Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Transl Med ; 17(1): 346, 2019 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-31640792

RESUMO

BACKGROUND: Tibial fracture is associated with inflammatory reaction leading to severe pain syndrome. Bradykinin receptor activation is involved in inflammatory reactions, but has never been investigated in fracture pain. METHODS: This study aims at defining the role of B1 and B2-kinin receptors (B1R and B2R) in a closed tibial fracture pain model by using knockout mice for B1R (B1KO) or B2R (B2KO) and wild-type (WT) mice treated with antagonists for B1R (SSR 240612 and R954) and B2R (HOE140) or vehicle. A cyclooxygenase (COX) inhibitor (ketoprofen) and an antagonist (SB366791) of Transient Receptor Potential Vaniloid1 (TRPV1) were also investigated since these pathways are associated with BK-induced pain in other models. The impact on mechanical and thermal hyperalgesia and locomotion was assessed by behavior tests. Gene expression of B1R and B2R and spinal cord expression of c-Fos were measured by RT-PCR and immunohistochemistry, respectively. RESULTS: B1KO and B2KO mice demonstrated a reduction in post-fracture pain sensitivity compared to WT mice that was associated with decreased c-Fos expression in the ipsilateral spinal dorsal horn in B2KO. B1R and B2R mRNA and protein levels were markedly enhanced at the fracture site. B1R and B2R antagonists and inhibition of COX and TRPV1 pathways reduced pain in WT. However, the analgesic effect of the COX-1/COX-2 inhibitor disappeared in B1KO and B2KO. In contrast, the analgesic effect of the TRPV1 antagonist persisted after gene deletion of either receptor. CONCLUSIONS: It is suggested that B1R and B2R activation contributes significantly to tibial fracture pain through COX. Hence, B1R and B2R antagonists appear potential therapeutic agents to manage post fracture pain.


Assuntos
Dor/fisiopatologia , Receptor B1 da Bradicinina/fisiologia , Receptor B2 da Bradicinina/fisiologia , Fraturas da Tíbia/fisiopatologia , Animais , Antagonistas de Receptor B1 da Bradicinina/farmacologia , Antagonistas de Receptor B2 da Bradicinina/farmacologia , Inibidores de Ciclo-Oxigenase/farmacologia , Modelos Animais de Doenças , Inflamação/etiologia , Inflamação/patologia , Inflamação/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Dor/tratamento farmacológico , Dor/prevenção & controle , Medição da Dor , Proteínas Proto-Oncogênicas c-fos/biossíntese , RNA Mensageiro , Receptor B1 da Bradicinina/deficiência , Receptor B1 da Bradicinina/genética , Receptor B2 da Bradicinina/deficiência , Receptor B2 da Bradicinina/genética , Canais de Cátion TRPV/antagonistas & inibidores , Fraturas da Tíbia/complicações , Fraturas da Tíbia/patologia , Pesquisa Translacional Biomédica
2.
Tuberculosis (Edinb) ; 109: 1-7, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29559112

RESUMO

The role, if any, played by the kinin system in tuberculosis infection models, either in vivo or in vitro, was investigated. The effects of Mycobacterium tuberculosis infection on C57BL/6 wild type, B1R-/-, B2R-/- and double B1R/B2R knockout mice were evaluated. Immunohistochemistry analysis was carried out to assess B1R and B2R expression in spleens and lungs of M. tuberculosis-infected mice. In addition, in vitro experiments with M. tuberculosis-infected macrophages were performed. The in vivo effects of HOE-140 and SSR240612 on the mice model of infection were also evaluated. Infected B2R-/- mice exhibited increased splenomegaly, whereas decreased spleen weight in infected double B1R/B2R knockout mice was observed. The bacterial load, determined as colony-forming units, did not differ in the spleens and lungs of the studied mouse strains. Importantly, immunohistochemical analysis revealed that B1R was upregulated in both spleens and lungs of infected mice. M. tuberculosis-infected macrophages incubated with SSR240612, alone or in combination with des-Arg9-BK, for four days, displayed a marked inhibitory effect on CFU counts. However, the pre-incubation of the selective B1R (des-Arg9-BK and SSR240612) and B2R (BK and HOE-140) agonists and antagonists, respectively, did not significantly affect the bacterial loads. A statistically significant reduction in the CFU of M. tuberculosis in lungs and spleens of animals treated with SSR240612, but not with HOE-140, was observed. Further efforts should be pursued to clarify whether or not SSR240612 might be considered an option for the treatment of tuberculosis.


Assuntos
Antituberculosos/administração & dosagem , Antagonistas de Receptor B1 da Bradicinina/administração & dosagem , Dioxóis/administração & dosagem , Pulmão/efeitos dos fármacos , Mycobacterium tuberculosis/efeitos dos fármacos , Receptor B1 da Bradicinina/efeitos dos fármacos , Sulfonamidas/administração & dosagem , Tuberculose Pulmonar/tratamento farmacológico , Administração Oral , Animais , Carga Bacteriana , Bradicinina/administração & dosagem , Bradicinina/análogos & derivados , Antagonistas de Receptor B2 da Bradicinina/administração & dosagem , Modelos Animais de Doenças , Feminino , Pulmão/metabolismo , Pulmão/microbiologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mycobacterium tuberculosis/crescimento & desenvolvimento , Células RAW 264.7 , Receptor B1 da Bradicinina/deficiência , Receptor B1 da Bradicinina/genética , Receptor B1 da Bradicinina/metabolismo , Receptor B2 da Bradicinina/genética , Receptor B2 da Bradicinina/metabolismo , Baço/efeitos dos fármacos , Baço/metabolismo , Baço/microbiologia , Tuberculose Pulmonar/genética , Tuberculose Pulmonar/metabolismo , Tuberculose Pulmonar/microbiologia
3.
Sci Rep ; 6: 22078, 2016 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-26898917

RESUMO

Melanoma is a very aggressive tumor that arises from melanocytes. Late stage and widely spread diseases do not respond to standard therapeutic approaches. The kallikrein-kinin system (KKS) participates in biological processes such as vasodilatation, pain and inflammatory response. However, the role of KKS in tumor formation and progression is not completely understood. The role of the host kinin B1 receptor in melanoma development was evaluated using a syngeneic melanoma model. Primary tumors and metastasis were respectively induced by injecting B16F10 melanoma cells, which are derived from C57BL/6 mice, subcutaneously or in the tail vein in wild type C57BL/6 and B1 receptor knockout mice (B1(-/-)). Tumors developed in B1(-/-) mice presented unfavorable prognostic factors such as increased incidence of ulceration, higher levels of IL-10, higher activation of proliferative pathways such as ERK1/2 and Akt, and increased mitotic index. Furthermore, in the metastasis model, B1(-/-) mice developed larger metastatic colonies in the lung and lower CD8(+)immune effector cells when compared with WT animals. Altogether, our results provide evidences that B1(-/-) animals developed primary tumors with multiple features associated with poor prognosis and unfavorable metastatic onset, indicating that the B1 receptor may contribute to improve the host response against melanoma progression.


Assuntos
Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/genética , Melanoma Experimental/genética , Receptor B1 da Bradicinina/genética , Neoplasias Cutâneas/genética , Animais , Progressão da Doença , Feminino , Interleucina-10/genética , Interleucina-10/metabolismo , Sistema Calicreína-Cinina/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundário , Melanoma Experimental/metabolismo , Melanoma Experimental/secundário , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Índice Mitótico , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor B1 da Bradicinina/deficiência , Transdução de Sinais , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia
4.
J Cell Physiol ; 230(12): 3019-28, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25969420

RESUMO

The effects of kinin B1 receptor (B1 R) deletion were examined on femur bone regeneration in streptozotocin (STZ)-type 1 diabetes. Diabetes induction in wild-type C57/BL6 (WTC57BL6) mice led to decrease in body weight and hyperglycemia, compared to the non-diabetic group of the same strain. The lack of B1 R did not affect STZ-elicited body weight loss, but partially prevented hyperglycemia. Diabetic mice had a clear delay in bone regeneration, and displayed large areas of loose connective tissue within the defects, with a reduced expression of the mineralization-related protein osteonectin, when compared to the non-diabetic WTC57/BL6. The non-diabetic and diabetic B1 R knockout (B1 RKO) mice had bone regeneration levels and osteonectin expression comparable to that seen in control WTC57/BL6 mice. WTC57/BL6 STZ-diabetic mice also showed a marked reduction of collagen contents, with increased immunolabeling for the apoptosis marker caspase-3, whereas diabetic B1 RKO had collagen levels and caspase-3 activity comparable to those observed in non-diabetic WTC57/BL6 or B1 RKO mice. No significant difference was detected in the number of tartrate-resistant acid phosphatase (TRAP)-stained cells, or in RANK/RANKL/OPG system immunolabeling throughout the experimental groups. Data bring novel evidence on the relevance of kinin B1 R under type 1 diabetes with regards to its role in bone regeneration.


Assuntos
Regeneração Óssea , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Fraturas do Fêmur/metabolismo , Fêmur/metabolismo , Consolidação da Fratura , Receptor B1 da Bradicinina/deficiência , Animais , Apoptose , Caspase 3/metabolismo , Colágeno/metabolismo , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Experimental/fisiopatologia , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/patologia , Diabetes Mellitus Tipo 1/fisiopatologia , Fraturas do Fêmur/genética , Fraturas do Fêmur/patologia , Fraturas do Fêmur/fisiopatologia , Fêmur/patologia , Fêmur/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Osteonectina/metabolismo , Receptor B1 da Bradicinina/genética , Transdução de Sinais , Fatores de Tempo
5.
Physiol Res ; 62(5): 511-7, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24020815

RESUMO

Kinin-vasoactive peptides activate two G-protein-coupled receptors (R), B(1)R (inducible) and B(2)R (constitutive). Their complex role in cardiovascular diseases could be related to differential actions on oxidative stress. This study investigated impacts of B(1)R or B(2)R gene deletion in mice on the cardiac function and plasma antioxidant and oxidant status. Echocardiography-Doppler was performed in B(1)R (B(1)R(-/-)) and B(2)R (B(2)R(-/-)) deficient and wild type (WT) adult male mice. No functional alteration was observed in B(2)R(-/-) hearts. B(1)R(-/-) mice had significantly lowered fractional shortening and increased isovolumetric contraction time. The diastolic E and A waves velocity ratio was similar in all mice groups. Thus B(1)R(-/-) mice provide a model of moderate systolic dysfunction, whereas B(2)R(-/-) mice displayed a normal cardiac phenotype. Plasma antioxidant capacity (ORAC) was significantly decreased in both B(1)R(-/-) and B(2)R(-/-) mice whereas the vitamin C levels were decreased in B(2)R(-/-) mice only. Plasma ascorbyl free radical was significantly higher in B(1)R(-/-) compared to WT and B(2)R(-/-) mice. Therefore, the oxidative stress index, ascorbyl free radical to vitamin C ratio, was increased in both B(1)R(-/-) and B(2)R(-/-) mice. Hence, B(1)R and B(2)R deficiency are associated with increased oxidative stress, but there is a differential imbalance between free radical production and antioxidant defense. The interrelationship between the differential B(1)R and B(2)R roles in oxidative stress and cardiovascular diseases remain to be investigated.


Assuntos
Antioxidantes/metabolismo , Contração Miocárdica , Miocárdio/metabolismo , Estresse Oxidativo , Receptor B1 da Bradicinina/deficiência , Receptor B2 da Bradicinina/deficiência , Disfunção Ventricular Esquerda/metabolismo , Função Ventricular Esquerda , Animais , Biomarcadores/sangue , Ácido Desidroascórbico/análogos & derivados , Ácido Desidroascórbico/sangue , Ecocardiografia Doppler de Pulso , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptor B1 da Bradicinina/genética , Receptor B2 da Bradicinina/genética , Disfunção Ventricular Esquerda/sangue , Disfunção Ventricular Esquerda/genética , Disfunção Ventricular Esquerda/fisiopatologia
6.
Neuroscience ; 248: 392-402, 2013 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-23811399

RESUMO

Bradykinin (BK) and its receptors (B1 and B2) may exert a role in the pathophysiology of certain CNS diseases, including epilepsy. In healthy tissues, B2 receptors are constitutively and widely expressed and B1 receptors are absent or expressed at very low levels, but both receptors, particularly B1, are up-regulated under many pathological conditions. Available data support the notion that up-regulation of B1 receptors in brain areas like the amygdala, hippocampus and entorhinal cortex favors the development and maintenance of an epileptic condition. The role of B2 receptors, instead, is still unclear. In this study, we used two different models to investigate the susceptibility to seizures of B1 knockout (KO) and B2 KO mice. We found that B1 KO are more susceptible to seizures compared with wild-type (WT) mice, and that this may depend on B2 receptors, in that (i) B2 receptors are overexpressed in limbic areas of B1 KO mice, including the hippocampus and the piriform cortex; (ii) hippocampal slices prepared from B1 KO mice are more excitable than those prepared from WT controls, and this phenomenon is B2 receptor-dependent, being abolished by B2 antagonists; (iii) kainate seizure severity is attenuated by pretreatment with a non-peptide B2 antagonist in WT and (more effectively) in B1 KO mice. These data highlight the possibility that B2 receptors may have a role in the responsiveness to epileptogenic insults and/or in the early period of epileptogenesis, that is, in the onset of the molecular and cellular events that lead to the transformation of a normal brain into an epileptic one.


Assuntos
Suscetibilidade a Doenças , Hipocampo/metabolismo , Córtex Piriforme/metabolismo , Receptor B1 da Bradicinina/metabolismo , Receptor B2 da Bradicinina/metabolismo , Convulsões/metabolismo , Animais , Bradicinina/metabolismo , Antagonistas de Receptor B1 da Bradicinina/farmacologia , Antagonistas de Receptor B2 da Bradicinina/farmacologia , Modelos Animais de Doenças , Hipocampo/efeitos dos fármacos , Hipocampo/fisiopatologia , Ácido Caínico/toxicidade , Camundongos , Camundongos Knockout , Córtex Piriforme/efeitos dos fármacos , Córtex Piriforme/fisiopatologia , Receptor B1 da Bradicinina/deficiência , Receptor B2 da Bradicinina/deficiência , Convulsões/induzido quimicamente , Convulsões/genética
7.
Brain Behav Immun ; 33: 90-101, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23777652

RESUMO

Multiple sclerosis (MS) is a progressive T cell-mediated autoimmune demyelinating inflammatory disease of the central nervous system (CNS). Although it is recognized that cognitive deficits represent a manifestation of the disease, the underlying pathogenic mechanisms remain unknown. Here we provide evidence of spatial reference memory impairments during the pre-motor phase of experimental autoimmune encephalomyelitis (EAE) in mice. Specifically, these cognitive deficits were accompanied by down-regulation of choline acetyltransferase (ChAT) mRNA expression on day 5 and 11 post-immunization, and up-regulation of inflammatory cytokines in the hippocampus and prefrontal cortex. Moreover, a marked increase in B1R mRNA expression occurred selectively in the hippocampus, whereas protein level was up-regulated in both brain areas. Genetic deletion of kinin B1R attenuated cognitive deficits and cholinergic dysfunction, and blocked mRNA expression of both IL-17 and IFN-γ in the prefrontal cortex, lymph node and spleen of mice subjected to EAE. The discovery of kinin receptors, mainly B1R, as a target for controlling neuroinflammatory response, as well as the cognitive deficits induced by EAE may foster the therapeutic exploitation of the kallikrein-kinin system (KKS), in particular for the treatment of autoimmune disorders, such as MS, mainly during pre-symptomatic phase.


Assuntos
Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/fisiopatologia , Sistema Calicreína-Cinina/imunologia , Transtornos da Memória/imunologia , Transtornos da Memória/fisiopatologia , Transtornos dos Movimentos/imunologia , Transtornos dos Movimentos/fisiopatologia , Comportamento Espacial , Animais , Colina O-Acetiltransferase/antagonistas & inibidores , Colina O-Acetiltransferase/biossíntese , Regulação para Baixo/genética , Regulação para Baixo/imunologia , Encefalomielite Autoimune Experimental/genética , Feminino , Hipocampo/enzimologia , Hipocampo/imunologia , Hipocampo/patologia , Interferon gama/antagonistas & inibidores , Interferon gama/genética , Interleucina-17/antagonistas & inibidores , Interleucina-17/genética , Sistema Calicreína-Cinina/genética , Transtornos da Memória/genética , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transtornos dos Movimentos/genética , RNA Mensageiro/antagonistas & inibidores , RNA Mensageiro/biossíntese , Distribuição Aleatória , Receptor B1 da Bradicinina/deficiência , Receptor B1 da Bradicinina/genética , Receptor B2 da Bradicinina/agonistas , Receptor B2 da Bradicinina/deficiência , Receptor B2 da Bradicinina/genética , Regulação para Cima/genética , Regulação para Cima/imunologia
8.
J Mol Med (Berl) ; 91(7): 851-60, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23385644

RESUMO

Kinins B1 and B2 receptors (B1R and B2R) are classically associated with inflammation, but our group has recently demonstrated new roles for B1R in metabolism using a knockout model (B1 (-/-)). B1 (-/-) mice display improvement on leptin and insulin sensitivity and is protected from high fat diet (HFD)-induced obesity. Here, we evaluate the hepatic effects of the B1R ablation and its role on hepatic function. Despite no expression of hepatic B1R, HFD-induced hepatic lipid accumulation was lower than in control animals. B1 (-/-) mice also presented lower hepatic lipogenesis and SCD1 protein content in the liver. When stimulated with exogenous leptin, B1 (-/-) mice exhibited increased hepatic pJAK2. Similarly, leptin signaling was enhanced in the liver of ob/ob-B1 (-/-) mice, as demonstrated by increased levels of pSTAT3 compared to ob/ob. Plasma concentrations of intercellular adhesion molecule 1, fetuin A, leukemia inhibitory factor, tissue inhibitor of metalloprotease-1, resistin, and oncostatin M were reduced in B1 (-/-). Finally, B1 (-/-) mice have increased gene expression of hepatic B2 receptor, but no difference in leptin receptor expression. Our results show that B1 (-/-) mice are protected from non-alcoholic fatty liver disease (NAFLD) after HFD treatment. Since B1R expression was not observed in the liver after HFD, we propose that the cross talk between the adipose tissue and the liver, mainly through leptin, is an important factor contributing to the observed results. Besides that, several other inflammatory mediators already correlated with NAFLD or liver function were found to be altered in our model. Taken together, our data suggest that B1R plays an important role in hepatic steatosis development.


Assuntos
Fígado Gorduroso/metabolismo , Leptina/metabolismo , Fígado/metabolismo , Receptor B1 da Bradicinina/deficiência , Adipocinas/sangue , Animais , Dieta Hiperlipídica , Masculino , Camundongos , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica , Receptor B1 da Bradicinina/genética , Receptor B2 da Bradicinina/metabolismo , Receptores para Leptina/metabolismo , Estearoil-CoA Dessaturase/metabolismo
9.
Hypertension ; 60(5): 1234-41, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23033373

RESUMO

We have documented recently that bradykinin (BK) directly inhibits activity of the epithelial Na(+) channel (ENaC) via the bradykinin B2 receptor (B2R)-G(q/11)-phospholipase C pathway. In this study, we took advantage of mice genetically engineered to lack bradykinin receptors (B1R, B2R(-/-)) to probe a physiological role of BK cascade in regulation of ENaC in native tissue, aldosterone-sensitive distal nephron. Under normal sodium intake (0.32% Na(+)), ENaC open probability (P(o)) was modestly elevated in B1R, B2R(-/-) mice compared with wild-type mice. This difference is augmented during elevated Na(+) intake (2.00% Na(+)) and negated during Na(+) restriction (<0.01% Na(+)). Saturation of systemic mineralocorticoid status with deoxycorticosterone acetate similarly increased ENaC activity in both mouse strains, suggesting that the effect of BK on ENaC is independent of aldosterone. It is accepted that angiotensin-converting enzyme represents the major pathway of BK degradation. Systemic inhibition of angiotensin-converting enzyme with captopril (30 mg/kg of body weight for 7 days) significantly decreases ENaC activity and P(o) in wild-type mice, but this effect is diminished in B1R, B2R(-/-) mice. At the cellular level, acute captopril (100 µmol/L) treatment sensitized BK signaling cascade and greatly potentiated the inhibitory effect of 100 nmol/L of BK on ENaC. We concluded that BK cascade has its own specific role in blunting ENaC activity, particularly under conditions of elevated sodium intake. Augmentation of BK signaling in the aldosterone-sensitive distal nephron inhibits ENaC-mediated Na(+) reabsorption, contributing to the natriuretic and antihypertensive effects of angiotensin-converting enzyme inhibition.


Assuntos
Bradicinina/farmacologia , Canais Epiteliais de Sódio/metabolismo , Néfrons/efeitos dos fármacos , Sódio/metabolismo , Aldosterona/metabolismo , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Animais , Cálcio/metabolismo , Captopril/farmacologia , Técnicas In Vitro , Masculino , Potenciais da Membrana/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Néfrons/citologia , Néfrons/metabolismo , Técnicas de Patch-Clamp , Peptidil Dipeptidase A/metabolismo , Receptor B1 da Bradicinina/deficiência , Receptor B1 da Bradicinina/genética , Receptor B2 da Bradicinina/deficiência , Receptor B2 da Bradicinina/genética , Sódio/administração & dosagem , Cloreto de Sódio/metabolismo , Fatores de Tempo
10.
PLoS One ; 7(7): e40573, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22829877

RESUMO

The Kallikrein-Kinin System (KKS) has been implicated in several aspects of metabolism, including the regulation of glucose homeostasis and adiposity. Kinins and des-Arg-kinins are the major effectors of this system and promote their effects by binding to two different receptors, the kinin B2 and B1 receptors, respectively. To understand the influence of the KKS on the pathophysiology of obesity and type 2 diabetes (T2DM), we generated an animal model deficient for both kinin receptor genes and leptin (obB1B2KO). Six-month-old obB1B2KO mice showed increased blood glucose levels. Isolated islets of the transgenic animals were more responsive to glucose stimulation releasing greater amounts of insulin, mainly in 3-month-old mice, which was corroborated by elevated serum C-peptide concentrations. Furthermore, they presented hepatomegaly, pronounced steatosis, and increased levels of circulating transaminases. This mouse also demonstrated exacerbated gluconeogenesis during the pyruvate challenge test. The hepatic abnormalities were accompanied by changes in the gene expression of factors linked to glucose and lipid metabolisms in the liver. Thus, we conclude that kinin receptors are important for modulation of insulin secretion and for the preservation of normal glucose levels and hepatic functions in obese mice, suggesting a protective role of the KKS regarding complications associated with obesity and T2DM.


Assuntos
Glucose/metabolismo , Homeostase/fisiologia , Fígado/metabolismo , Receptor B1 da Bradicinina/deficiência , Receptor B1 da Bradicinina/metabolismo , Receptor B2 da Bradicinina/deficiência , Receptor B2 da Bradicinina/metabolismo , Animais , Glicemia/metabolismo , Composição Corporal/genética , Composição Corporal/fisiologia , Homeostase/genética , Hiperglicemia/sangue , Hiperglicemia/genética , Hiperglicemia/metabolismo , Resistência à Insulina/genética , Resistência à Insulina/fisiologia , Sistema Calicreína-Cinina/genética , Sistema Calicreína-Cinina/fisiologia , Camundongos , Camundongos Knockout , Camundongos Obesos , Fosforilação , Receptor B1 da Bradicinina/genética , Receptor B2 da Bradicinina/genética
11.
Kidney Int ; 81(8): 733-44, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22318421

RESUMO

Diabetic nephropathy is the major cause of end-stage renal disease worldwide. Although the renin-angiotensin system has been implicated in the pathogenesis of diabetic nephropathy, angiotensin I-converting enzyme inhibitors have a beneficial effect on diabetic nephropathy independently of their effects on blood pressure and plasma angiotensin II levels. This suggests that the kallikrein-kinin system (KKS) is also involved in the disease. To study the role of the KKS in diabetic nephropathy, mice lacking either the bradykinin B1 receptor (B1R) or the bradykinin B2 receptor (B2R) have been commonly used. However, because absence of either receptor causes enhanced expression of the other, it is difficult to determine the precise functions of each receptor. This difficulty has recently been overcome by comparing mice lacking both receptors with mice lacking each receptor. Deletion of both B1R and B2R reduces nitric oxide (NO) production and aggravates renal diabetic phenotypes, relevant to either lack of B1R or B2R, demonstrating that both B1R and B2R exert protective effects on diabetic nephropathy presumably via NO. Here, we review previous epidemiological and experimental studies, and discuss novel insights regarding the therapeutic implications of the importance of the KKS in averting diabetic nephropathy.


Assuntos
Nefropatias Diabéticas/fisiopatologia , Sistema Calicreína-Cinina/fisiologia , Alelos , Inibidores da Enzima Conversora de Angiotensina/uso terapêutico , Animais , Nefropatias Diabéticas/etiologia , Nefropatias Diabéticas/patologia , Nefropatias Diabéticas/terapia , Humanos , Camundongos , Camundongos Knockout , Modelos Biológicos , Óxido Nítrico/fisiologia , Estresse Oxidativo , Peptidil Dipeptidase A/deficiência , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/fisiologia , Receptor B1 da Bradicinina/deficiência , Receptor B1 da Bradicinina/genética , Receptor B1 da Bradicinina/fisiologia , Receptor B2 da Bradicinina/deficiência , Receptor B2 da Bradicinina/genética , Receptor B2 da Bradicinina/fisiologia
12.
Anesthesiology ; 116(2): 448-57, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22273860

RESUMO

BACKGROUND: Kinins (e.g., bradykinin) acting through the constitutively expressed B2 and the injury-induced B1 receptors are involved in pain and hyperalgesia, as previously shown by use of receptor-selective antagonists and single-receptor knockout models. Because the overall contribution of kinins to painful processes remains unclear, the aim of this study was to analyze pain-related behaviors of mice unable to respond to kinins because of a lack of both B1 and B2 receptors. METHODS: In knockout mice lacking both B1 and B2 receptors and in wild-type mice (n = 8-21 per group) the authors assessed nociceptive thresholds to mechanical and heat stimuli (von Frey and Hargreaves tests, respectively) in healthy animals and after induction of inflammatory and neuropathic pain, acid-induced visceral nociception, and modulation of nociceptive responses by peripherally administered opioid agonists. RESULTS: In knockout mice lacking both B1 and B2 receptors baseline nociceptive responses to heat were unaltered, nocifensive responses to bradykinin were abolished, acute acetic acid-induced visceral nociception was reduced by approximately 70% (mean difference: 19.5 writhes/30 min) and heat hypersensitivity in carrageenan-induced paw inflammation was decreased 48 h after injection (mean difference 2.88 s), hypersensitivities in chronic complete Freund's adjuvant-induced paw inflammation or after chronic constriction injury of the sciatic nerve were unchanged, and peripheral µ- and δ-opioid-induced analgesia after chronic constriction injury was reduced by 30-35% (mean differences: µ-agonist: 0.495 g, δ-agonist: 0.555 g). CONCLUSIONS: These data suggest that kinins are important for nociception associated with acute short-lasting inflammation but are less essential in chronic stages of pain. The results also highlight a new protective function of kinins via interactions with the opioid system.


Assuntos
Analgésicos Opioides/farmacologia , Analgésicos Opioides/uso terapêutico , Nociceptividade/fisiologia , Receptor B1 da Bradicinina/deficiência , Receptor B2 da Bradicinina/deficiência , Neuropatia Ciática/metabolismo , Analgésicos Opioides/antagonistas & inibidores , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Nociceptividade/efeitos dos fármacos , Receptor B1 da Bradicinina/agonistas , Receptor B2 da Bradicinina/agonistas , Neuropatia Ciática/tratamento farmacológico , Neuropatia Ciática/genética
13.
Br J Pharmacol ; 164(2b): 681-93, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21470206

RESUMO

BACKGROUND AND PURPOSE: In the current study, we investigated the role of both kinin B1 and B2 receptors in peripheral neuropathy induced by the chronic treatment of mice with paclitaxel a widely used chemotherapeutic agent. EXPERIMENTAL APPROACH: Chemotherapy-evoked hyperalgesia was induced by i.p. injections of paclitaxel (2 mg·kg⁻¹) over 5 consecutive days. Mechanical and thermal hyperalgesia were evaluated between 7 and 21 days after the first paclitaxel treatment. KEY RESULTS: Treatment with paclitaxel increased both mechanical and thermal hyperalgesia in mice (C57BL/6 and CD1 strains). Kinin receptor deficient mice (B1, or B2 receptor knock-out and B1B2 receptor, double knock-out) presented a significant reduction in paclitaxel-induced hypernociceptive responses in comparison to wild-type animals. Treatment of CD1 mice with kinin receptor antagonists (DALBK for B1 or Hoe 140 for B2 receptors) significantly inhibited both mechanical and thermal hyperalgesia when tested at 7 and 14 days after the first paclitaxel injection. DALBK and Hoe 140 were also effective against paclitaxel-induced peripheral neuropathy when given intrathecally or i.c.v. A marked increase in B1 receptor mRNA was observed in the mouse thalamus, parietal and pre-frontal cortex from 7 days after the first paclitaxel treatment. CONCLUSIONS AND IMPLICATIONS: Kinins acting on both B1 and B2 receptors, expressed in spinal and supra-spinal sites, played a crucial role in controlling the hypernociceptive state caused by chronic treatment with paclitaxel.


Assuntos
Analgésicos/farmacologia , Antagonistas de Receptor B1 da Bradicinina , Antagonistas de Receptor B2 da Bradicinina , Bradicinina/análogos & derivados , Paclitaxel/toxicidade , Doenças do Sistema Nervoso Periférico/tratamento farmacológico , Animais , Bradicinina/farmacologia , Hiperalgesia/induzido quimicamente , Hiperalgesia/tratamento farmacológico , Hiperalgesia/genética , Hiperalgesia/metabolismo , Cininas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Doenças do Sistema Nervoso Periférico/genética , Doenças do Sistema Nervoso Periférico/metabolismo , RNA Mensageiro/genética , Receptor B1 da Bradicinina/deficiência , Receptor B1 da Bradicinina/genética , Receptor B1 da Bradicinina/metabolismo , Receptor B2 da Bradicinina/deficiência , Receptor B2 da Bradicinina/genética , Receptor B2 da Bradicinina/metabolismo
14.
Neurosurgery ; 68(4): 1118-23, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21242838

RESUMO

BACKGROUND: Subarachnoid hemorrhage (SAH) is the stroke subtype with the highest mortality and morbidity. Which molecular events mediate brain damage after SAH is not well understood. OBJECTIVE: To investigate the role of proinflammatory bradykinin B(1) and B(2) receptors for the pathophysiology of SAH. METHODS: B(1) and B(2) receptor knockout or wild-type mice were subjected to SAH by endovascular puncture. Intracranial pressure, regional cerebral blood flow, and mean arterial blood pressure were continuously monitored up to 60 minutes after SAH. Brain water content was quantified 24 hours after SAH; mortality, neurological function, and body weight were assessed daily for 7 days after hemorrhage. RESULTS: Intracranial pressure, regional cerebral blood flow, and mean arterial blood pressure did not differ between groups. Mortality was 60% in wild-type mice and 82% in B(1)R mice but only 20% in B(2)R animals (P < .05). B(2)R mice also exhibited less severe neurological deficits (P < .05), a less pronounced loss of body weight (P < .05), and significantly less brain edema formation (P < .05) compared with wild-type mice. CONCLUSION: Signaling mediated by bradykinin B(2) receptors contributes to mortality and secondary brain damage after SAH in mice. Thus, B(2) receptors may represent novel targets for the treatment of SAH.


Assuntos
Lesões Encefálicas/metabolismo , Modelos Animais de Doenças , Receptor B1 da Bradicinina/deficiência , Receptor B2 da Bradicinina/deficiência , Hemorragia Subaracnóidea/metabolismo , Animais , Lesões Encefálicas/etiologia , Circulação Cerebrovascular/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Hemorragia Subaracnóidea/complicações
15.
Endocrinology ; 151(8): 3536-42, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20501666

RESUMO

Bradykinin signaling has been proposed to play either protective or deleterious roles in the development of cardiac dysfunction in response to various pathological stimuli. To further define the role of bradykinin signaling in the diabetic heart, we examined cardiac function in mice with genetic ablation of both bradykinin B1 and B2 receptors (B1RB2R(-/-)) in the context of the Akita model of insulin-deficient type 1 diabetes (Ins2(Akita/+)). In 5-month-old diabetic and nondiabetic, wild-type and B1RB2R(-/-) mice, in vivo cardiac contractile function was determined by left-ventricular (LV) catheterization and echocardiography. Reactive oxygen species levels were measured by 2'-7'-dichlorofluorescein diacetate fluorescence. Mitochondrial function and ATP synthesis were determined in saponin-permeabilized cardiac fibers. LV systolic pressure and the peak rate of LV pressure rise and decline were decreased with diabetes but did not deteriorate further with loss of bradykinin signaling. Wall thinning and reduced ejection fractions in Akita mouse hearts were partially attenuated by B1RB2R deficiency, although other parameters of LV function were unaffected. Loss of bradykinin signaling did not increase fibrosis in Ins2(Akita/+) diabetic mouse hearts. Mitochondrial dysfunction was not exacerbated by B1RB2R deficiency, nor was there any additional increase in tissue levels of reactive oxygen species. Thus, loss of bradykinin B2 receptor signaling does not abrogate the previously reported beneficial effect of inhibition of B1 receptor signaling. In conclusion, complete loss of bradykinin expression does not worsen cardiac function or increase myocardial fibrosis in diabetes.


Assuntos
Bradicinina/fisiologia , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Tipo 1/complicações , Cardiopatias/etiologia , Animais , Bradicinina/metabolismo , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/fisiopatologia , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/fisiopatologia , Feminino , Coração/fisiopatologia , Cardiopatias/genética , Cardiopatias/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mitocôndrias Cardíacas/patologia , Mitocôndrias Cardíacas/fisiologia , Miocárdio/patologia , Estresse Oxidativo/genética , Receptor B1 da Bradicinina/deficiência , Receptor B1 da Bradicinina/genética , Receptor B2 da Bradicinina/deficiência , Receptor B2 da Bradicinina/genética , Transdução de Sinais/genética , Fatores de Tempo
16.
Proc Natl Acad Sci U S A ; 107(22): 10190-5, 2010 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-20479236

RESUMO

An insertion polymorphism of the angiotensin-I converting enzyme gene (ACE) is common in humans and the higher expressing allele is associated with an increased risk of diabetic complications. The ACE polymorphism does not significantly affect blood pressure or angiotensin II levels, suggesting that the kallikrein-kinin system partly mediates the effects of the polymorphism. We have therefore explored the influence of lack of both bradykinin receptors (B1R and B2R) on diabetic nephropathy, neuropathy, and osteopathy in male mice heterozygous for the Akita diabetogenic mutation in the insulin 2 gene (Ins2). We find that all of the detrimental phenotypes observed in Akita diabetes are enhanced by lack of both B1R and B2R, including urinary albumin excretion, glomerulosclerosis, glomerular basement membrane thickening, mitochondrial DNA deletions, reduction of nerve conduction velocities and of heat sensation, and bone mineral loss. Absence of the bradykinin receptors also enhances the diabetes-associated increases in plasma thiobarbituric acid-reactive substances, mitochondrial DNA deletions, and renal expression of fibrogenic genes, including transforming growth factor beta1, connective tissue growth factor, and endothelin-1. Thus, lack of B1R and B2R exacerbates diabetic complications. The enhanced renal injury in diabetic mice caused by lack of B1R and B2R may be mediated by a combination of increases in oxidative stress, mitochondrial DNA damage and over expression of fibrogenic genes.


Assuntos
Diabetes Mellitus Experimental/genética , Receptor B1 da Bradicinina/deficiência , Receptor B2 da Bradicinina/deficiência , Animais , Densidade Óssea , DNA Mitocondrial/genética , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/metabolismo , Nefropatias Diabéticas/etiologia , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Neuropatias Diabéticas/etiologia , Neuropatias Diabéticas/genética , Neuropatias Diabéticas/metabolismo , Neuropatias Diabéticas/fisiopatologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Mutantes , Osteoporose/etiologia , Osteoporose/genética , Osteoporose/metabolismo , Fenótipo , Receptor B1 da Bradicinina/genética , Receptor B2 da Bradicinina/genética
17.
Chem Biol Interact ; 184(3): 388-95, 2010 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-20096676

RESUMO

Angiotensin I-converting enzyme (ACE), a common element of renin-angiotensin system (RAS) and kallikrein-kinin system (KKS), is involved in myelopoiesis modulation, mainly by cleaving the tetrapeptide N-acetyl-seryl-aspartyl-lysyl-proline (AcSDKP). Based on this finding and in our results showing B1 and B2 kinin receptors expression in murine bone marrow (BM) cells, we evaluated the ACE influence on myelopoiesis of kinin B1 receptor knockout mice (B1KO) using long-term bone marrow cultures (LTBMCs). Captopril and AcSDKP were used as controls. Enhanced ACE activity, expressed by non-hematopoietic cells (Ter-199(-) and CD45(-)), was observed in B1KO LTBMCs when compared to wild-type (WT) cells. ACE hyperfunction in B1KO cells was maintained when LTBMCs from B1KO mice were treated with captopril (1.0microM) or AcSDKP (1.0nM). Although no alterations were observed in ACE mRNA and protein levels under these culture conditions, 3.0nM of AcSDKP increased ACE mRNA levels in WT LTBMCs. No alteration in the number of GM-CFC was seen in B1KO mice compared to WT animals, even when the former were treated with AcSDKP (10microg/kg) or captopril (100mg/kg) for 4 consecutive days. Hematological data also revealed no differences between WT and B1KO mice under basal conditions. When the animals received 4 doses of lipopolysaccharide (LPS), a decreased number of blood cells was detected in B1KO mice in relation to WT. We also found a decreased percentage of Gr1(+)/Mac-1(+), Ter119(+), B220(+), CD3(+), and Lin(-)Sca1(+)c-Kit(+) (LSK) cells in the BM of B1KO mice compared to WT animals. Low AcSDKP levels were observed in BM cultures from B1KO in comparison to WT cultures. We conclude that ACE hyperfunction in B1KO mice resulted in faster hydrolysis of AcSDKP peptide, which in turn decreased in BM tissues allowing HSC to enter the S stage of the cell cycle.


Assuntos
Mielopoese/efeitos dos fármacos , Oligopeptídeos/farmacologia , Peptidil Dipeptidase A/metabolismo , Receptor B1 da Bradicinina/metabolismo , Animais , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Captopril/farmacologia , Granulócitos/citologia , Granulócitos/efeitos dos fármacos , Sistema Calicreína-Cinina , Lipopolissacarídeos/toxicidade , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Peptidil Dipeptidase A/genética , Receptor B1 da Bradicinina/deficiência , Receptor B1 da Bradicinina/genética , Sistema Renina-Angiotensina
18.
Br J Pharmacol ; 159(4): 888-97, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20067469

RESUMO

BACKGROUND AND PURPOSE: Activation of the proteinase-activated receptor-2 (PAR-2) induces scratching behaviour in mice. Here, we have investigated the role of kinin B(1) and B(2) receptors in the pruritogenic response elicited by activators of PAR-2. EXPERIMENTAL APPROACH: Scratching was induced by an intradermal (i.d.) injection of trypsin or the selective PAR-2 activating peptide SLIGRL-NH(2) at the back of the mouse neck. The animals were observed for 40 min and their scratching response was quantified. KEY RESULTS: I.d. injection of trypsin or SLIGRL-NH(2) evoked a scratching behaviour, dependent on PAR-2 activation. Mice genetically deficient in kinin B(1) or B(2) receptors exhibited reduced scratching behaviour after i.d. injection of trypsin or SLIGRL-NH(2). Treatment (i.p.) with the non-peptide B(1) or B(2)receptor antagonists SSR240612 and FR173657, respectively, prevented the scratching behaviour caused by trypsin or SLIGRL-NH(2). Nonetheless, only treatment i.p. with the peptide B(2)receptor antagonist, Hoe 140, but not the B(1)receptor antagonist (DALBK), inhibited the pruritogenic response to trypsin. Hoe 140 was also effective against SLIGRL-NH(2)-induced scratching behaviour when injected by i.d. or intrathecal (i.t.) routes. Also, the response to SLIGRL-NH(2) was inhibited by i.t. (but not by i.d.) treatment with DALBK. Conversely, neither Hoe 140 nor DALBK were able to inhibit SLIGRL-NH(2)-induced scratching behaviour when given intracerebroventricularly (i.c.v.). CONCLUSIONS AND IMPLICATIONS: The present results demonstrated that kinins acting on both B(1) and B(2) receptors played a crucial role in controlling the pruriceptive signalling triggered by PAR-2 activation in mice.


Assuntos
Comportamento Animal , Prurido/metabolismo , Receptor B1 da Bradicinina/metabolismo , Receptor B2 da Bradicinina/metabolismo , Receptor PAR-2/metabolismo , Animais , Antipruriginosos/administração & dosagem , Comportamento Animal/efeitos dos fármacos , Bradicinina/administração & dosagem , Bradicinina/análogos & derivados , Antagonistas de Receptor B1 da Bradicinina , Antagonistas de Receptor B2 da Bradicinina , Dioxóis/administração & dosagem , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Injeções Intradérmicas , Injeções Intraperitoneais , Injeções Intraventriculares , Injeções Espinhais , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oligopeptídeos/administração & dosagem , Limiar da Dor , Prurido/induzido quimicamente , Prurido/genética , Prurido/prevenção & controle , Prurido/psicologia , Quinolinas/administração & dosagem , Receptor B1 da Bradicinina/deficiência , Receptor B1 da Bradicinina/genética , Receptor B2 da Bradicinina/deficiência , Receptor B2 da Bradicinina/genética , Receptor PAR-2/agonistas , Sulfonamidas/administração & dosagem , Tripsina/administração & dosagem
19.
Diabetes ; 58(6): 1373-81, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19276445

RESUMO

OBJECTIVE: Diabetic cardiomyopathy is associated with increased mortality in patients with diabetes. The underlying pathology of this disease is still under discussion. We studied the role of the kinin B1 receptor on the development of experimental diabetic cardiomyopathy. RESEARCH DESIGN AND METHODS: We utilized B1 receptor knockout mice and investigated cardiac inflammation, fibrosis, and oxidative stress after induction of streptozotocin (STZ)-induced diabetes. Furthermore, the left ventricular function was measured by pressure-volume loops after 8 weeks of diabetes. RESULTS: B1 receptor knockout mice showed an attenuation of diabetic cardiomyopathy with improved systolic and diastolic function in comparison with diabetic control mice. This was associated with a decreased activation state of the mitogen-activated protein kinase p38, less oxidative stress, as well as normalized cardiac inflammation, shown by fewer invading cells and no increase in matrix metalloproteinase-9 as well as the chemokine CXCL-5. Furthermore, the profibrotic connective tissue growth factor was normalized, leading to a reduction in cardiac fibrosis despite severe hyperglycemia in mice lacking the B1 receptor. CONCLUSIONS: These findings suggest that the B1 receptor is detrimental in diabetic cardiomyopathy in that it mediates inflammatory and fibrotic processes. These insights might have useful implications on future studies utilizing B1 receptor antagonists for treatment of human diabetic cardiomyopathy.


Assuntos
Cardiomiopatias/fisiopatologia , Diabetes Mellitus Experimental/fisiopatologia , Angiopatias Diabéticas/fisiopatologia , Deleção de Genes , Cardiopatias/prevenção & controle , Coração/fisiopatologia , Inflamação/prevenção & controle , Receptor B1 da Bradicinina/deficiência , Animais , Pressão Sanguínea , Cardiomiopatias/prevenção & controle , Diabetes Mellitus Experimental/genética , Angiopatias Diabéticas/prevenção & controle , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Estresse Oxidativo/fisiologia , Fosforilação , Função Ventricular Esquerda/fisiologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
20.
Circulation ; 118(14 Suppl): S32-7, 2008 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-18824766

RESUMO

BACKGROUND: Ischemic postconditioning (PostC) is a recently described cardioprotective modality against reperfusion injury, through series of brief reflow interruptions applied at the very onset of reperfusion. It is proposed that PostC can activate a complex cellular signaling cascade, in which cell membrane receptors could serve as the upstream triggers of PostC. However, the exact subtypes of such receptors remain controversial or uninvestigated. To this context, the purpose of present study was to determine the definitive role of adenosine A(1) and bradykinin B(1) and B(2) receptors in PostC. METHODS AND RESULTS: The hearts isolated from adult male C57BL/6J wild-type mice or the mice lacking adenosine A(1), or bradykinin B(1) or B(2) receptors subjected to zero-flow global ischemia and reperfusion in a Langendorff model. PostC, consisting of 6 cycles of 10 seconds of reperfusion and 10 seconds of ischemia, demonstrated significantly reduced myocardial infarct size (22.8+/-3.1%, mean+/-SEM) as compared with the non-PostC wild-type controls (35.1+/-2.8%, P<0.05). The infarct-limiting protection of PostC was absent in adenosine A(1) receptor knockout mice (34.9+/-2.7%) or bradykinin B(2) receptor knockout mice (33.3+/-1.7%) and was partially attenuated in bradykinin B(1) receptor-deficient mice (25.6+/-2.9%; P>0.05). On the other hand, PostC did not significantly alter postischemic cardiac contractile function and coronary flow. CONCLUSIONS: With the use of three distinctive strains of gene knockout mice, the current study has provided the first conclusive evidence showing PostC-induced infarct-limiting cardioprotection could be triggered by activation of multiple types of cell membrane receptors, which include adenosine A(1) and bradykinin B(2) receptors.


Assuntos
Precondicionamento Isquêmico Miocárdico , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Receptor A1 de Adenosina/metabolismo , Receptor B2 da Bradicinina/metabolismo , Animais , Circulação Coronária , Técnicas In Vitro , Masculino , Camundongos , Camundongos Knockout , Contração Miocárdica , Infarto do Miocárdio/patologia , Miocárdio/metabolismo , Receptor A1 de Adenosina/deficiência , Receptor B1 da Bradicinina/deficiência , Receptor B1 da Bradicinina/metabolismo , Receptor B2 da Bradicinina/deficiência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...