Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.061
Filtrar
1.
Mol Med Rep ; 30(3)2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38963029

RESUMO

Viral infections in the respiratory tract are common, and, in recent years, severe acute respiratory syndrome coronavirus 2 outbreaks have highlighted the effect of viral infections on antiviral innate immune and inflammatory reactions. Specific treatments for numerous viral respiratory infections have not yet been established and they are mainly treated symptomatically. Therefore, understanding the details of the innate immune system underlying the airway epithelium is crucial for the development of new therapies. The present study aimed to investigate the function and expression of interferon (IFN)­stimulated gene (ISG)60 in non­cancerous bronchial epithelial BEAS­2B cells exposed to a Toll­like receptor 3 agonist. BEAS­2B cells were treated with a synthetic TLR3 ligand, polyinosinic­polycytidylic acid (poly IC). The mRNA and protein expression levels of ISG60 were analyzed using reverse transcription­quantitative PCR and western blotting, respectively. The levels of C­X­C motif chemokine ligand 10 (CXCL10) were examined using an enzyme­linked immunosorbent assay, and the effects of knockdown of IFN­ß, ISG60 and ISG56 were examined using specific small interfering RNAs. Notably, ISG60 expression was increased in proportion to poly IC concentration, and recombinant human IFN­ß also induced ISG60 expression. By contrast, knockdown of IFN­ß and ISG56 decreased ISG60 expression, and ISG60 knockdown reduced CXCL10 and ISG56 expression. These findings suggested that ISG60 is partly implicated in CXCL10 expression and that ISG60 may serve a role in the innate immune response of bronchial epithelial cells. The present study highlights ISG60 as a potential target for new therapeutic strategies against viral infections in the airway.


Assuntos
Brônquios , Quimiocina CXCL10 , Células Epiteliais , Poli I-C , Transdução de Sinais , Receptor 3 Toll-Like , Humanos , Receptor 3 Toll-Like/metabolismo , Receptor 3 Toll-Like/genética , Quimiocina CXCL10/metabolismo , Quimiocina CXCL10/genética , Células Epiteliais/metabolismo , Células Epiteliais/efeitos dos fármacos , Brônquios/citologia , Brônquios/metabolismo , Poli I-C/farmacologia , Transdução de Sinais/efeitos dos fármacos , Linhagem Celular , Imunidade Inata , Interferon beta/metabolismo , Interferon beta/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Ligação a RNA , Proteínas Adaptadoras de Transdução de Sinal , Proteínas Reguladoras de Apoptose
2.
Expert Rev Mol Diagn ; 24(6): 525-531, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38864429

RESUMO

BACKGROUND: A distinct phenotype in Coronavirus disease 2019 (Covid-19) was observed in severe patients, consisting of a highly impaired interferon (IFN) type I response, an exacerbated inflammatory response. OBJECTIVE: The aim of the present study was to investigate a possible association of single nucleotide polymorphisms (SNPs), in five genes related to the immune response, rs3775291 in TLR3; rs2292151 in TICAM1; rs1758566 in IFNA1; rs1800629 in TNF, and rs1800795 in IL6 with the severity of Covid-19. METHODS: A cross-sectional study was performed, with non-severe and severe/critical patients diagnosed with Covid-19, by two public hospitals in Brazil. In total, 300 patients were genotyped for the SNPs, 150 with the non-severe form of the disease and 150 with severe/critical form. RESULTS: The T/T genotype of TLR3 in recessive model shows 58% of protection against severe/critical Covid-19; as well as the genotypes G/A+A/A of TICAM1 in dominant model with 60% of protection, and in a codominant model G/A with 57% and A/A with 71% of protection against severe/critical Covid-19. Comparing severe and critical cases, the T/C genotype of IFNA1 in the codominant model and TC+C/C in the dominant model showed twice the risk of critical Covid-19. CONCLUSION: We can conclude that rs3775291, rs2292151 and rs1758566 can influence the COVID-19 severity.


Assuntos
COVID-19 , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único , SARS-CoV-2 , Índice de Gravidade de Doença , Receptor 3 Toll-Like , Humanos , COVID-19/genética , COVID-19/virologia , Brasil/epidemiologia , Receptor 3 Toll-Like/genética , Masculino , Feminino , Pessoa de Meia-Idade , SARS-CoV-2/genética , Estudos Transversais , Adulto , Genótipo , Idoso , Interferon Tipo I/genética , Interferon-alfa
3.
BMC Infect Dis ; 24(1): 616, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38907187

RESUMO

BACKGROUND: Toll-Like receptors (TLRs) play an important role in the immune response during hepatitis B virus (HBV) infection. In this study, we evaluated the association between two SNP variants (TLR3 rs3775290 and TLR4 rs4986790) and susceptibility to chronic HBV infection in Mauritania. SUBJECTS AND METHODS: A total of 188 subjects were recruited for this study: 102 chronically infected patients and 86 individuals with spontaneously resolved HBV infection who were considered controls. Targeted PCR products were sequenced using Sanger sequencing. RESULTS: We found that TLR3 rs3775290 was significantly more frequent in patients with chronic HBV than in the control population (p = 0.03). However, no association was found between the TLR4 rs3775290 polymorphism and chronic infection. CONCLUSION: Our results suggest that the TLR3 rs3775290 polymorphism may be a risk factor for susceptibility to chronic HBV infection in the Mauritanian population.


Assuntos
Predisposição Genética para Doença , Hepatite B Crônica , Polimorfismo de Nucleotídeo Único , Receptor 3 Toll-Like , Humanos , Receptor 3 Toll-Like/genética , Masculino , Feminino , Estudos de Casos e Controles , Adulto , Hepatite B Crônica/genética , Hepatite B Crônica/virologia , Pessoa de Meia-Idade , Mauritânia , Adulto Jovem , Vírus da Hepatite B/genética
4.
Croat Med J ; 65(3): 232-238, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38868969

RESUMO

AIM: To determine variations in allele and genotype frequencies between keratoacanthoma (KA) and common warts (CW), compared with the control group, in three single nucleotide polymorphisms (SNPs) within the TLR2, TLR3, and TLR9 genes. METHODS: This case-control study involved samples from 161 patients with KA, 152 patients with CW, and 469 controls. DNA was isolated from formalin-fixed paraffin-embedded tissue sections. Three SNPs - rs4696480 in TLR2, rs7657186 in TLR9, and rs35213 in TLR3 - were genotyped with TaqMan Genotyping Assays on the 7500 Real-Time PCR System. RESULTS: TLR2 rs4696480 and TLR3 rs7657186 were significantly overrepresented in KA and CW compared with controls (P<0.001). The association was stronger for CW than for KA, as evidenced by higher frequencies of the A allele and AA genotype for rs4696480. Both KA and CW patients had higher frequencies of the G allele and GG genotype for rs7657186 than controls. rs7657186 was moderately associated with KA and CW, with the G allele and GG genotype being more prevalent in CW cases, where no AA homozygotes were found. CONCLUSION: Genetic variants in TLR2 (rs4696480) and TLR3 (rs7657186) genes may affect KA and CW development, influencing immune responses and susceptibility to these skin lesions. Further research is required to elucidate TLR expression patterns and their role in KA development.


Assuntos
Ceratoacantoma , Polimorfismo de Nucleotídeo Único , Receptor 2 Toll-Like , Receptor 3 Toll-Like , Verrugas , Adolescente , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem , Alelos , Estudos de Casos e Controles , Frequência do Gene , Predisposição Genética para Doença , Genótipo , Ceratoacantoma/genética , Receptor 2 Toll-Like/genética , Receptor 3 Toll-Like/genética , Verrugas/genética
5.
Exp Biol Med (Maywood) ; 249: 10122, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38881847

RESUMO

Rheumatoid fibroblast-like synoviocytes (RFLS) have an important role in the inflammatory pathogenesis of rheumatoid arthritis (RA). Toll-like receptor 3 (TLR3) is upregulated in RFLS; its activation leads to the production of interferon-ß (IFN-ß), a type I IFN. IFN-stimulated gene 56 (ISG56) is induced by IFN and is involved in innate immune responses; however, its role in RA remains unknown. Therefore, the purpose of this study was to investigate the role of TLR3-induced ISG56 in human RFLS. RFLS were treated with polyinosinic-polycytidylic acid (poly I:C), which served as a TLR3 ligand. ISG56, melanoma differentiation-associated gene 5 (MDA5), and C-X-C motif chemokine ligand 10 (CXCL10) expression were measured using quantitative reverse transcription-polymerase chain reaction, western blotting, and enzyme-linked immunosorbent assay. Using immunohistochemistry, we found that ISG56 was expressed in synovial tissues of patients with RA and osteoarthritis. Under poly I:C treatment, ISG56 was upregulated in RFLS. In addition, we found that the type I IFN-neutralizing antibody mixture suppressed ISG56 expression. ISG56 knockdown decreased CXCL10 expression and MDA5 knockdown decreased ISG56 expression. In addition, we found that ISG56 was strongly expressed in the synovial cells of patients with RA. TLR3 signaling induced ISG56 expression in RFLS and type I IFN was involved in ISG56 expression. ISG56 was also found to be associated with CXCL10 expression, suggesting that ISG56 may be involved in TLR3/type I IFN/CXCL10 axis, and play a role in RA synovial inflammation.


Assuntos
Artrite Reumatoide , Quimiocina CXCL10 , Poli I-C , Transdução de Sinais , Sinoviócitos , Receptor 3 Toll-Like , Humanos , Receptor 3 Toll-Like/metabolismo , Artrite Reumatoide/metabolismo , Artrite Reumatoide/patologia , Poli I-C/farmacologia , Sinoviócitos/metabolismo , Quimiocina CXCL10/metabolismo , Helicase IFIH1 Induzida por Interferon/metabolismo , Helicase IFIH1 Induzida por Interferon/genética , Células Cultivadas , Membrana Sinovial/metabolismo , Membrana Sinovial/patologia , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/genética , Proteínas de Ligação a RNA , Proteínas Adaptadoras de Transdução de Sinal , Proteínas Reguladoras de Apoptose
6.
Nat Commun ; 15(1): 3969, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38730242

RESUMO

Encephalitis is a rare and potentially fatal manifestation of herpes simplex type 1 infection. Following genome-wide genetic analyses, we identified a previously uncharacterized and very rare heterozygous variant in the E3 ubiquitin ligase WWP2, in a 14-month-old girl with herpes simplex encephalitis. The p.R841H variant (NM_007014.4:c.2522G > A) impaired TLR3 mediated signaling in inducible pluripotent stem cells-derived neural precursor cells and neurons; cells bearing this mutation were also more susceptible to HSV-1 infection compared to control cells. The p.R841H variant increased TRIF ubiquitination in vitro. Antiviral immunity was rescued following the correction of p.R841H by CRISPR-Cas9 technology. Moreover, the introduction of p.R841H in wild type cells reduced such immunity, suggesting that this mutation is linked to the observed phenotypes.


Assuntos
Encefalite por Herpes Simples , Herpesvirus Humano 1 , Mutação , Ubiquitina-Proteína Ligases , Humanos , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Feminino , Encefalite por Herpes Simples/genética , Lactente , Herpesvirus Humano 1/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Receptor 3 Toll-Like/genética , Receptor 3 Toll-Like/metabolismo , Ubiquitinação , Neurônios/metabolismo , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/virologia , Sistemas CRISPR-Cas
7.
Nat Commun ; 15(1): 4099, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38816352

RESUMO

Chronic inflammation is a major cause of cancer worldwide. Interleukin 33 (IL-33) is a critical initiator of cancer-prone chronic inflammation; however, its induction mechanism by environmental causes of chronic inflammation is unknown. Herein, we demonstrate that Toll-like receptor (TLR)3/4-TBK1-IRF3 pathway activation links environmental insults to IL-33 induction in the skin and pancreas inflammation. An FDA-approved drug library screen identifies pitavastatin to effectively suppress IL-33 expression by blocking TBK1 membrane recruitment/activation through the mevalonate pathway inhibition. Accordingly, pitavastatin prevents chronic pancreatitis and its cancer sequela in an IL-33-dependent manner. The IRF3-IL-33 axis is highly active in chronic pancreatitis and its associated pancreatic cancer in humans. Interestingly, pitavastatin use correlates with a significantly reduced risk of chronic pancreatitis and pancreatic cancer in patients. Our findings demonstrate that blocking the TBK1-IRF3-IL-33 signaling axis suppresses cancer-prone chronic inflammation. Statins present a safe and effective prophylactic strategy to prevent chronic inflammation and its cancer sequela.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases , Fator Regulador 3 de Interferon , Interleucina-33 , Neoplasias Pancreáticas , Proteínas Serina-Treonina Quinases , Quinolinas , Transdução de Sinais , Interleucina-33/metabolismo , Animais , Fator Regulador 3 de Interferon/metabolismo , Humanos , Neoplasias Pancreáticas/prevenção & controle , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/genética , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Camundongos , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Quinolinas/farmacologia , Quinolinas/uso terapêutico , Inflamação/prevenção & controle , Inflamação/metabolismo , Pancreatite Crônica/prevenção & controle , Pancreatite Crônica/metabolismo , Receptor 3 Toll-Like/metabolismo , Camundongos Endogâmicos C57BL , Receptor 4 Toll-Like/metabolismo , Ácido Mevalônico/metabolismo , Masculino , Feminino , Camundongos Knockout
8.
Immunobiology ; 229(4): 152807, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38821752

RESUMO

The study aimed to explore the pontential impact of 10 polymorphisms within IFN-α, IFN-ß1, IFN-γ and TLR3 genes on SLE phenotype and susceptibility and to study the relationship between specific genotypes and clinics. Whole blood samples from SLE patients and healthy controls was obtained. DNA was extracted from the peripheral blood by the QIAamp DNA Blood Mini Kit (Qiagen). The quality and quantity of isolated DNA was estimated by the Quawell Q5000 spectrophotometer. We genotyped SLE patients and healthy subjects using real-time PCR (QuantStudio 5 thermocycler). The study suggests that IFN-γ rs2069705, IFN-γ rs2069718 and IFN-α rs3758236 polymorphisms have a protective role in SLE. We observed relations between TLR3 rs3775292, IFN-ß1 rs7873167, IFN-γ rs2069705, TLR3 rs3775291 and TLR3 rs5743305 polymorphisms and clinical picture of SLE patients. We found associations between the IFN-α rs3758236, IFN-γ rs2069705, IFN-γ rs2069718, IFN-γ rs1861493 and IFN-ß1 rs10964831 polymorphisms and the clinical manifestation of the SLE and/or its comorbidities. We perceived links between IFN-γ rs2069705, IFN-γ rs2069718, IFN-γ rs1861493, TLR3 rs3775291, TLR3 rs3775292 and TLR3 rs5743305 polymorphisms and the occurrence of autoantibodies. Our study presented the relationship between IFN and TLR gene polymorphisms with SLE susceptibility, phenotype and autoantibodies profile. This study propose that polymorphisms within interferons and TLR3 genes can be engaged in the SLE pathogenesis and course.


Assuntos
Predisposição Genética para Doença , Genótipo , Lúpus Eritematoso Sistêmico , Polimorfismo de Nucleotídeo Único , Receptor 3 Toll-Like , Humanos , Lúpus Eritematoso Sistêmico/genética , Receptor 3 Toll-Like/genética , Feminino , Masculino , Adulto , Pessoa de Meia-Idade , Frequência do Gene , Alelos , Estudos de Casos e Controles , Interferons/genética , Estudos de Associação Genética
9.
Molecules ; 29(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38731436

RESUMO

In our research, we explored a natural substance called Oxymatrine, found in a traditional Chinese medicinal plant, to fight against a common bird flu virus known as H9N2. This virus not only affects birds but can also pose a threat to human health. We focused on how this natural compound can help in stopping the virus from spreading in cells that line the lungs of birds and potentially humans. Our findings show that Oxymatrine can both directly block the virus and boost the body's immune response against it. This dual-action mechanism is particularly interesting because it indicates that Oxymatrine might be a useful tool in developing new ways to prevent and treat this type of bird flu. Understanding how Oxymatrine works against the H9N2 virus could lead to safer and more natural ways to combat viral infections in animals and humans, contributing to the health and well-being of society. The H9N2 Avian Influenza Virus (AIV) is a persistent health threat because of its rapid mutation rate and the limited efficacy of vaccines, underscoring the urgent need for innovative therapies. This study investigated the H9N2 AIV antiviral properties of Oxymatrine (OMT), a compound derived from traditional Chinese medicine, particularly focusing on its interaction with pulmonary microvascular endothelial cells (PMVECs). Employing an array of in vitro assays, including 50% tissue culture infectious dose, Cell Counting Kit-8, reverse transcription-quantitative polymerase chain reaction, enzyme-linked immunosorbent assay, and Western blot, we systematically elucidated the multifaceted effects of OMT. OMT dose-dependently inhibited critical antiviral proteins (PKR and Mx1) and modulated the expression of type I interferons and key cytokines (IFN-α, IFN-ß, IL-6, and TNF-α), thereby affecting TLR3 signaling and its downstream elements (NF-κB and IRF-3). OMT's antiviral efficacy extended beyond TLR3-mediated responses, suggesting its potential as a versatile antiviral agent. This study not only contributes to the growing body of research on the use of natural compounds as antiviral agents but also underscores the importance of further investigating the broader application of OMT for combating viral infections.


Assuntos
Antivirais , Vírus da Influenza A Subtipo H9N2 , Influenza Aviária , Matrinas , Transdução de Sinais , Receptor 3 Toll-Like , Animais , Cães , Humanos , Antivirais/farmacologia , Vírus da Influenza A Subtipo H9N2/efeitos dos fármacos , Influenza Aviária/tratamento farmacológico , Influenza Aviária/imunologia , Células Madin Darby de Rim Canino , Transdução de Sinais/efeitos dos fármacos , Receptor 3 Toll-Like/metabolismo
10.
Int Immunopharmacol ; 134: 112182, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38703568

RESUMO

Seipin plays a crucial role in lipid metabolism and is involved in neurological disorders. However, the function and mechanism of action of seipin in acute ischemic stroke have not yet been elucidated. Here, we aimed to investigate the effect of seipin on neuroinflammation induced by oxygen-glucose deprivation/reoxygenation (OGD/R) and further explore the molecular mechanism by functional experiments. Our results revealed a significant decrease in seipin mRNA levels, accompanied by enhanced expression of TNF-α in patients with AIS, and a significant negative correlation between seipin and TNF-α was observed. Additionally, there was a negative correlation between seipin levels and the National Institutes of Health Stroke Scale (NIHSS) score. Furthermore, seipin levels were also decreased in middle cerebral artery occlusion/reperfusion (MCAO/R) mice and OGD/R-treated BV2 cells. RNA sequencing analysis showed that seipin knockdown altered the Toll-like receptor 3 (TLR3) signaling pathway. It was further confirmed in vitro that seipin knockdown caused significantly increased secretion of inflammatory factors including TNF-α, interleukin (IL)-1ß, and interferon (IFN)-ß. Meanwhile, seipin knockdown activated the Tlr3 signal pathway while this effect could be reversed by Tlr3 inhibitor in OGD/R treated BV2 cells. Furthermore, neuroinflammation induced by OGD/R was significantly reduced by seipin overexpression. Overall, our study demonstrate that seipin deficiency aggravates neuroinflammation by activating the TLR3/TRAF3/NF-κB signaling pathway after OGD/R stimuli, and suggest that seipin may be a potential therapeutic target for AIS.


Assuntos
Glucose , NF-kappa B , Doenças Neuroinflamatórias , Oxigênio , Transdução de Sinais , Fator 3 Associado a Receptor de TNF , Receptor 3 Toll-Like , Idoso , Animais , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Linhagem Celular , Modelos Animais de Doenças , Glucose/metabolismo , Subunidades gama da Proteína de Ligação ao GTP/metabolismo , Subunidades gama da Proteína de Ligação ao GTP/genética , Infarto da Artéria Cerebral Média/metabolismo , Infarto da Artéria Cerebral Média/imunologia , AVC Isquêmico/metabolismo , AVC Isquêmico/imunologia , Camundongos Endogâmicos C57BL , Doenças Neuroinflamatórias/imunologia , Doenças Neuroinflamatórias/metabolismo , NF-kappa B/metabolismo , Oxigênio/metabolismo , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/imunologia , Fator 3 Associado a Receptor de TNF/metabolismo , Fator 3 Associado a Receptor de TNF/genética , Receptor 3 Toll-Like/metabolismo , Receptor 3 Toll-Like/genética
11.
Int J Immunogenet ; 51(4): 242-251, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38706134

RESUMO

Toll-like receptors (TLRs) play an important role in innate immunity. Previous studies have shown that single nucleotide polymorphisms (SNPs) in the genes coding for these innate immune molecules can affect susceptibility to and the outcome of certain diseases. The aim of the present study was to examine the clinical relevance of well-studied TLR1-4 SNPs in individuals who are prone to infections. Four functional SNPs, TLR1 rs5743618 (1805C > A, Ser602Ile), TLR2 rs5743708 (2258G > A, Arg753Gln), TLR3 rs3775291 (1234C > T, Leu412Phe) and TLR4 rs4986790 (896A > G, Asp299Gly), were analysed in 155 patients with recurrent respiratory infections (n = 84), severe infections (n = 15) or common variable immunodeficiency (n = 56), and in 262 healthy controls, using the High Resolution Melting Analysis method. Polymorphisms of TLR2 rs5743708 (odds ratio [OR] 3.16; 95% confidence interval [CI] 1.45-6.83, p = .004, ap = .016) and TLR4 rs4986790 (OR 1.8; 95% CI 1.05-3.12, p = .028, ap = .112) were more frequent in patients with recurrent or severe infections than in controls. Interestingly, seven patients were found to carry both variant genotypes of TLR2 and TLR4, whereas none of the control group carried such genotypes (p  ≤ .0001). Moreover, TLR2 polymorphism was associated with increased risk for acute otitis media episodes (OR, 3.02; 95% CI 1.41-6.47; p = .012). This study indicates that children and adults who are more prone to recurrent or severe respiratory infections carry one or both variant types of TLR2 and TLR4 more often than control subjects. Genetic variations of TLRs help explain why some children are more susceptible to respiratory infections.


Assuntos
Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único , Receptor 1 Toll-Like , Receptor 2 Toll-Like , Receptor 3 Toll-Like , Receptor 4 Toll-Like , Humanos , Masculino , Feminino , Receptor 4 Toll-Like/genética , Receptor 2 Toll-Like/genética , Receptor 3 Toll-Like/genética , Receptor 1 Toll-Like/genética , Criança , Adulto , Infecções Respiratórias/genética , Pré-Escolar , Adolescente , Recidiva , Pessoa de Meia-Idade , Genótipo , Frequência do Gene , Estudos de Casos e Controles
12.
Biol Pharm Bull ; 47(5): 946-954, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38735732

RESUMO

There is accumulating evidence that selective serotonin reuptake inhibitors (SSRIs), clinically used as antidepressants, have a beneficial effect on inflammatory diseases such as coronavirus disease 2019 (COVID-19). We previously compared the inhibitory effects of five U.S. Food and Drug Administration (FDA)-approved SSRIs on the production of an inflammatory cytokine, interleukin-6 (IL-6), and concluded that fluoxetine (FLX) showed the most potent anti-inflammatory activity. Here, we investigated the structure-activity relationship of FLX for anti-inflammatory activity towards J774.1 murine macrophages. FLX suppressed IL-6 production induced by the TLR3 agonist polyinosinic-polycytidylic acid (poly(I : C)) with an IC50 of 4.76 µM. A derivative of FLX containing chlorine instead of the methylamino group lacked activity, suggesting that the methylamino group is important for the anti-inflammatory activity. FLX derivatives bearing an N-propyl or N-(pyridin-3-yl)methyl group in place of the N-methyl group exhibited almost the same activity as FLX. Other derivatives showed weaker activity, and the N-phenyl and N-(4-trifluoromethyl)benzyl derivatives were inactive. The chlorine-containing derivative also lacked inhibitory activity against TLR9- or TLR4-mediated IL-6 production. These derivatives showed similar structure-activity relationships for TLR3- and TLR9-mediated inflammatory responses. However, the activities of all amino group-containing derivatives against the TLR4-mediated inflammatory response were equal to or higher than the activity of FLX. These results indicate that the substituent at the nitrogen atom in FLX strongly influences the anti-inflammatory effect.


Assuntos
Anti-Inflamatórios , Fluoxetina , Interleucina-6 , Relação Estrutura-Atividade , Animais , Fluoxetina/farmacologia , Camundongos , Interleucina-6/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Linhagem Celular , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Citocinas/metabolismo , Receptor 3 Toll-Like/metabolismo , Poli I-C/farmacologia , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Inibidores Seletivos de Recaptação de Serotonina/química , Inflamação/tratamento farmacológico
13.
ACS Nano ; 18(15): 10509-10526, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38564478

RESUMO

Systemic exposure to starch-coated iron oxide nanoparticles (IONPs) can stimulate antitumor T cell responses, even when little IONP is retained within the tumor. Here, we demonstrate in mouse models of metastatic breast cancer that IONPs can alter the host immune landscape, leading to systemic immune-mediated disease suppression. We report that a single intravenous injection of IONPs can inhibit primary tumor growth, suppress metastases, and extend survival. Gene expression analysis revealed the activation of Toll-like receptor (TLR) pathways involving signaling via Toll/Interleukin-1 receptor domain-containing adaptor-inducing IFN-ß (TRIF), a TLR pathway adaptor protein. Requisite participation of TRIF in suppressing tumor progression was demonstrated with histopathologic evidence of upregulated IFN-regulatory factor 3 (IRF3), a downstream protein, and confirmed in a TRIF knockout syngeneic mouse model of metastatic breast cancer. Neither starch-coated polystyrene nanoparticles lacking iron, nor iron-containing dextran-coated parenteral iron replacement agent, induced significant antitumor effects, suggesting a dependence on the type of IONP formulation. Analysis of multiple independent clinical databases supports a hypothesis that upregulation of TLR3 and IRF3 correlates with increased overall survival among breast cancer patients. Taken together, these data support a compelling rationale to re-examine IONP formulations as harboring anticancer immune (nano)adjuvant properties to generate a therapeutic benefit without requiring uptake by cancer cells.


Assuntos
Neoplasias da Mama , Neoplasias Pulmonares , Animais , Camundongos , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Receptor 3 Toll-Like/metabolismo , Receptor 4 Toll-Like/metabolismo , Modelos Animais de Doenças , Neoplasias Pulmonares/tratamento farmacológico , Proteínas Adaptadoras de Transporte Vesicular/genética , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Ferro , Amido , Nanopartículas Magnéticas de Óxido de Ferro
14.
Biochem Biophys Res Commun ; 712-713: 149915, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38663038

RESUMO

Viral infections pose a significant threat to public health, and the production of interferons represents one of the most critical antiviral innate immune responses of the host. Consequently, the screening and identification of compounds or reagents that induce interferon production are of paramount importance. This study commenced with the cultivation of host bacterium 15,597, followed by the infection of Escherichia coli with the MS2 bacteriophage. Utilizing the J2 capture technique, a class of dsRNA mixtures (MS2+15,597) was isolated from the E. coli infected with the MS2 bacteriophage. Subsequent investigations were conducted on the immunostimulatory activity of the MS2+15,597 mixture. The results indicated that the dsRNA mixtures (MS2+15,597) extracted from E. coli infected with the MS2 bacteriophage possess the capability to activate innate immunity, thereby inducing the production of interferon-ß. These dsRNA mixtures can activate the RIG-I and TLR3 pattern recognition receptors, stimulating the expression of interferon stimulatory factors 3/7, which in turn triggers the NF-κB signaling pathway, culminating in the cellular production of interferon-ß to achieve antiviral effects. This study offers novel insights and strategies for the development of broad-spectrum antiviral drugs, potentially providing new modalities for future antiviral therapies.


Assuntos
Escherichia coli , Levivirus , RNA de Cadeia Dupla , Escherichia coli/virologia , Escherichia coli/genética , Escherichia coli/metabolismo , RNA de Cadeia Dupla/metabolismo , Humanos , Levivirus/genética , Receptor 3 Toll-Like/metabolismo , Receptor 3 Toll-Like/genética , Imunidade Inata , Interferon beta/metabolismo , Interferon beta/genética , NF-kappa B/metabolismo , Proteína DEAD-box 58/metabolismo , Proteína DEAD-box 58/genética , Transdução de Sinais , Fator Regulador 7 de Interferon/metabolismo , Fator Regulador 7 de Interferon/genética , Receptores Imunológicos , Fator Regulador 3 de Interferon/metabolismo , Fator Regulador 3 de Interferon/genética
15.
Mol Biol Rep ; 51(1): 550, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38642183

RESUMO

BACKGROUND: The therapeutic efficacy of intra-articular mesenchymal stem cells (MSCs) injection for patients with osteoarthritis (OA) currently exhibits inconsistency, and the underlying mechanism remains elusive. It has been postulated that the immunomodulatory properties and paracrine activity of MSCs might be influenced by the inflammatory micro-environment within osteoarthritic joints, potentially contributing to this observed inconsistency. METHODS: Adipose-derived MSCs (ADSCs) were isolated from SD rats and pre-treated with Toll-like receptor 3 (TLR3) agonist Poly I:C or Toll-like receptor 4 (TLR4) agonist LPS. The pre-treated ADSCs were then co-cultured with IL-1ß-induced osteoarthritic chondrocytes using a Transwell system to analyze the paracrine effect of ADSCs on reversing the osteoarthritic phenotype of chondrocytes. RESULTS: RT-PCR and Western blot analysis revealed that Poly I:C and LPS pre-treatments up-regulated the expression of IL-10 and IL-6 in ADSCs, respectively. Furthermore, only Poly I:C-preconditioned ADSCs significantly promoted proliferation while inhibiting apoptosis in IL-1ß-treated chondrocytes. Additionally, Poly I:C-preconditioned ADSCs downregulated MMP13 expression while upregulating aggrecan and collagen II expression levels in IL-1ß-treated chondrocytes. CONCLUSIONS: TLR3 activation polarizes ADSCs into an immunomodulatory phenotype distinct from TLR4 activation, exerting differential effects on reversing the osteoarthritic phenotype of chondrocytes; thus indicating that MSCs' paracrine effect regulated by TLRs signaling impacts the efficacy of intra-articular MSCs injection.


Assuntos
Condrócitos , Células-Tronco Mesenquimais , Humanos , Ratos , Animais , Condrócitos/metabolismo , Receptor 4 Toll-Like/metabolismo , Receptor 3 Toll-Like/genética , Receptor 3 Toll-Like/metabolismo , Células Cultivadas , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , Ratos Sprague-Dawley , Células-Tronco Mesenquimais/metabolismo , Receptores Toll-Like/metabolismo , Fenótipo , Poli I/metabolismo , Poli I/farmacologia
16.
EMBO Mol Med ; 16(5): 1193-1219, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38671318

RESUMO

Radiotherapy (RT) has been reported to induce abscopal effect in advanced hepatocellular carcinoma (HCC), but such phenomenon was only observed in sporadic cases. Here, we demonstrated that subcutaneous administration of Toll-like receptor 3 (TLR3) agonist poly(I:C) could strengthen the abscopal effect during RT through activating tumor cell ferroptosis signals in bilateral HCC subcutaneous tumor mouse models, which could be significantly abolished by TLR3 knock-out or ferroptosis inhibitor ferrostatin-1. Moreover, poly(I:C) could promote the presentation of tumor neoantigens by dendritic cells to enhance the recruitment of activated CD8+ T cells into distant tumor tissues for inducing tumor cell ferroptosis during RT treatment. Finally, the safety and feasibility of combining poly(I:C) with RT for treating advanced HCC patients were further verified in a prospective clinical trial. Thus, enhancing TLR3 signaling activation during RT could provide a novel strategy for strengthening abscopal effect to improve the clinical benefits of advanced HCC patients.


Assuntos
Carcinoma Hepatocelular , Ferroptose , Neoplasias Hepáticas , Poli I-C , Receptor 3 Toll-Like , Receptor 3 Toll-Like/metabolismo , Receptor 3 Toll-Like/agonistas , Animais , Carcinoma Hepatocelular/radioterapia , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/radioterapia , Neoplasias Hepáticas/patologia , Humanos , Camundongos , Poli I-C/farmacologia , Masculino , Feminino , Linhagem Celular Tumoral , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Camundongos Knockout , Pessoa de Meia-Idade
17.
Viruses ; 16(4)2024 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-38675965

RESUMO

Epstein-Barr virus (EBV), a Herpesviridae family member, is associated with an increased risk of autoimmune disease development in the host. We previously demonstrated that EBV DNA elevates levels of the pro-inflammatory cytokine IL-17A and that inhibiting Toll-like receptor (TLR) 3, 7, or 9 reduces its levels. Moreover, this DNA exacerbated colitis in a mouse model of inflammatory bowel disease (IBD). In the study at hand, we examined whether inhibition of TLR3, 7, or 9 alleviates this exacerbation. Mice were fed 1.5% dextran sulfate sodium (DSS) water and administered EBV DNA. Then, they were treated with a TLR3, 7, or 9 inhibitor or left untreated. We also assessed the additive impact of combined inhibition of all three receptors. Mice that received DSS, EBV DNA, and each inhibitor alone, or a combination of inhibitors, showed significant improvement. They also had a decrease in the numbers of the pathogenic colonic IL-17A+IFN-γ+ foci. Inhibition of all three endosomal TLR receptors offered no additive benefit over administering a single inhibitor. Therefore, inhibition of endosomal TLRs reduces EBV DNA exacerbation of mouse colitis, offering a potential approach for managing IBD patients infected with EBV.


Assuntos
DNA Viral , Herpesvirus Humano 4 , Doenças Inflamatórias Intestinais , Receptores Toll-Like , Animais , Feminino , Camundongos , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/virologia , Sulfato de Dextrana , Modelos Animais de Doenças , DNA Viral/efeitos adversos , DNA Viral/farmacologia , Endossomos/efeitos dos fármacos , Endossomos/metabolismo , Infecções por Vírus Epstein-Barr/virologia , Infecções por Vírus Epstein-Barr/complicações , Infecções por Vírus Epstein-Barr/tratamento farmacológico , Doenças Inflamatórias Intestinais/induzido quimicamente , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/virologia , Interleucina-17/metabolismo , Camundongos Endogâmicos C57BL , Receptor 3 Toll-Like/antagonistas & inibidores , Receptor 3 Toll-Like/metabolismo , Receptor 7 Toll-Like/antagonistas & inibidores , Receptor 7 Toll-Like/metabolismo , Receptor Toll-Like 9/antagonistas & inibidores , Receptor Toll-Like 9/metabolismo , Receptores Toll-Like/antagonistas & inibidores , Receptores Toll-Like/metabolismo
18.
Viruses ; 16(4)2024 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-38675983

RESUMO

Human immunodeficiency virus type 1 (HIV-1) infection can result in HIV-associated neurocognitive disorder (HAND), a spectrum of disorders characterized by neurological impairment and chronic inflammation. Combined antiretroviral therapy (cART) has elicited a marked reduction in the number of individuals diagnosed with HAND. However, there is continual, low-level viral transcription due to the lack of a transcription inhibitor in cART regimens, which results in the accumulation of viral products within infected cells. To alleviate stress, infected cells can release accumulated products, such as TAR RNA, in extracellular vesicles (EVs), which can contribute to pathogenesis in neighboring cells. Here, we demonstrate that cART can contribute to autophagy deregulation in infected cells and increased EV release. The impact of EVs released from HIV-1 infected myeloid cells was found to contribute to CNS pathogenesis, potentially through EV-mediated TLR3 (Toll-like receptor 3) activation, suggesting the need for therapeutics to target this mechanism. Three HIV-1 TAR-binding compounds, 103FA, 111FA, and Ral HCl, were identified that recognize TAR RNA and reduce TLR activation. These data indicate that packaging of viral products into EVs, potentially exacerbated by antiretroviral therapeutics, may induce chronic inflammation of the CNS observed in cART-treated patients, and novel therapeutic strategies may be exploited to mitigate morbidity.


Assuntos
Autofagia , Vesículas Extracelulares , Infecções por HIV , HIV-1 , Receptor 3 Toll-Like , Vesículas Extracelulares/metabolismo , Humanos , Receptor 3 Toll-Like/metabolismo , Receptor 3 Toll-Like/genética , HIV-1/fisiologia , Infecções por HIV/virologia , Infecções por HIV/metabolismo , Infecções por HIV/tratamento farmacológico , Autofagia/efeitos dos fármacos , RNA Viral/metabolismo , RNA Viral/genética
19.
Fish Shellfish Immunol ; 149: 109581, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38670412

RESUMO

Deubiquitinating enzyme A (DUBA), a member of the ovarian tumor (OTU) subfamily of deubiquitinases (DUBs), is recognized for its negative regulatory role in type I interferon (IFN) expression downstream of Toll-like receptor 3 (TLR3). However, its involvement in the TLR3 signaling pathway in fish remains largely unexplored. In this study, we investigated the regulatory role of DUBA (OmDUBA) in the TLR3 response in rainbow trout (Oncorhynchus mykiss). OmDUBA features a conserved OTU domain, and its expression increased in RTH-149 cells following stimulation with the TLR3 agonist poly(I:C). Gain- and loss-of-function experiments demonstrated that OmDUBA attenuated the activation of TANK-binding kinase 1 (TBK1), resulting in a subsequent reduction in type I IFN expression and IFN-stimulated response element (ISRE) activation in poly(I:C)-stimulated cells. OmDUBA interacted with TRAF3, a crucial mediator in TLR3-mediated type I IFN production. Under poly(I:C) stimulation, there was an augmentation in the K63-linked polyubiquitination of TRAF3, a process significantly inhibited upon OmDUBA overexpression. These findings suggest that OmDUBA may function similarly to its mammalian counterparts in downregulating the poly(I:C)-induced type I IFN response in rainbow trout by removing the K63-linked ubiquitin chain on TRAF3. Our study provides novel insights into the role of fish DUBA in antiviral immunity.


Assuntos
Proteínas de Peixes , Interferon Tipo I , Oncorhynchus mykiss , Poli I-C , Transdução de Sinais , Fator 3 Associado a Receptor de TNF , Animais , Oncorhynchus mykiss/imunologia , Fator 3 Associado a Receptor de TNF/genética , Fator 3 Associado a Receptor de TNF/metabolismo , Fator 3 Associado a Receptor de TNF/imunologia , Interferon Tipo I/imunologia , Interferon Tipo I/genética , Interferon Tipo I/metabolismo , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Proteínas de Peixes/metabolismo , Transdução de Sinais/imunologia , Poli I-C/farmacologia , Imunidade Inata , Regulação da Expressão Gênica/imunologia , Ubiquitinação , Receptor 3 Toll-Like/genética , Receptor 3 Toll-Like/metabolismo , Receptor 3 Toll-Like/imunologia
20.
J Biol Chem ; 300(5): 107249, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38556084

RESUMO

Tripartite-motif protein-56 (TRIM56) positively regulates the induction of type I interferon response via the TLR3 pathway by enhancing IRF3 activation and depends on its C-terminal residues 621-750 for interacting with the adaptor TRIF. However, the precise underlying mechanism and detailed TRIM56 determinants remain unclear. Herein, we show ectopic expression of murine TRIM56 also enhances TLR3-dependent interferon-ß promoter activation, suggesting functional conservation. We found that endogenous TRIM56 and TRIF formed a complex early (0.5-2 h) after poly-I:C stimulation and that TRIM56 overexpression also promoted activation of NF-κB by poly-I:C but not that by TNF-α or IL-1ß, consistent with a specific effect on TRIF prior to the bifurcation of NF-κB and IRF3. Using transient transfection and Tet-regulated cell lines expressing various TRIM56 mutants, we demonstrated the Coiled-coil domain and a segment spanning residues ∼434-610, but not the B-box or residues 355-433, were required for TRIM56 augmentation of TLR3 signaling. Moreover, alanine substitution at each putative phosphorylation site, Ser471, Ser475, and Ser710, abrogated TRIM56 function. Concordantly, mutants bearing Ser471Ala, Ser475Ala, or Ser710Ala, or lacking the Coiled-coil domain, all lost the capacity to enhance poly-I:C-induced establishment of an antiviral state. Furthermore, the Ser710Ala mutation disrupted the TRIM56-TRIF association. Using phospho-specific antibodies, we detected biphasic phosphorylation of TRIM56 at Ser471 and Ser475 following TLR3 stimulation, with the early phase occurring at ∼0.5 to 1 h, prior to IRF3 phosphorylation. Together, these data reveal novel molecular details critical for the TRIM56 augmentation of TLR3-dependent antiviral response and highlight important roles for TRIM56 scaffolding and phosphorylation.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular , Imunidade Inata , Receptor 3 Toll-Like , Proteínas com Motivo Tripartido , Animais , Humanos , Camundongos , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/genética , Proteínas Adaptadoras de Transporte Vesicular/imunologia , Células HEK293 , Fator Regulador 3 de Interferon/metabolismo , Fator Regulador 3 de Interferon/genética , NF-kappa B/metabolismo , Fosforilação , Poli I-C/farmacologia , Domínios Proteicos , Transdução de Sinais , Receptor 3 Toll-Like/metabolismo , Receptor 3 Toll-Like/genética , Proteínas com Motivo Tripartido/metabolismo , Proteínas com Motivo Tripartido/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...