Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 158
Filtrar
1.
J Biol Chem ; 300(6): 107330, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38679329

RESUMO

The cannabinoid type 2 receptor (CB2R), a G protein-coupled receptor, is an important regulator of immune cell function and a promising target to treat chronic inflammation and fibrosis. While CB2R is typically targeted by small molecules, including endo-, phyto-, and synthetic cannabinoids, peptides-owing to their size-may offer a different interaction space to facilitate differential interactions with the receptor. Here, we explore plant-derived cyclic cystine-knot peptides as ligands of the CB2R. Cyclotides are known for their exceptional biochemical stability. Recently, they gained attention as G protein-coupled receptor modulators and as templates for designing peptide ligands with improved pharmacokinetic properties over linear peptides. Cyclotide-based ligands for CB2R were profiled based on a peptide-enriched extract library comprising nine plants. Employing pharmacology-guided fractionation and peptidomics, we identified the cyclotide vodo-C1 from sweet violet (Viola odorata) as a full agonist of CB2R with an affinity (Ki) of 1 µM and a potency (EC50) of 8 µM. Leveraging deep learning networks, we verified the structural topology of vodo-C1 and modeled its molecular volume in comparison to the CB2R ligand binding pocket. In a fragment-based approach, we designed and characterized vodo-C1-based bicyclic peptides (vBCL1-4), aiming to reduce size and improve potency. Opposite to vodo-C1, the vBCL peptides lacked the ability to activate the receptor but acted as negative allosteric modulators or neutral antagonists of CB2R. This study introduces a macrocyclic peptide phytocannabinoid, which served as a template for the development of synthetic CB2R peptide modulators. These findings offer opportunities for future peptide-based probe and drug development at cannabinoid receptors.


Assuntos
Receptor CB2 de Canabinoide , Receptor CB2 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/agonistas , Receptor CB2 de Canabinoide/química , Humanos , Ligantes , Ciclotídeos/química , Ciclotídeos/farmacologia , Células HEK293 , Descoberta de Drogas
2.
Int J Mol Sci ; 24(4)2023 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-36835033

RESUMO

3-3'-Diindolylmethane (DIM) is a biologically active dimer derived from the endogenous conversion of indole-3-carbinol (I3C), a naturally occurring glucosinolate found in many cruciferous vegetables (i.e., Brassicaceae). DIM was the first pure androgen receptor antagonist isolated from the Brassicaceae family and has been recently investigated for its potential pharmacological use in prostate cancer prevention and treatment. Interestingly, there is evidence that DIM can also interact with cannabinoid receptors. In this context, by considering the well-known involvement of the endocannabinoid system in prostate cancer, we have pharmacologically characterized the properties of DIM on both CB1 and CB2 cannabinoid receptors in two human prostate cancer cell lines: PC3 (androgen-independent/androgen receptor negative) and LNCaP (androgen-dependent). In the PC3 cell line, DIM was able to activate CB2 receptors and potentially associated apoptotic pathways. On the other hand, although DIM was also able to activate CB2 receptors in the LNCaP cell line, no apoptotic effects were observed. Our evidence confirms that DIM is a CB2 receptor ligand and, moreover, it has a potential anti-proliferative effect on androgen-independent/androgen receptor-negative prostate cancer cells.


Assuntos
Brassicaceae , Neoplasias da Próstata , Receptor CB2 de Canabinoide , Humanos , Masculino , Androgênios/metabolismo , Brassicaceae/química , Linhagem Celular , Neoplasias da Próstata/metabolismo , Receptores Androgênicos/metabolismo , Receptor CB2 de Canabinoide/agonistas , Receptor CB2 de Canabinoide/química
3.
Molecules ; 27(4)2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35209170

RESUMO

A series of novel cannabinoid-type derivatives were synthesized by the coupling of (1S,4R)-(+) and (1R,4S)-(-)-fenchones with various resorcinols/phenols. The fenchone-resorcinol derivatives were fluorinated using Selectfluor and demethylated using sodium ethanethiolate in dimethylformamide (DMF). The absolute configurations of four compounds were determined by X-ray single crystal diffraction. The fenchone-resorcinol analogs possessed high affinity and selectivity for the CB2 cannabinoid receptor. One of the analogues synthesized, 2-(2',6'-dimethoxy-4'-(2″-methyloctan-2″-yl)phenyl)-1,3,3-trimethylbicyclo[2.2.1]heptan-2-ol (1d), had a high affinity (Ki = 3.51 nM) and selectivity for the human CB2 receptor (hCB2). In the [35S]GTPγS binding assay, our lead compound was found to be a highly potent and efficacious hCB2 receptor agonist (EC50 = 2.59 nM, E(max) = 89.6%). Two of the fenchone derivatives were found to possess anti-inflammatory and analgesic properties. Molecular-modeling studies elucidated the binding interactions of 1d within the CB2 binding site.


Assuntos
Canfanos/química , Canfanos/farmacologia , Agonistas de Receptores de Canabinoides/química , Agonistas de Receptores de Canabinoides/farmacologia , Desenho de Fármacos , Norbornanos/química , Norbornanos/farmacologia , Receptor CB2 de Canabinoide/química , Canfanos/síntese química , Agonistas de Receptores de Canabinoides/síntese química , Técnicas de Química Sintética , Relação Dose-Resposta a Droga , Humanos , Ligantes , Modelos Moleculares , Estrutura Molecular , Norbornanos/síntese química , Ligação Proteica , Receptor CB2 de Canabinoide/agonistas , Análise Espectral , Relação Estrutura-Atividade
4.
Molecules ; 27(2)2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35056767

RESUMO

Although the 3D structures of active and inactive cannabinoid receptors type 2 (CB2) are available, neither the X-ray crystal nor the cryo-EM structure of CB2-orthosteric ligand-modulator has been resolved, prohibiting the drug discovery and development of CB2 allosteric modulators (AMs). In the present work, we mainly focused on investigating the potential allosteric binding site(s) of CB2. We applied different algorithms or tools to predict the potential allosteric binding sites of CB2 with the existing agonists. Seven potential allosteric sites can be observed for either CB2-CP55940 or CB2-WIN 55,212-2 complex, among which sites B, C, G and K are supported by the reported 3D structures of Class A GPCRs coupled with AMs. Applying our novel algorithm toolset-MCCS, we docked three known AMs of CB2 including Ec2la (C-2), trans-ß-caryophyllene (TBC) and cannabidiol (CBD) to each site for further comparisons and quantified the potential binding residues in each allosteric binding site. Sequentially, we selected the most promising binding pose of C-2 in five allosteric sites to conduct the molecular dynamics (MD) simulations. Based on the results of docking studies and MD simulations, we suggest that site H is the most promising allosteric binding site. We plan to conduct bio-assay validations in the future.


Assuntos
Sítio Alostérico , Sítios de Ligação , Moduladores de Receptores de Canabinoides/química , Desenho de Fármacos , Modelos Moleculares , Receptor CB2 de Canabinoide/química , Regulação Alostérica , Moduladores de Receptores de Canabinoides/farmacologia , Humanos , Ligantes , Conformação Molecular , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular , Ligação Proteica , Relação Quantitativa Estrutura-Atividade , Receptor CB2 de Canabinoide/metabolismo
5.
Molecules ; 26(21)2021 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-34771087

RESUMO

The endocannabinoid system plays an essential role in the regulation of analgesia and human immunity, and Cannabinoid Receptor 2 (CB2) has been proved to be an ideal target for the treatment of liver diseases and some cancers. In this study, we identified CB2 antagonists using a three-step "deep learning-pharmacophore-molecular docking" virtual screening approach. From the ChemDiv database (1,178,506 compounds), 15 hits were selected and tested by radioligand binding assays and cAMP functional assays. A total of 7 out of the 15 hits were found to exhibit binding affinities in the radioligand binding assays against CB2 receptor, with a pKi of 5.15-6.66, among which five compounds showed antagonistic activities with pIC50 of 5.25-6.93 in the cAMP functional assays. Among these hits, Compound 8 with the 4H-pyrido[1,2-a]pyrimidin-4-one scaffold showed the best binding affinity and antagonistic activity with a pKi of 6.66 and pIC50 of 6.93, respectively. The new scaffold could serve as a lead for further development of CB2 drugs. Additionally, we hope that the model in this study could be further utilized to identify more novel CB2 receptor antagonists, and the developed approach could also be used to design potent ligands for other therapeutic targets.


Assuntos
Descoberta de Drogas , Ligantes , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Receptor CB2 de Canabinoide/química , Aminoácidos , Sítios de Ligação , Biologia Computacional/métodos , Aprendizado Profundo , Descoberta de Drogas/métodos , Humanos , Conformação Molecular , Estrutura Molecular , Ligação Proteica , Relação Quantitativa Estrutura-Atividade , Receptor CB2 de Canabinoide/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas , Fluxo de Trabalho
6.
Int J Mol Sci ; 22(20)2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-34681877

RESUMO

The activation of the human cannabinoid receptor type II (CB2R) is known to mediate analgesic and anti-inflammatory processes without the central adverse effects related to cannabinoid receptor type I (CB1R). In this work we describe the synthesis and evaluation of a novel series of N-aryl-2-pyridone-3-carboxamide derivatives tested as human cannabinoid receptor type II (CB2R) agonists. Different cycloalkanes linked to the N-aryl pyridone by an amide group displayed CB2R agonist activity as determined by intracellular [cAMP] levels. The most promising compound 8d exhibited a non-toxic profile and similar potency (EC50 = 112 nM) to endogenous agonists Anandamide (AEA) and 2-Arachidonoylglycerol (2-AG) providing new information for the development of small molecules activating CB2R. Molecular docking studies showed a binding pose consistent with two structurally different agonists WIN-55212-2 and AM12033 and suggested structural requirements on the pyridone substituents that can satisfy the orthosteric pocket and induce an agonist response. Our results provide additional evidence to support the 2-pyridone ring as a suitable scaffold for the design of CB2R agonists and represent a starting point for further optimization and development of novel compounds for the treatment of pain and inflammation.


Assuntos
Agonistas de Receptores de Canabinoides/química , Agonistas de Receptores de Canabinoides/farmacologia , Piridonas/química , Receptor CB2 de Canabinoide/agonistas , Animais , Ácidos Araquidônicos/química , Ácidos Araquidônicos/farmacologia , Benzoxazinas/química , Benzoxazinas/farmacologia , Sítios de Ligação , Células CHO , Agonistas de Receptores de Canabinoides/síntese química , Sobrevivência Celular/efeitos dos fármacos , Cricetulus , AMP Cíclico/metabolismo , Avaliação Pré-Clínica de Medicamentos , Endocanabinoides/química , Endocanabinoides/farmacologia , Glicerídeos/química , Glicerídeos/farmacologia , Células HL-60 , Células Hep G2 , Humanos , Simulação de Acoplamento Molecular , Morfolinas/química , Morfolinas/farmacologia , Naftalenos/química , Naftalenos/farmacologia , Alcamidas Poli-Insaturadas/química , Alcamidas Poli-Insaturadas/farmacologia , Piridonas/farmacologia , Receptor CB2 de Canabinoide/química , Receptor CB2 de Canabinoide/genética , Receptor CB2 de Canabinoide/metabolismo , Relação Estrutura-Atividade
7.
Molecules ; 26(20)2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34684770

RESUMO

The Sterling Research Group identified pravadoline as an aminoalkylindole (AAI) non-steroidal anti-inflammatory pain reliever. As drug design progressed, the ability of AAI analogs to block prostaglandin synthesis diminished, and antinociceptive activity was found to result from action at the CB1 cannabinoid receptor, a G-protein-coupled receptor (GPCR) abundant in the brain. Several laboratories applied computational chemistry methods to ultimately conclude that AAI and cannabinoid ligands could overlap within a common binding pocket but that WIN55212-2 primarily utilized steric interactions via aromatic stacking, whereas cannabinoid ligands required some electrostatic interactions, particularly involving the CB1 helix-3 lysine. The Huffman laboratory identified strategies to establish CB2 receptor selectivity among cannabimimetic indoles to avoid their CB1-related adverse effects, thereby stimulating preclinical studies to explore their use as anti-hyperalgesic and anti-allodynic pharmacotherapies. Some AAI analogs activate novel GPCRs referred to as "Alkyl Indole" receptors, and some AAI analogs act at the colchicine-binding site on microtubules. The AAI compounds having the greatest potency to interact with the CB1 receptor have found their way into the market as "Spice" or "K2". The sale of these alleged "herbal products" evades FDA consumer protections for proper labeling and safety as a medicine, as well as DEA scheduling as compounds having no currently accepted medical use and a high potential for abuse. The distribution to the public of potent alkyl indole synthetic cannabimimetic chemicals without regard for consumer safety contrasts with the adherence to regulatory requirements for demonstration of safety that are routinely observed by ethical pharmaceutical companies that market medicines.


Assuntos
Canabinoides/química , Canabinoides/farmacologia , Drogas Desenhadas/química , Drogas Desenhadas/farmacologia , Analgésicos/química , Analgésicos/farmacologia , Animais , Benzoxazinas/farmacologia , Sítios de Ligação , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Desenho de Fármacos , Humanos , Indóis/química , Indóis/farmacologia , Ligantes , Morfolinas/farmacologia , Naftalenos/farmacologia , Receptor CB1 de Canabinoide/agonistas , Receptor CB1 de Canabinoide/química , Receptor CB2 de Canabinoide/agonistas , Receptor CB2 de Canabinoide/química , Eletricidade Estática , Relação Estrutura-Atividade
8.
Front Endocrinol (Lausanne) ; 12: 714561, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34484125

RESUMO

ß-arrestins are partners of the G protein-coupled receptors (GPCRs), regulating their intracellular trafficking and signaling. Development of biased GPCR agonists, selectively targeting either G protein or ß-arrestin pathways, are in the focus of interest due to their therapeutic potential in different pathological conditions. The CB2 cannabinoid receptor (CB2R) is a GPCR involved in various functions in the periphery and the central nervous system. Two common occurring variants of CB2R, harboring Q63R or L133I missense mutations, have been implicated in the development of a diverse set of disorders. To evaluate the effect of these mutations, we characterized the binding profile of these mutant CB2 receptors to G proteins and ß-arrestin2. Although their ability to inhibit cAMP signaling was similar, the Q63R mutant had increased, whereas the L133I mutant receptor had decreased ß-arrestin2 binding. In line with these observations, the variants also had altered intracellular trafficking. Our results show that two common variants of the CB2 receptor have biased signaling properties, which may contribute to the pathogenesis of the associated disorders and may offer CB2R as a target for further development of biased receptor activation strategies.


Assuntos
Mutação de Sentido Incorreto , Receptor CB2 de Canabinoide/metabolismo , beta-Arrestinas/metabolismo , Células HEK293 , Humanos , Ligação Proteica , Transporte Proteico , Receptor CB2 de Canabinoide/química , Receptor CB2 de Canabinoide/genética , beta-Arrestinas/genética
9.
J Med Chem ; 64(18): 13752-13765, 2021 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-34477367

RESUMO

Azobenzene-embedded photoswitchable ligands are the widely used chemical tools in photopharmacological studies. Current approaches to azobenzene introduction rely mainly on the isosteric replacement of typical azologable groups. However, atypical scaffolds may offer more opportunities for photoswitch remodeling, which are chemically in an overwhelming majority. Herein, we investigate the rational remodeling of atypical scaffolds for azobenzene introduction, as exemplified in the development of photoswitchable ligands for the cannabinoid receptor 2 (CB2). Based on the analysis of residue-type clusters surrounding the binding pocket, we conclude that among the three representative atypical arms of the CB2 antagonist, AM10257, the adamantyl arm is the most appropriate for azobenzene remodeling. The optimizing spacer length and attachment position revealed AzoLig 9 with excellent thermal bistability, decent photopharmacological switchability between its two configurations, and high subtype selectivity. This structure-guided approach gave new impetus in the extension of new chemical spaces for tool customization for increasingly diversified photo-pharmacological studies and beyond.


Assuntos
Compostos Azo/farmacologia , Receptor CB2 de Canabinoide/metabolismo , Animais , Compostos Azo/síntese química , Compostos Azo/metabolismo , Compostos Azo/efeitos da radiação , Células CHO , Cricetulus , Desenho de Fármacos , Humanos , Ligantes , Luz , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Receptor CB2 de Canabinoide/química
10.
Arch Virol ; 166(11): 3117-3126, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34514519

RESUMO

Evidence supports a role of host genetic diversity in the clinical course of coronavirus disease 2019 (COVID-19). Variation in the cannabinoid CB2 receptor gene (CNR2) could affect the regulatory action of endocannabinoids on the immune system, resulting in an increased risk of various inflammatory diseases. The present study investigated the relationship between the CNR2-Q63R variant and COVID-19 severity. A total of 200 Iranian COVID-19 patients were enrolled in the study and genotyped using a TaqMan assay. The co-dominant, dominant, recessive, over-dominant, and additive inheritance models were analyzed using SNPStats software. In silico molecular docking was also performed to simulate the effects of the Q63R variation on CB2 binding with a ligand and with the G-protein. A significant difference in the Q63R allele and genotype distribution was found between expired and discharged COVID-19 patients in co-dominant, recessive, and additive inheritance models. The molecular docking results showed that the predicted structure of mutant CB2 (63R type) could not bind to the G-protein in the correct position. The data indicated that the Q63R variation in the CNR2 gene may affect the severity of COVID-19. Identification of genes related to susceptibility and severity of COVID-19 may lead to specific targets for drug repurposing or development.


Assuntos
COVID-19/genética , Predisposição Genética para Doença/genética , Receptor CB2 de Canabinoide/genética , COVID-19/diagnóstico , Estudos de Casos e Controles , Feminino , Proteínas de Ligação ao GTP/metabolismo , Frequência do Gene , Genótipo , Humanos , Irã (Geográfico) , Masculino , Pessoa de Meia-Idade , Modelos Moleculares , Simulação de Acoplamento Molecular , Polimorfismo Genético , Ligação Proteica , Receptor CB2 de Canabinoide/química , Receptor CB2 de Canabinoide/metabolismo , SARS-CoV-2 , Índice de Gravidade de Doença
11.
Int J Mol Sci ; 22(15)2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34360817

RESUMO

Cannabinoid receptors type 2 (CB2R) represent an attractive therapeutic target for neurodegenerative diseases and cancer. Aiming at the development of a positron emission tomography (PET) radiotracer to monitor receptor density and/or occupancy during a CB2R-tailored therapy, we herein describe the radiosynthesis of cis-[18F]1-(4-fluorobutyl-N-((1s,4s)-4-methylcyclohexyl)-2-oxo-1,2-dihydro-1,8-naphthyridine-3-carboxamide ([18F]LU14) starting from the corresponding mesylate precursor. The first biological evaluation revealed that [18F]LU14 is a highly affine CB2R radioligand with >80% intact tracer in the brain at 30 min p.i. Its further evaluation by PET in a well-established rat model of CB2R overexpression demonstrated its ability to selectively image the CB2R in the brain and its potential as a tracer to further investigate disease-related changes in CB2R expression.


Assuntos
Encéfalo/ultraestrutura , Radioisótopos de Flúor/farmacocinética , Naftiridinas , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos , Receptor CB2 de Canabinoide/química , Animais , Células Cultivadas , Feminino , Humanos , Camundongos , Naftiridinas/síntese química , Naftiridinas/química , Ligação Proteica , Compostos Radiofarmacêuticos/síntese química , Compostos Radiofarmacêuticos/química , Compostos Radiofarmacêuticos/farmacocinética , Ratos , Ratos Sprague-Dawley
12.
STAR Protoc ; 2(2): 100584, 2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-34151302

RESUMO

Human cannabinoid receptor CB2 plays an important role in the immune system and is an attractive therapeutic target for pain and for inflammatory and neurodegenerative diseases. However, the structural basis of CB2 agonist selectivity is still elusive. Here, we describe a detailed protocol for the determination of the crystal structure of antagonist AM10257-bound CB2. This methodology could be applied to the structural studies of CB2 with diverse antagonists and agonists or to other class A G-protein-coupled receptors. For complete details on the use and execution of this protocol, please refer to Li et al. (2019).


Assuntos
Antagonistas de Receptores de Canabinoides/farmacologia , Cristalografia por Raios X/métodos , Receptor CB2 de Canabinoide/antagonistas & inibidores , Receptor CB2 de Canabinoide/química , Sequência de Aminoácidos , Animais , Baculoviridae/genética , Humanos , Insetos , Ligação Proteica , Conformação Proteica , Receptor CB2 de Canabinoide/genética
13.
Molecules ; 26(9)2021 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-34063214

RESUMO

Cannabis sativa L. is a source of over 150 active compounds known as phytocannabinoids that are receiving renewed interest due to their diverse pharmacologic activities. Indeed, phytocannabinoids mimic the endogenous bioactive endocannabinoids effects through activation of CB1 and CB2 receptors widely described in the central nervous system and peripheral tissues. All phytocannabinoids have been studied for their protective actions towards different biological mechanisms, including inflammation, immune response, oxidative stress that, altogether, result in an inhibitory activity against the carcinogenesis. The role of the endocannabinoid system is not yet completely clear in cancer, but several studies indicate that cannabinoid receptors and endogenous ligands are overexpressed in different tumor tissues. Recently, in vitro and in vivo evidence support the effectiveness of phytocannabinoids against various cancer types, in terms of proliferation, metastasis, and angiogenesis, actions partially due to their ability to regulate signaling pathways critical for cell growth and survival. The aim of this review was to report the current knowledge about the action of phytocannabinoids from Cannabis sativa L. against cancer initiation and progression with a specific regard to brain, breast, colorectal, and lung cancer as well as their possible use in the therapies. We will also report the known molecular mechanisms responsible for such positive effects. Finally, we will describe the actual therapeutic options for Cannabis sativa L. and the ongoing clinical trials.


Assuntos
Canabinoides/farmacologia , Cannabis/química , Neoplasias/patologia , Neoplasias/prevenção & controle , Sítio Alostérico , Animais , Antineoplásicos/farmacologia , Canabinoides/química , Sistema Nervoso Central/efeitos dos fármacos , Ensaios Clínicos como Assunto , Progressão da Doença , Resistencia a Medicamentos Antineoplásicos , Endocanabinoides , Humanos , Sistema Imunitário , Inflamação , Estresse Oxidativo , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia , Receptor CB1 de Canabinoide/química , Receptor CB2 de Canabinoide/química , Resultado do Tratamento
14.
Molecules ; 26(8)2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33917187

RESUMO

Cannabinoids comprise different classes of compounds, which aroused interest in recent years because of their several pharmacological properties. Such properties include analgesic activity, bodyweight reduction, the antiemetic effect, the reduction of intraocular pressure and many others, which appear correlated to the affinity of cannabinoids towards CB1 and/or CB2 receptors. Within the search aiming to identify novel chemical scaffolds for cannabinoid receptor interaction, the CB1 antagonist/inverse agonist pyrazole-based derivative rimonabant has been modified, giving rise to several tricyclic pyrazole-based compounds, most of which endowed of high affinity and selectivity for CB1 or CB2 receptors. The aim of this review is to present the synthesis and summarize the SAR study of such tricyclic pyrazole-based compounds, evidencing, for some derivatives, their potential in the treatment of neuropathic pain, obesity or in the management of glaucoma.


Assuntos
Pirazóis/química , Receptor CB1 de Canabinoide/química , Receptor CB2 de Canabinoide/química , Canabinoides/química , Estrutura Molecular , Ligação Proteica , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/metabolismo , Relação Estrutura-Atividade
15.
Chemistry ; 26(68): 15839-15842, 2020 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-32794211

RESUMO

Single chemical entities with potential to simultaneously interact with two binding sites are emerging strategies in medicinal chemistry. We have designed, synthesized and functionally characterized the first bitopic ligands for the CB2 receptor. These compounds selectively target CB2 versus CB1 receptors. Their binding mode was studied by molecular dynamic simulations and site-directed mutagenesis.


Assuntos
Receptor CB2 de Canabinoide , Sítios de Ligação , Ligantes , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Receptor CB2 de Canabinoide/química , Receptor CB2 de Canabinoide/genética , Receptor CB2 de Canabinoide/metabolismo
16.
Int J Mol Sci ; 21(15)2020 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-32722631

RESUMO

The selective targeting of the cannabinoid receptor 2 (CB2) is crucial for the development of peripheral system-acting cannabinoid analgesics. This work aimed at computer-assisted identification of prospective CB2-selective compounds among the constituents of Cannabis Sativa. The molecular structures and corresponding binding affinities to CB1 and CB2 receptors were collected from ChEMBL. The molecular structures of Cannabis Sativa constituents were collected from a phytochemical database. The collected records were curated and applied for the development of quantitative structure-activity relationship (QSAR) models with a machine learning approach. The validated models predicted the affinities of Cannabis Sativa constituents. Four structures of CB2 were acquired from the Protein Data Bank (PDB) and the discriminatory ability of CB2-selective ligands and two sets of decoys were tested. We succeeded in developing the QSAR model by achieving Q2 5-CV > 0.62. The QSAR models helped to identify three prospective CB2-selective molecules that are dissimilar to already tested compounds. In a complementary structure-based virtual screening study that used available PDB structures of CB2, the agonist-bound, Cryogenic Electron Microscopy structure of CB2 showed the best statistical performance in discriminating between CB2-active and non-active ligands. The same structure also performed best in discriminating between CB2-selective ligands from non-selective ligands.


Assuntos
Canabinoides/química , Cannabis/química , Bases de Dados de Proteínas , Modelos Moleculares , Receptor CB2 de Canabinoide/química , Avaliação Pré-Clínica de Medicamentos , Humanos , Domínios Proteicos , Relação Estrutura-Atividade
17.
ACS Chem Neurosci ; 11(8): 1139-1158, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-32196303

RESUMO

Cannabinoids are a group of chemical compounds that have been used for thousands of years due to their psychoactive function and systemic physiological effects. There are at least two types of cannabinoid receptors, CB1 and CB2, which belong to the G protein-coupled receptor superfamily and can trigger different signaling pathways to exert their physiological functions. In this study, several representative agonists and antagonists of both CB1 and CB2 were systematically studied to predict their binding affinities and selectivity against both cannabinoid receptors using a set of hierarchical molecular modeling and simulation techniques, including homology modeling, molecular docking, molecular dynamics (MD) simulations and end point binding free energy calculations using the molecular mechanics/Poisson-Boltzmann surface area-WSAS (MM-PBSA-WSAS) method, and molecular mechanics/generalized Born surface area (MM-GBSA) free energy decomposition. Encouragingly, the calculated binding free energies correlated very well with the experimental values and the correlation coefficient square (R2), 0.60, was much higher than that of an efficient but less accurate docking scoring function (R2 = 0.37). The hotspot residues for CB1 and CB2 in both active and inactive conformations were identified via MM-GBSA free energy decomposition analysis. The comparisons of binding free energies, ligand-receptor interaction patterns, and hotspot residues among the four systems, namely, agonist-bound CB1, agonist-bound CB2, antagonist-bound CB1, and antagonist-bound CB2, enabled us to investigate and identify distinct binding features of these four systems, with which one can rationally design potent, selective, and function-specific modulators for the cannabinoid receptors.


Assuntos
Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/metabolismo , Fenômenos Biofísicos/fisiologia , Canabinoides/química , Humanos , Modelos Químicos , Ligação Proteica/fisiologia , Receptor CB1 de Canabinoide/química , Receptor CB2 de Canabinoide/química , Receptores Acoplados a Proteínas G/metabolismo
18.
J Nat Prod ; 83(4): 1190-1200, 2020 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-32150408

RESUMO

Citral ((2E)-3,7-dimethylocta-2,6-dienal), a bioactive component of lemongrass, inhibits oxidant activity, nuclear factor kappa B (NF-κB) activation, and cyclooxygenase-2 (COX-2) expression, even as it activates peroxisome proliferator-activated receptor (PPAR)-α and γ. Additionally, citral produces long-lasting inhibition of transient receptor potential (TRP) channels that are found in sensory neurons, such as TRPV1-3 and TRPM8, while it transiently blocks TRPV4 and TRPA1. Here, the effect of citral in experimental models of acute inflammation and hyperalgesia in mice, and the underlying citral mechanisms of action were investigated. ADMET properties and molecular targets were predicted using the online server. The immunomodulatory and antihyperalgesic effects of citral were evaluated, using mechanical and thermal stimuli, at different time-points on carrageenan, lipopolysaccharides (LPS), and zymosan-induced paw edema and hyperalgesia in mice. ADMET analysis ensures that the citral has not violated Lipinski's rule of five, indicating its safety consumption, and molecular target prediction software identified that citral is a potential fatty acid amide hydrolase (FAAH) inhibitor. Oral treatment with citral (50-300 mg/kg) significantly inhibited carrageenan-induced paw edema and thermal allodynia. Furthermore, citral modulated the inflammation induced by LPS and zymosan, toll-like receptor (TLR) 4, and TLR2/dectin-1 ligands, respectively. Moreover, pretreatment with cannabinoid receptor type 2 (CB2R) antagonists and ATP-sensitive K+ channel inhibitor, but not with a cannabinoid receptor type 1 (CB1R) antagonist, significantly reversed the anti-inflammatory effect of citral. Intriguingly, citral did not cause any relevant action in the central nervous system, and it was safe when assessed in a 14 day toxicity assay in male mice. Therefore, citral constitutes a promising, innovative, and safe molecule for the management of immunoinflammatory conditions and pain states.


Assuntos
Monoterpenos Acíclicos/farmacologia , Trifosfato de Adenosina/química , Amidoidrolases/química , Analgésicos/farmacologia , Inflamação/metabolismo , Lectinas Tipo C/química , Monoterpenos/farmacologia , Receptor CB2 de Canabinoide/química , Receptor 4 Toll-Like/química , Amidoidrolases/metabolismo , Animais , Hiperalgesia/tratamento farmacológico , Hiperalgesia/metabolismo , Inflamação/tratamento farmacológico , Lectinas Tipo C/metabolismo , Camundongos , Estrutura Molecular , Monoterpenos/química , Receptor CB2 de Canabinoide/uso terapêutico , Canais de Cátion TRPV/química , Canais de Cátion TRPV/metabolismo , Receptor 2 Toll-Like
19.
Phytomedicine ; 68: 153151, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32058234

RESUMO

BACKGROUND AND PURPOSE: Primary dysmenorrhea is the most common gynaecologic problem in menstruating women and is characterized by spasmodic uterine contraction and pain symptoms associated with inflammatory disturbances. Paeonol is an active phytochemical component that has shown anti-inflammatory and analgesic effects in several animal models. The aim of this study was to explore whether paeonol is effective against dysmenorrhea and to investigate the potential mechanism of cannabinoid receptor signalling. EXPERIMENTAL APPROACH: Dysmenorrhea was established by injecting oestradiol benzoate into female mice. The effects of paeonol on writhing time and latency, uterine pathology and inflammatory mediators were explored. Isolated uterine smooth muscle was used to evaluate the direct effect of paeonol on uterine contraction. KEY RESULTS: The oral administration of paeonol reduced dysmenorrhea pain and PGE2 and TNF-α expression in the uterine tissues of mice, and paeonol was found to be distributed in lesions of the uterus. Paeonol almost completely inhibited oxytocin-, high potassium- and Ca2+-induced contractions in isolated uteri. Antagonists of CB2R (AM630) and the MAPK pathway (U0126), but not of CB1R (AM251), reversed the inhibitory effect of paeonol on uterine contraction. Paeonol significantly blocked L-type Ca2+ channels and calcium influx in uterine smooth muscle cells via CB2R. Molecular docking results showed that paeonol fits well with the binding site of CB2R. CONCLUSIONS AND IMPLICATIONS: Paeonol partially acts through CB2R to restrain calcium influx and uterine contraction to alleviate dysmenorrhea in mice. These results suggest that paeonol has therapeutic potential for the treatment of dysmenorrhea.


Assuntos
Acetofenonas/farmacologia , Dismenorreia/tratamento farmacológico , Receptor CB2 de Canabinoide/metabolismo , Útero/efeitos dos fármacos , Acetofenonas/química , Animais , Cálcio/metabolismo , Dinoprostona/metabolismo , Dismenorreia/induzido quimicamente , Dismenorreia/metabolismo , Estradiol/análogos & derivados , Estradiol/toxicidade , Feminino , Camundongos Endogâmicos ICR , Simulação de Acoplamento Molecular , Miócitos de Músculo Liso , Miométrio/efeitos dos fármacos , Miométrio/metabolismo , Ocitocina/farmacologia , Receptor CB2 de Canabinoide/química , Fator de Necrose Tumoral alfa/metabolismo , Contração Uterina/efeitos dos fármacos , Útero/metabolismo
20.
Cell ; 180(4): 645-654.e13, 2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-32004460

RESUMO

Drugs selectively targeting CB2 hold promise for treating neurodegenerative disorders, inflammation, and pain while avoiding psychotropic side effects mediated by CB1. The mechanisms underlying CB2 activation and signaling are poorly understood but critical for drug design. Here we report the cryo-EM structure of the human CB2-Gi signaling complex bound to the agonist WIN 55,212-2. The 3D structure reveals the binding mode of WIN 55,212-2 and structural determinants for distinguishing CB2 agonists from antagonists, which are supported by a pair of rationally designed agonist and antagonist. Further structural analyses with computational docking results uncover the differences between CB2 and CB1 in receptor activation, ligand recognition, and Gi coupling. These findings are expected to facilitate rational structure-based discovery of drugs targeting the cannabinoid system.


Assuntos
Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/química , Receptor CB2 de Canabinoide/química , Transdução de Sinais , Animais , Sítios de Ligação , Células CHO , Agonistas de Receptores de Canabinoides/síntese química , Agonistas de Receptores de Canabinoides/farmacologia , Antagonistas de Receptores de Canabinoides/síntese química , Antagonistas de Receptores de Canabinoides/farmacologia , Cricetinae , Cricetulus , Microscopia Crioeletrônica , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Humanos , Simulação de Acoplamento Molecular , Ligação Proteica , Receptor CB2 de Canabinoide/agonistas , Receptor CB2 de Canabinoide/antagonistas & inibidores , Receptor CB2 de Canabinoide/metabolismo , Células Sf9 , Spodoptera
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...