribose) Polimerase-1/genética
8.
EMBO J ; 43(14): 3027-3043, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38839993

RESUMO

The Mec1/ATR kinase is crucial for genome stability, yet the mechanism by which it prevents gross chromosomal rearrangements (GCRs) remains unknown. Here we find that in cells with deficient Mec1 signaling, GCRs accumulate due to the deregulation of multiple steps in homologous recombination (HR). Mec1 primarily suppresses GCRs through its role in activating the canonical checkpoint kinase Rad53, which ensures the proper control of DNA end resection. Upon loss of Rad53 signaling and resection control, Mec1 becomes hyperactivated and triggers a salvage pathway in which the Sgs1 helicase is recruited to sites of DNA lesions via the 911-Dpb11 scaffolds and phosphorylated by Mec1 to favor heteroduplex rejection and limit HR-driven GCR accumulation. Fusing an ssDNA recognition domain to Sgs1 bypasses the requirement of Mec1 signaling for GCR suppression and nearly eliminates D-loop formation, thus preventing non-allelic recombination events. We propose that Mec1 regulates multiple steps of HR to prevent GCRs while ensuring balanced HR usage when needed for promoting tolerance to replication stress.


Assuntos
Recombinação Homóloga , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas Serina-Treonina Quinases , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Quinase do Ponto de Checagem 2/metabolismo , Quinase do Ponto de Checagem 2/genética , RecQ Helicases/metabolismo , RecQ Helicases/genética , Transdução de Sinais , Fosforilação , Aberrações Cromossômicas , Rearranjo Gênico
9.
Mol Genet Genomics ; 299(1): 59, 2024 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-38796829

RESUMO

RECQL5 is a member of the conserved RecQ family of DNA helicases involved in the maintenance of genome stability that is specifically found in higher eukaryotes and associates with the elongating RNA polymerase II. To expand our understanding of its function we expressed human RECQL5 in the yeast Saccharomyces cerevisiae, which does not have a RECQL5 ortholog. We found that RECQL5 expression leads to cell growth inhibition, increased genotoxic sensitivity and transcription-associated hyperrecombination. Chromatin immunoprecipitation and transcriptomic analysis of yeast cells expressing human RECQL5 shows that this is recruited to transcribed genes and although it causes only a weak impact on gene expression, in particular at G + C-rich genes, it leads to a transcription termination defect detected as readthrough transcription. The data indicate that the interaction between RNAPII and RECQL5 is conserved from yeast to humans. Unexpectedly, however, the RECQL5-ID mutant, previously shown to have reduced the association with RNAPII in vitro, associates with the transcribing polymerase in cells. As a result, expression of RECQL5-ID leads to similar although weaker phenotypes than wild-type RECQL5 that could be transcription-mediated. Altogether, the data suggests that RECQL5 has the intrinsic ability to function in transcription-dependent and independent genome dynamics in S. cerevisiae.


Assuntos
Instabilidade Genômica , RecQ Helicases , Saccharomyces cerevisiae , Transcrição Gênica , Saccharomyces cerevisiae/genética , Instabilidade Genômica/genética , RecQ Helicases/genética , RecQ Helicases/metabolismo , Humanos , Transcrição Gênica/genética , RNA Polimerase II/genética , RNA Polimerase II/metabolismo
10.
Mol Cell ; 84(9): 1684-1698.e9, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38593805

RESUMO

The Bloom syndrome (BLM) helicase is critical for alternative lengthening of telomeres (ALT), a homology-directed repair (HDR)-mediated telomere maintenance mechanism that is prevalent in cancers of mesenchymal origin. The DNA substrates that BLM engages to direct telomere recombination during ALT remain unknown. Here, we determine that BLM helicase acts on lagging strand telomere intermediates that occur specifically in ALT-positive cells to assemble a replication-associated DNA damage response. Loss of ATRX was permissive for BLM localization to ALT telomeres in S and G2, commensurate with the appearance of telomere C-strand-specific single-stranded DNA (ssDNA). DNA2 nuclease deficiency increased 5'-flap formation in a BLM-dependent manner, while telomere C-strand, but not G-strand, nicks promoted ALT. These findings define the seminal events in the ALT DNA damage response, linking aberrant telomeric lagging strand DNA replication with a BLM-directed HDR mechanism that sustains telomere length in a subset of human cancers.


Assuntos
Dano ao DNA , Replicação do DNA , RecQ Helicases , Homeostase do Telômero , Telômero , RecQ Helicases/metabolismo , RecQ Helicases/genética , Humanos , Telômero/metabolismo , Telômero/genética , DNA de Cadeia Simples/metabolismo , DNA de Cadeia Simples/genética , Proteína Nuclear Ligada ao X/genética , Proteína Nuclear Ligada ao X/metabolismo , DNA Helicases/metabolismo , DNA Helicases/genética , Síndrome de Bloom/genética , Síndrome de Bloom/metabolismo , Síndrome de Bloom/enzimologia , Síndrome de Bloom/patologia , Linhagem Celular Tumoral
11.
Nucleic Acids Res ; 52(11): 6317-6332, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38613387

RESUMO

Telomerase is the enzyme that lengthens telomeres and is tightly regulated by a variety of means to maintain genome integrity. Several DNA helicases function at telomeres, and we previously found that the Saccharomyces cerevisiae helicases Hrq1 and Pif1 directly regulate telomerase. To extend these findings, we are investigating the interplay between helicases, single-stranded DNA (ssDNA) binding proteins (ssBPs), and telomerase. The yeast ssBPs Cdc13 and RPA differentially affect Hrq1 and Pif1 helicase activity, and experiments to measure helicase disruption of Cdc13/ssDNA complexes instead revealed that Cdc13 can exchange between substrates. Although other ssBPs display dynamic binding, this was unexpected with Cdc13 due to the reported in vitro stability of the Cdc13/telomeric ssDNA complex. We found that the DNA exchange by Cdc13 occurs rapidly at physiological temperatures, requires telomeric repeat sequence DNA, and is affected by ssDNA length. Cdc13 truncations revealed that the low-affinity binding site (OB1), which is distal from the high-affinity binding site (OB3), is required for this intermolecular dynamic DNA exchange (DDE). We hypothesize that DDE by Cdc13 is the basis for how Cdc13 'moves' at telomeres to alternate between modes where it regulates telomerase activity and assists in telomere replication.


Assuntos
DNA Helicases , DNA de Cadeia Simples , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Proteínas de Ligação a Telômeros , Telômero , Sítios de Ligação , DNA Helicases/metabolismo , DNA Fúngico/metabolismo , DNA Fúngico/genética , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/metabolismo , Ligação Proteica , RecQ Helicases , Proteína de Replicação A/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Telomerase/metabolismo , Telômero/metabolismo , Proteínas de Ligação a Telômeros/metabolismo
12.
Genetics ; 227(2)2024 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-38577877

RESUMO

Complex chromosomal rearrangements (CCRs) are often observed in clinical samples from patients with cancer and congenital diseases but are difficult to induce experimentally. Here, we report the first success in establishing animal models for CCRs. Mutation in Recql5, a crucial member of the DNA helicase RecQ family involved in DNA replication, transcription, and repair, enabled CRISPR/Cas9-mediated CCRs, establishing a mouse model containing triple fusion genes and megabase-sized inversions. Some of these structural features of individual chromosomal rearrangements use template switching and microhomology-mediated break-induced replication mechanisms and are reminiscent of the newly described phenomenon "chromoanasynthesis." These data show that Recql5 mutant mice could be a powerful tool to analyze the pathogenesis of CCRs (particularly chromoanasynthesis) whose underlying mechanisms are poorly understood. The Recql5 mutants generated in this study are to be deposited at key animal research facilities, thereby making them accessible for future research on CCRs.


Assuntos
Sistemas CRISPR-Cas , RecQ Helicases , Zigoto , Animais , RecQ Helicases/genética , RecQ Helicases/metabolismo , Camundongos , Zigoto/metabolismo , Mutação
13.
Sci Rep ; 14(1): 7708, 2024 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565932

RESUMO

Human RECQL4, a member of the RecQ helicase family, plays a role in maintaining genomic stability, but its precise function remains unclear. The N-terminus of RECQL4 has similarity to Sld2, a protein required for the firing of DNA replication origins in budding yeast. Consistent with this sequence similarity, the Xenopus laevis homolog of RECQL4 has been implicated in initiating DNA replication in egg extracts. To determine whether human RECQL4 is required for firing of DNA replication origins, we generated cells in which both RECQL4 alleles were targeted, resulting in either lack of protein expression (knock-out; KO) or expression of a full-length, mutant protein lacking helicase activity (helicase-dead; HD). Interestingly, both the RECQL4 KO and HD cells were viable and exhibited essentially identical origin firing profiles as the parental cells. Analysis of the rate of fork progression revealed increased rates in the RECQL4 KO cells, which might be indicative of decreased origin firing efficiency. Our results are consistent with human RECQL4 having a less critical role in firing of DNA replication origins, than its budding yeast homolog Sld2.


Assuntos
RecQ Helicases , Origem de Replicação , Animais , Humanos , RecQ Helicases/genética , RecQ Helicases/metabolismo , Replicação do DNA , Xenopus laevis/metabolismo , DNA/metabolismo
14.
Bioorg Med Chem ; 102: 117660, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38442524

RESUMO

Werner (WRN) syndrome protein is a multifunctional enzyme with helicase, ATPase, and exonuclease activities that are necessary for numerous DNA-related transactions in the human cell. Recent studies identified WRN as a synthetic lethal target in cancers. In this study, a series of new N-arylquinazoline-4-amine analogs were designed and synthesized based on structure optimization of quinazoline. The structures of the thirty-two newly synthesized compounds were confirmed by 1H NMR, 13C NMR and ESI-MS. The anticancer activity in vitro against chronic myeloid leukemia cells (K562), non-small cell lung cancer cells (A549), human prostate cancer cells (PC3), and cervical cancer cells (HeLa) of the target compounds was evaluated. Among them, the inhibition ratio of compounds 17d, 18a, 18b, 11 and 23a against four cancer cells at 5 µM concentration were more than 50 %. The IC50 values of compounds 18a and 18b were 0.3 ± 0.01 µM and 0.05 ± 0.02 µM in K562 cells respectively, compared with HeLa and A549 cells, 18a and 18b were more sensitive to K562 cells. In addition, the PC3 cells with WRN overexpression (PC3-WRN) was constructed, 18a and 18b and 23a were more sensitive to PC3-WRN cells compared with the control group cells (PC3-NC). Then, the cell viability of the novel WRN inhibitors were further assessed by colony formation assay. Compared with PC3-NC cells, 18b and 23a had obvious inhibitory effect on PC3-WRN cell at 1000 nM. In summary, these results indicated that the compounds 18b and 23a could be WRN protein inhibitor with potent anticancer properties in vitro.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , RecQ Helicases , Exodesoxirribonucleases/metabolismo , Células HeLa
15.
Int J Hematol ; 119(5): 603-607, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38489090

RESUMO

Bloom syndrome (BS) is an autosomal recessive genetic disorder caused by variants in the BLM gene. BS is characterized by distinct facial features, elongated limbs, and various dermatological complications including photosensitivity, poikiloderma, and telangiectatic erythema. The BLM gene encodes a RecQ helicase critical for genome maintenance, stability, and repair, and a deficiency in functional BLM protein leads to genomic instability and high predisposition to various types of cancers, particularly hematological and gastrointestinal malignancies. Here, we report a case of BS with a previously unreported variant in the BLM gene. The patient was a 34-year-old woman who presented with short stature, prominent facial features, and a history of malignancies, including lymphoma, breast cancer, and myelodysplastic syndromes (MDS). She was initially treated with azacitidine for MDS and showed transient improvement, but eventually died at age of 35 due to progression of MDS. Genetic screening revealed compound heterozygous variants in the BLM gene, with a recurrent variant previously reported in BS in one allele and a previously unreported variant in the other allele. Based on her characteristic clinical features and the presence of heterozygous variants in the BLM gene, she was diagnosed with BS harboring compound heterozygous BLM variants.


Assuntos
Síndrome de Bloom , Síndromes Mielodisplásicas , RecQ Helicases , Humanos , Síndrome de Bloom/genética , Feminino , RecQ Helicases/genética , Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/tratamento farmacológico , Adulto , Azacitidina/efeitos adversos , Azacitidina/uso terapêutico , Evolução Fatal , Mutação , Heterozigoto
16.
Adv Sci (Weinh) ; 11(16): e2308009, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38381090

RESUMO

Many patients with hepatocellular carcinoma (HCC) respond poorly to radiotherapy despite remarkable advances in treatment. A deeper insight into the mechanism of sensitivity of HCC to this therapy is urgently required. It is demonstrated that RECQL4 is upregulated in the malignant cells of patients with HCC. Elevated RECQL4 levels reduce the sensitivity of HCC to radiotherapy by repairing radiation-induced double-stranded DNA (dsDNA) fragments. Mechanistically, the inhibitory effect of RECQL4 on radiotherapy is due to the reduced recruitment of dendritic cells and CD8+ T cells in the tumor microenvironment (TME). RECQL4 disrupts the radiation-induced transformation of the TME into a tumoricidal niche by inhibiting the cGAS-STING pathway in dendritic cells. Knocking out STING in dendritic cells can block the impact of RECQL4 on HCC radiosensitivity. Notably, high RECQL4 expressions in HCC is significantly associated with poor prognosis in multiple independent cohorts. In conclusion, this study highlights how HCC-derived RECQL4 disrupts cGAS-STING pathway activation in dendritic cells through DNA repair, thus reducing the radiosensitivity of HCC. These findings provide new perspectives on the clinical treatment of HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Proteínas de Membrana , Nucleotidiltransferases , RecQ Helicases , Transdução de Sinais , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/radioterapia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/radioterapia , Neoplasias Hepáticas/imunologia , Nucleotidiltransferases/metabolismo , Nucleotidiltransferases/genética , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Animais , RecQ Helicases/genética , RecQ Helicases/metabolismo , Microambiente Tumoral/imunologia , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Modelos Animais de Doenças , Tolerância a Radiação/genética , Linhagem Celular Tumoral
17.
Int J Mol Sci ; 25(3)2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38338890

RESUMO

We recently demonstrated that 1,6-hexanediol inhibits the formation of assemblysomes. These membraneless cell organelles have important roles in co-translational protein complex assembly and also store halfway translated DNA damage response proteins for a timely stress response. Recognizing the therapeutic potential of 1,6-hexanediol in dismantling assemblysomes likely to be involved in chemo- or radiotherapy resistance of tumor cells, we initiated an investigation into the properties of 1,6-hexanediol. Our particular interest was to determine if this compound induces DNA double-strand breaks by releasing the BLM helicase. Its yeast ortholog Sgs1 was confirmed to be a component of assemblysomes. The BLM helicase induces DNA damage when overexpressed due to the DNA double-strand breaks it generates during its normal function to repair DNA damage sites. It is evident that storing Sgs1 helicase in assemblysomes is crucial to express the full-length functional protein only in the event of DNA damage. Alternatively, if we dissolve assemblysomes using 1,6-hexanediol, ribosome-nascent chain complexes might become targets of ribosome quality control. We explored these possibilities and found, through the Drosophila wing-spot test assay, that 1,6-hexanediol induces DNA double-strand breaks. Lethality connected to recombination events following 1,6-hexanediol treatment can be mitigated by inducing DNA double-strand breaks with X-ray. Additionally, we confirmed that SMC5 recruits DmBLM to DNA damage sites, as knocking it down abolishes the rescue effect of DNA double-strand breaks on 1,6-hexanediol-induced lethality in Drosophila melanogaster.


Assuntos
DNA Helicases , Proteínas de Drosophila , Drosophila melanogaster , Glicóis , Animais , DNA/metabolismo , DNA Helicases/metabolismo , Reparo do DNA , Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Recombinação Homóloga , RecQ Helicases/genética , RecQ Helicases/metabolismo
18.
Nat Commun ; 15(1): 1262, 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38341452

RESUMO

Replication fork reversal, a critical protective mechanism against replication stress in higher eukaryotic cells, is orchestrated via a series of coordinated enzymatic reactions. The Bloom syndrome gene product, BLM, a member of the highly conserved RecQ helicase family, is implicated in this process, yet its precise regulation and role remain poorly understood. In this study, we demonstrate that the GCFC domain-containing protein TFIP11 forms a complex with the BLM helicase. TFIP11 exhibits a preference for binding to DNA substrates that mimic the structure generated at stalled replication forks. Loss of either TFIP11 or BLM leads to the accumulation of the other protein at stalled forks. This abnormal accumulation, in turn, impairs RAD51-mediated fork reversal and slowing, sensitizes cells to replication stress-inducing agents, and enhances chromosomal instability. These findings reveal a previously unidentified regulatory mechanism that modulates the activities of BLM and RAD51 at stalled forks, thereby impacting genome integrity.


Assuntos
Tolerância ao Dano no DNA , Replicação do DNA , Humanos , RecQ Helicases/genética , RecQ Helicases/metabolismo , DNA/genética , DNA/metabolismo , Proteínas/metabolismo , Instabilidade Genômica , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , Fatores de Processamento de RNA/metabolismo
19.
Bioorg Chem ; 144: 107086, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38219478

RESUMO

The upregulation of RecQ helicases has been associated with cancer cell survival and resistance to chemotherapy, making them appealing targets for therapeutic intervention. In this study, twenty-nine novel quinazolinone derivatives were designed and synthesized. The anti-proliferative activity of all compounds was evaluated against 60 cancer cell lines at the National Cancer Institute Developmental Therapeutic Program, with six compounds (11f, 11g, 11k, 11n, 11p, and 11q) being promoted to a five-dose screen. Compound 11g demonstrated high cytotoxic activity against all examined cell lines. The compounds were further assayed for Bloom syndrome (BLM) helicase inhibition, where 11g, 11q, and 11u showed moderate activity. These compounds were counter-screened against WRN and RECQ1 helicases, where 11g moderately inhibited both enzymes. An ATP competition assay confirmed that the compounds bound to the ATP site of RecQ helicases, and molecular docking simulations were used to study the binding mode within the active site of BLM, WRN, and RECQ1 helicases. Compound 11g induced apoptosis in both HCT-116 and MDA-MB-231 cell lines, but also caused an G2/M phase cell cycle arrest in HCT-116 cells. This data revealed the potential of 11g as a modulator of cell cycle dynamics and supports its interaction with RecQ helicases. In addition, compound 11g displayed non-significant toxicity against FCH normal colon cells at doses up to 100 µM, which confirming its high safety margin and selectivity on cancer cells. Overall, these findings suggest compound 11g as a potential pan RecQ helicase inhibitor with high anticancer potency and a favorable safety margin and selectivity.


Assuntos
Antineoplásicos , RecQ Helicases , Simulação de Acoplamento Molecular , RecQ Helicases/metabolismo , Quinazolinonas/farmacologia , Antineoplásicos/farmacologia , Trifosfato de Adenosina
20.
Mol Cell ; 84(4): 640-658.e10, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38266639

RESUMO

The Bloom syndrome helicase BLM interacts with topoisomerase IIIα (TOP3A), RMI1, and RMI2 to form the BTR complex, which dissolves double Holliday junctions and DNA replication intermediates to promote sister chromatid disjunction before cell division. In its absence, structure-specific nucleases like the SMX complex (comprising SLX1-SLX4, MUS81-EME1, and XPF-ERCC1) can cleave joint DNA molecules instead, but cells deficient in both BTR and SMX are not viable. Here, we identify a negative genetic interaction between BLM loss and deficiency in the BRCA1-BARD1 tumor suppressor complex. We show that this is due to a previously overlooked role for BARD1 in recruiting SLX4 to resolve DNA intermediates left unprocessed by BLM in the preceding interphase. Consequently, cells with defective BLM and BRCA1-BARD1 accumulate catastrophic levels of chromosome breakage and micronucleation, leading to cell death. Thus, we reveal mechanistic insights into SLX4 recruitment to DNA lesions, with potential clinical implications for treating BRCA1-deficient tumors.


Assuntos
Proteínas de Ligação a DNA , Recombinases , Humanos , DNA/genética , Reparo do DNA , Replicação do DNA , DNA Cruciforme , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Recombinases/genética , RecQ Helicases/genética , RecQ Helicases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...