Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 268
Filtrar
1.
Ann Oncol ; 35(5): 437-447, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38369013

RESUMO

BACKGROUND: Human epidermal growth factor receptor 3 (HER3) is broadly expressed in non-small-cell lung cancer (NSCLC) and is the target of patritumab deruxtecan (HER3-DXd), an antibody-drug conjugate consisting of a HER3 antibody attached to a topoisomerase I inhibitor payload via a tetrapeptide-based cleavable linker. U31402-A-U102 is an ongoing phase I study of HER3-DXd in patients with advanced NSCLC. Patients with epidermal growth factor receptor (EGFR)-mutated NSCLC that progressed after EGFR tyrosine kinase inhibitor (TKI) and platinum-based chemotherapy (PBC) who received HER3-DXd 5.6 mg/kg intravenously once every 3 weeks had a confirmed objective response rate (cORR) of 39%. We present median overall survival (OS) with extended follow-up in a larger population of patients with EGFR-mutated NSCLC and an exploratory analysis in those with acquired genomic alterations potentially associated with resistance to HER3-DXd. PATIENTS AND METHODS: Safety was assessed in patients with EGFR-mutated NSCLC previously treated with EGFR TKI who received HER3-DXd 5.6 mg/kg; efficacy was assessed in those who also had prior PBC. RESULTS: In the safety population (N = 102), median treatment duration was 5.5 (range 0.7-27.5) months. Grade ≥3 adverse events occurred in 76.5% of patients; the overall safety profile was consistent with previous reports. In 78/102 patients who had prior third-generation EGFR TKI and PBC, cORR by blinded independent central review (as per RECIST v1.1) was 41.0% [95% confidence interval (CI) 30.0% to 52.7%], median progression-free survival was 6.4 (95% CI 4.4-10.8) months, and median OS was 16.2 (95% CI 11.2-21.9) months. Patients had diverse mechanisms of EGFR TKI resistance at baseline. At tumor progression, acquired mutations in ERBB3 and TOP1 that might confer resistance to HER3-DXd were identified. CONCLUSIONS: In patients with EGFR-mutated NSCLC after EGFR TKI and PBC, HER3-DXd treatment was associated with a clinically meaningful OS. The tumor biomarker characterization comprised the first description of potential mechanisms of resistance to HER3-DXd therapy.


Assuntos
Anticorpos Monoclonais Humanizados , Carcinoma Pulmonar de Células não Pequenas , Receptores ErbB , Neoplasias Pulmonares , Mutação , Receptor ErbB-3 , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/patologia , Receptores ErbB/genética , Receptores ErbB/antagonistas & inibidores , Feminino , Receptor ErbB-3/genética , Receptor ErbB-3/antagonistas & inibidores , Pessoa de Meia-Idade , Masculino , Idoso , Adulto , Anticorpos Monoclonais Humanizados/administração & dosagem , Anticorpos Monoclonais Humanizados/uso terapêutico , Anticorpos Monoclonais Humanizados/efeitos adversos , Idoso de 80 Anos ou mais , Camptotecina/análogos & derivados , Camptotecina/uso terapêutico , Camptotecina/administração & dosagem , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/efeitos adversos , Anticorpos Amplamente Neutralizantes , Imunoconjugados/uso terapêutico , Imunoconjugados/efeitos adversos , Imunoconjugados/administração & dosagem
2.
Acta Pharmacol Sin ; 45(4): 857-866, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38200149

RESUMO

HER3 (human epidermal growth factor receptor 3) acts through heterodimerization with EGFR (epidermal growth factor receptor) or HER2 to play an essential role in activating phosphoinositide 3-kinase (PI3K) and AKT signaling-a crucial pathway that promotes tumor cell survival. HER3 is a promising target for cancer therapy, and several HER3-directed antibodies have already entered into clinical trials. In this study we characterized a novel anti-HER3 monoclonal antibody, SIBP-03. SIBP-03 (0.01-10 µg/mL) specifically and concentration-dependently blocked both neuregulin (NRG)-dependent and -independent HER3 activation, attenuated HER3-mediated downstream signaling and inhibited cell proliferation. This antitumor activity was dependent, at least in part, on SIBP-03-induced, cell-mediated cytotoxicity and cellular phagocytosis. Importantly, SIBP-03 enhanced the antitumor activity of EGFR- or HER2-targeted drugs (cetuximab or trastuzumab) in vitro and in vivo. The mechanisms underlying this synergy involve increased inhibition of HER3-mediated downstream signaling. Collectively, these results demonstrated that SIBP-03, which is currently undergoing a Phase I clinical trial in China, may offer a new treatment option for patients with cancers harboring activated HER3, particularly as part of a combinational therapeutic strategy.


Assuntos
Anticorpos Monoclonais , Antineoplásicos , Neoplasias , Receptor ErbB-3 , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Fosfatidilinositol 3-Quinases/metabolismo , Receptor ErbB-2/metabolismo , Receptor ErbB-3/antagonistas & inibidores , Receptor ErbB-3/metabolismo , Transdução de Sinais , Trastuzumab/farmacologia , Trastuzumab/uso terapêutico , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/uso terapêutico , Neoplasias/terapia
3.
Cell Mol Life Sci ; 79(3): 178, 2022 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-35249128

RESUMO

Receptor tyrosine kinases (RTKs) are recognized as targets of precision medicine in human cancer upon their gene amplification or constitutive activation, resulting in increased downstream signal complexity including heterotypic crosstalk with other RTKs. The Met RTK exhibits such reciprocal crosstalk with several members of the human EGFR (HER) family of RTKs when amplified in cancer cells. We show that Met signaling converges on HER3-tyrosine phosphorylation across a panel of seven MET-amplified cancer cell lines and that HER3 is required for cancer cell expansion and oncogenic capacity in vitro and in vivo. Gene expression analysis of HER3-depleted cells identified MPZL3, encoding a single-pass transmembrane protein, as HER3-dependent effector in multiple MET-amplified cancer cell lines. MPZL3 interacts with HER3 and MPZL3 loss phenocopies HER3 loss in MET-amplified cells, while MPZL3 overexpression can partially rescue proliferation upon HER3 depletion. Together, these data support an oncogenic role for a HER3-MPZL3 axis in MET-amplified cancers.


Assuntos
Proteínas de Membrana/metabolismo , Proteínas Proto-Oncogênicas c-met/metabolismo , Receptor ErbB-3/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Humanos , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos NOD , Instabilidade de Microssatélites , Fosforilação , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Proto-Oncogênicas c-met/genética , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Receptor ErbB-3/antagonistas & inibidores , Receptor ErbB-3/genética , Transdução de Sinais/genética , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Transplante Heterólogo
4.
Sci Rep ; 12(1): 2711, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-35177646

RESUMO

Cancer stem cells (CSCs) are suggested to be responsible for drug resistance and aggressive phenotypes of tumors. Mechanisms of CSC induction are still under investigation. Our lab has established a novel method to generate CSCs from iPSCs under a cancerous microenvironment mimicked by the conditioned medium (CM) of cancer-derived cells. Here, we analyzed the transcriptome of CSCs, which were converted from iPSCs with CM from pancreatic ductal adenocarcinoma cells. The differentially expressed genes were identified and used to explore pathway enrichment. From the comparison of the CSCs with iPSCs, genes with elevated expression were related to the ErbB2/3 signaling pathway. Inhibition of either ErbB2 with lapatinib as a tyrosine kinase inhibitor or ErbB3 with TX1-85-1 or siRNAs arrested cell proliferation, inhibited the in vitro tumorigenicity, and lead to loss of stemness in the converting cells. The self-renewal and tube formation abilities of cells were also abolished while CD24 and Oct3/4 levels were reduced, and the MAPK pathway was overactivated. This study shows a potential involvement of the ErbB2/ErbB3 pathway in CSC generation and could lead to new insight into the mechanism of tumorigenesis and the way of cancer prevention.


Assuntos
Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Neoplásicas/metabolismo , Receptor ErbB-2/metabolismo , Receptor ErbB-3/metabolismo , Acrilamidas/farmacologia , Adenina/análogos & derivados , Adenina/farmacologia , Carcinoma Ductal Pancreático/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Autorrenovação Celular/efeitos dos fármacos , Meios de Cultivo Condicionados , Regulação Neoplásica da Expressão Gênica , Humanos , Lapatinib/farmacologia , Sistema de Sinalização das MAP Quinases , Neoplasias Pancreáticas/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Receptor ErbB-2/antagonistas & inibidores , Receptor ErbB-3/antagonistas & inibidores , Receptor ErbB-3/genética , Transdução de Sinais , Neoplasias Pancreáticas
5.
Clin Cancer Res ; 28(2): 390-403, 2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-34921025

RESUMO

PURPOSE: EGFR-tyrosine kinase inhibitor (TKI) is a standard first-line therapy for activated EGFR-mutated non-small cell lung cancer (NSCLC). Treatment options for patients with acquired EGFR-TKI resistance are limited. HER3 mediates EGFR-TKI resistance. Clinical trials of the HER3-targeting antibody-drug conjugate patritumab deruxtecan (HER3-DXd) demonstrated its anticancer activity in EGFR-mutated NSCLC; however, the mechanisms that regulate HER3 expression are unknown. This study was conducted with the aim to clarify the mechanisms underlying HER3 regulation in EGFR-mutated NSCLC tumors and explored the strategy for enhancing the anticancer activity of HER3-DXd in EGFR-mutated NSCLC. EXPERIMENTAL DESIGN: Paired tumor samples were obtained from 48 patients with EGFR-mutated NSCLC treated with EGFR-TKI(s). HER3 expression was immunohistochemically quantified with H-score, and genomic alteration and transcriptomic signature were tested in tumors from pretreatment to post-EGFR-TKI resistance acquisition. The anticancer efficacy of HER3-DXd and osimertinib was evaluated in EGFR-mutated NSCLC cells. RESULTS: We showed augmented HER3 expression in EGFR-mutated tumors with acquired EGFR-TKI resistance compared with paired pretreatment samples. RNA sequencing revealed that repressed PI3K/AKT/mTOR signaling was associated with HER3 augmentation, especially in tumors from patients who received continuous EGFR-TKI therapy. An in vitro study also showed that EGFR-TKI increased HER3 expression, repressed AKT phosphorylation in multiple EGFR-mutated cancers, and enhanced the anticancer activity of HER3-DXd. CONCLUSIONS: Our findings help clarify the mechanisms of HER3 regulation in EGFR-mutated NSCLC tumors and highlight a rationale for combination therapy with HER3-DXd and EGFR-TKI in EGFR-mutated NSCLC.


Assuntos
Anticorpos Monoclonais Humanizados , Camptotecina , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Receptor ErbB-3 , Anticorpos Monoclonais Humanizados/uso terapêutico , Camptotecina/análogos & derivados , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Receptores ErbB , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Mutação , Fosfatidilinositol 3-Quinases/genética , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/genética , Receptor ErbB-3/antagonistas & inibidores , Receptor ErbB-3/genética , Receptor ErbB-3/metabolismo
6.
Cancer Res ; 81(24): 6207-6218, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34753775

RESUMO

It has been recognized for decades that ERBB signaling is important in prostate cancer, but targeting ERBB receptors as a therapeutic strategy for prostate cancer has been ineffective clinically. However, we show here that membranous HER3 protein is commonly highly expressed in lethal prostate cancer, associating with reduced time to castration resistance (CR) and survival. Multiplex immunofluorescence indicated that the HER3 ligand NRG1 is detectable primarily in tumor-infiltrating myelomonocytic cells in human prostate cancer; this observation was confirmed using single-cell RNA sequencing of human prostate cancer biopsies and murine transgenic prostate cancer models. In castration-resistant prostate cancer (CRPC) patient-derived xenograft organoids with high HER3 expression as well as mouse prostate cancer organoids, recombinant NRG1 enhanced proliferation and survival. Supernatant from murine bone marrow-derived macrophages and myeloid-derived suppressor cells promoted murine prostate cancer organoid growth in vitro, which could be reversed by a neutralizing anti-NRG1 antibody and ERBB inhibition. Targeting HER3, especially with the HER3-directed antibody-drug conjugate U3-1402, exhibited antitumor activity against HER3-expressing prostate cancer. Overall, these data indicate that HER3 is commonly overexpressed in lethal prostate cancer and can be activated by NRG1 secreted by myelomonocytic cells in the tumor microenvironment, supporting HER3-targeted therapeutic strategies for treating HER3-expressing advanced CRPC. SIGNIFICANCE: HER3 is an actionable target in prostate cancer, especially with anti-HER3 immunoconjugates, and targeting HER3 warrants clinical evaluation in prospective trials.


Assuntos
Anticorpos Monoclonais Humanizados/farmacologia , Biomarcadores Tumorais/metabolismo , Camptotecina/análogos & derivados , Neuregulina-1/metabolismo , Organoides/patologia , Neoplasias da Próstata/patologia , Receptor ErbB-3/antagonistas & inibidores , Animais , Antineoplásicos Imunológicos/farmacologia , Apoptose , Biomarcadores Tumorais/genética , Camptotecina/farmacologia , Proliferação de Células , Seguimentos , Humanos , Masculino , Camundongos Endogâmicos NOD , Camundongos SCID , Neuregulina-1/genética , Organoides/efeitos dos fármacos , Organoides/metabolismo , Prognóstico , Estudos Prospectivos , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Receptor ErbB-3/genética , Receptor ErbB-3/metabolismo , Taxa de Sobrevida , Células Tumorais Cultivadas , Microambiente Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
7.
PLoS Genet ; 17(11): e1009931, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34843459

RESUMO

ERBB3 has gained attention as a potential therapeutic target to treat colorectal and other types of cancers. To confirm a previous study showing intestinal polyps are dependent upon ERBB3, we generated an intestinal epithelia-specific ERBB3 deletion in C57BL/6-ApcMin/+ mice. Contrary to the previous report showing a significant reduction in intestinal polyps with ablation of ERBB3 on a B6;129 mixed genetic background, we observed a significant increase in polyp number with ablation of ERBB3 on C57BL/6J compared to control littermates. We confirmed the genetic background dependency of ERBB3 by also analyzing polyp development on B6129 hybrid and B6;129 advanced intercross mixed genetic backgrounds, which showed that ERBB3 deficiency only reduced polyp number on the mixed background as previously reported. Increased polyp number with ablation of ERBB3 was also observed in C57BL/6J mice treated with azoxymethane showing the effect is model independent. Polyps forming in absence of ERBB3 were generally smaller than those forming in control mice, albeit the effect was greatest in genetic backgrounds with reduced polyp numbers. The mechanism for differential polyp number in the absence of ERBB3 was through altered proliferation. Backgrounds with increased polyp number with loss of ERBB3 showed an increase in cell proliferation even in non-tumor epithelia, while backgrounds showing reduced polyp number with loss of ERBB3 showed reduced cellular proliferation. Increase polyp number caused by loss of ERBB3 was mediated by increased epidermal growth factor receptor (EGFR) expression, which was confirmed by deletion of Egfr. Taken together, this study raises substantial implications on the use of ERBB3 inhibitors against colorectal cancer. The prediction is that some patients may have increased progression with ERBB3 inhibitor therapy, which is consistent with observations reported for ERBB3 inhibitor clinical trials.


Assuntos
Pólipos do Colo/genética , Neoplasias Colorretais/genética , Receptores ErbB/genética , Pólipos Intestinais/genética , Receptor ErbB-3/genética , Proteína da Polipose Adenomatosa do Colo/genética , Animais , Proliferação de Células/genética , Colo/metabolismo , Colo/patologia , Pólipos do Colo/patologia , Pólipos do Colo/terapia , Neoplasias Colorretais/patologia , Neoplasias Colorretais/terapia , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica/genética , Inativação Gênica , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Pólipos Intestinais/patologia , Pólipos Intestinais/terapia , Camundongos , Receptor ErbB-3/antagonistas & inibidores
8.
Biochem Biophys Res Commun ; 576: 59-65, 2021 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-34482024

RESUMO

HER1-and HER2-targeted drugs are effective in cancer therapy, especially against lung, breast and colon malignancies; however, resistance of cancer cells to HER1-and HER2-targeted therapies is becoming a serious problem. The avidity/affinity constant (KA) and growth inhibitory effect of anti-HER3 rat monoclonal antibodies (mAb, Ab1∼Ab6) in the presence of therapeutic mAb or low-molecular-weight inhibitors against HER family proteins were analyzed by flow cytometry-based Scatchard plots (Splot) and cell proliferation assay. The KA of Ab3 and Ab6, but not Ab1 or Ab4, split into dual (high and low) modes of KA, and Ab6 exhibited greater anti-proliferative effects against LS-174T colon cancer cells in the presence of Pertuzumab (anti-HER2 mAb). A high KA by Ab6 and Ab6-mediated increased growth inhibition were observed against NCI-H1838 lung or BT474 breast cancer cells, respectively, in the presence of Panitumumab (anti-HER1 mAb) or Perutuzumab. A high KA by Ab6 and Ab6-mediated increased anti-proliferative effects against NCI-H1838 or BT474 were also respectively observed in the presence of Erlotinib (HER1 inhibitor) or Lapatinib (HER1/HER2 inhibitor). In HER1-knockout (KO) NCI-H1838, the reactivity and KA of Ab4 increased compared with in parent NCI-H1838. In HER1-KO or HER3-KO SW1116 colon cancer cells, dual modes of KA with Pertuzumab were noted, and the combination Ab6 and Pertuzumab promoted growth inhibition of HER1-KO, but not of parent SW1116.


Assuntos
Anticorpos Monoclonais/farmacologia , Neoplasias/tratamento farmacológico , Receptor ErbB-2/antagonistas & inibidores , Receptor ErbB-3/antagonistas & inibidores , Animais , Afinidade de Anticorpos , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , Resistencia a Medicamentos Antineoplásicos , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/imunologia , Receptores ErbB/metabolismo , Humanos , Neoplasias/imunologia , Neoplasias/metabolismo , Ratos , Receptor ErbB-2/imunologia , Receptor ErbB-2/metabolismo , Receptor ErbB-3/imunologia , Receptor ErbB-3/metabolismo , Transdução de Sinais
9.
Invest New Drugs ; 39(6): 1604-1612, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34250553

RESUMO

Background Overactivation of human epidermal growth factor receptor 3 (HER3) triggers multiple intracellular pathways resulting in tumor cell survival. This Phase 1 study assessed the safety, efficacy, and pharmacokinetics (PK) of seribantumab, a fully human anti-HER3 monoclonal antibody. Methods Adult patients with advanced or refractory solid tumors were treated in six dose cohorts of seribantumab: 3.2, 6, 10, 15, or 20 mg/kg weekly, or 40 mg/kg loading dose followed by 20 mg/kg weekly maintenance dose (40/20 mg/kg) using a modified 3 + 3 dose escalation strategy with cohort expansion. Primary objectives were identification of a recommended Phase 2 dose (RP2D) and determination of objective response rate. Secondary objectives were assessment of safety, dose-limiting toxicities, and PK. Results Forty-four patients (26 dose escalation; 18 dose expansion) were enrolled. Seribantumab monotherapy was well tolerated with most adverse events being transient and mild to moderate (grade 1 or 2) in severity; maximum tolerated dose was not reached. The highest dose, 40/20 mg/kg, was identified as RP2D. Best response was stable disease, reported in 24% and 39% of patients during the dose escalation and expansion portions of the study, respectively. Seribantumab terminal half-life was ≈100 h; steady state concentrations were reached after 3-4 weekly doses. Conclusions Seribantumab monotherapy was well tolerated across all dose levels. Safety and PK data from this study support further seribantumab investigations in genomically defined populations.Clinical trial registration NCT00734305. August 12, 2008.


Assuntos
Anticorpos Monoclonais Humanizados/farmacocinética , Anticorpos Monoclonais Humanizados/uso terapêutico , Antineoplásicos/farmacocinética , Antineoplásicos/uso terapêutico , Neoplasias/tratamento farmacológico , Adulto , Idoso , Idoso de 80 Anos ou mais , Anticorpos Monoclonais Humanizados/administração & dosagem , Anticorpos Monoclonais Humanizados/efeitos adversos , Antineoplásicos/administração & dosagem , Antineoplásicos/efeitos adversos , Relação Dose-Resposta a Droga , Feminino , Meia-Vida , Humanos , Masculino , Dose Máxima Tolerável , Pessoa de Meia-Idade , Receptor ErbB-3/antagonistas & inibidores
10.
Cell Rep ; 36(4): 109455, 2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34320350

RESUMO

In glioblastoma (GBM), the most frequent and lethal brain tumor, therapies suppressing recurrently altered signaling pathways failed to extend survival. However, in patient subsets, specific genetic lesions can confer sensitivity to targeted agents. By exploiting an integrated model based on patient-derived stem-like cells, faithfully recapitulating the original GBMs in vitro and in vivo, here, we identify a human GBM subset (∼9% of all GBMs) characterized by ERBB3 overexpression and nuclear accumulation. ERBB3 overexpression is driven by inheritable promoter methylation or post-transcriptional silencing of the oncosuppressor miR-205 and sustains the malignant phenotype. Overexpressed ERBB3 behaves as a specific signaling platform for fibroblast growth factor receptor (FGFR), driving PI3K/AKT/mTOR pathway hyperactivation, and overall metabolic upregulation. As a result, ERBB3 inhibition by specific antibodies is lethal for GBM stem-like cells and xenotransplants. These findings highlight a subset of patients eligible for ERBB3-targeted therapy.


Assuntos
Glioblastoma/genética , MicroRNAs/metabolismo , Receptor ErbB-3/metabolismo , Anticorpos/metabolismo , Apoptose , Linhagem Celular Tumoral , Fator 2 de Crescimento de Fibroblastos , Regulação Neoplásica da Expressão Gênica , Genes Supressores de Tumor , Humanos , MicroRNAs/genética , Oligodendroglia/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Prognóstico , Proteínas Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor ErbB-3/antagonistas & inibidores , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Transdução de Sinais , Esferoides Celulares/patologia , Serina-Treonina Quinases TOR/metabolismo
11.
Nat Commun ; 12(1): 2383, 2021 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-33888713

RESUMO

Immune checkpoint blockade (ICB) therapy has revolutionized head and neck squamous cell carcinoma (HNSCC) treatment, but <20% of patients achieve durable responses. Persistent activation of the PI3K/AKT/mTOR signaling circuitry represents a key oncogenic driver in HNSCC; however, the potential immunosuppressive effects of PI3K/AKT/mTOR inhibitors may limit the benefit of their combination with ICB. Here we employ an unbiased kinome-wide siRNA screen to reveal that HER3, is essential for the proliferation of most HNSCC cells that do not harbor PIK3CA mutations. Indeed, we find that persistent tyrosine phosphorylation of HER3 and PI3K recruitment underlies aberrant PI3K/AKT/mTOR signaling in PIK3CA wild type HNSCCs. Remarkably, antibody-mediated HER3 blockade exerts a potent anti-tumor effect by suppressing HER3-PI3K-AKT-mTOR oncogenic signaling and concomitantly reversing the immune suppressive tumor microenvironment. Ultimately, we show that HER3 inhibition and PD-1 blockade may provide a multimodal precision immunotherapeutic approach for PIK3CA wild type HNSCC, aimed at achieving durable cancer remission.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor ErbB-3/antagonistas & inibidores , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Classe I de Fosfatidilinositol 3-Quinases/genética , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Feminino , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/imunologia , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Imunoterapia/métodos , Camundongos , Mutação , Medicina de Precisão/métodos , Receptor de Morte Celular Programada 1/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Receptor ErbB-3/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/imunologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Serina-Treonina Quinases TOR/metabolismo , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
12.
MAbs ; 13(1): 1914883, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33876707

RESUMO

Chemoresistance, particularly to gemcitabine, is a major challenge in pancreatic cancer. The epidermal growth factor receptor (EGFR) and human epidermal growth factor receptors 2 and 3 (HER2, HER3) are expressed in many tumors, and they are relevant therapeutic targets due to their synergistic interaction to promote tumor aggressiveness and therapeutic resistance. Cocktails of antibodies directed against different targets are a promising strategy to overcome these processes. Here, we found by immunohistochemistry that these three receptors were co-expressed in 11% of patients with pancreatic adenocarcinoma. We then developed gemcitabine-resistant pancreatic cancer cell models (SW-1990-GR and BxPC3-GR) and one patient-derived xenograft (PDX2846-GR) by successive exposure to increasing doses of gemcitabine. We showed that expression of EGFR, HER2 and HER3 was increased in these gemcitabine-resistant pancreatic cancer models, and that an antibody mixture against all three receptors inhibited tumor growth in mice and downregulated HER receptors. Finally, we demonstrated that the Pan-HER and gemcitabine combination has an additive effect in vitro and in mice xenografted with the gemcitabine-sensitive or resistant pancreatic models. The mixture of anti-EGFR, HER2 and HER3 antibodies is a good candidate therapeutic approach for gemcitabine-sensitive and -resistant pancreatic cancer.


Assuntos
Anticorpos/farmacologia , Antimetabólitos Antineoplásicos/farmacologia , Desoxicitidina/análogos & derivados , Resistencia a Medicamentos Antineoplásicos , Neoplasias Pancreáticas/tratamento farmacológico , Receptor ErbB-2/antagonistas & inibidores , Receptor ErbB-3/antagonistas & inibidores , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Desoxicitidina/farmacologia , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/imunologia , Receptores ErbB/metabolismo , Feminino , Humanos , Camundongos Nus , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Receptor ErbB-2/imunologia , Receptor ErbB-2/metabolismo , Receptor ErbB-3/imunologia , Receptor ErbB-3/metabolismo , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Gencitabina
13.
MAbs ; 13(1): 1902034, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33752566

RESUMO

Dual targeting of surface receptors with bispecific antibodies is attracting increasing interest in cancer therapy. Here, we present a novel bivalent and bispecific antagonistic molecule (Dab-Fc) targeting human epidermal growth factors 2 and 3 (HER2 and HER3) derived from the Db-Ig platform, which was developed for the generation of multivalent and multispecific antibody molecules. Dab-Fc comprises the variable domains of the anti-HER2 antibody trastuzumab and the anti-HER3 antibody 3-43 assembled into a diabody-like structure stabilized by CH1 and CL domains and further fused to a human γ1 Fc region. The resulting Dab-Fc 2 × 3 molecule retained unhindered binding to both antigens and was able to bind both antigens sequentially. In cellular experiments, the Dab-Fc 2 × 3 molecule strongly bound to different tumor cell lines expressing HER2 and HER3 and was efficiently internalized. This was associated with potent inhibition of the proliferation and migration of these tumor cell lines. Furthermore, IgG-like pharmacokinetics and anti-tumoral activity were demonstrated in a xenograft tumor model of the gastric cancer cell-line NCI-N87. These results illustrate the suitability of our versatile Db-Ig platform technology for the generation of bivalent bispecific molecules, which has been successfully used here for the dual targeting of HER2 and HER3.


Assuntos
Anticorpos Biespecíficos/farmacologia , Antineoplásicos Imunológicos/farmacologia , Fragmentos Fc das Imunoglobulinas/farmacologia , Receptor ErbB-2/antagonistas & inibidores , Receptor ErbB-3/antagonistas & inibidores , Neoplasias Gástricas/tratamento farmacológico , Animais , Anticorpos Biespecíficos/farmacocinética , Citotoxicidade Celular Dependente de Anticorpos/efeitos dos fármacos , Antineoplásicos Imunológicos/farmacocinética , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Humanos , Células MCF-7 , Camundongos SCID , Terapia de Alvo Molecular , Invasividade Neoplásica , Receptor ErbB-2/imunologia , Receptor ErbB-2/metabolismo , Receptor ErbB-3/imunologia , Receptor ErbB-3/metabolismo , Transdução de Sinais , Neoplasias Gástricas/imunologia , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Invest New Drugs ; 39(5): 1324-1334, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33774767

RESUMO

TAS0728 is an oral covalent binding inhibitor of human epidermal growth factor receptor 2 (HER2). A first-in-human open-label, dose-escalation, phase I study (NCT03410927) was initiated to investigate the safety and dose-limiting toxicity (DLT) and to determine the maximum tolerated dose (MTD) and/or recommended phase II dose of TAS0728 in adults with advanced solid tumors with HER2 or HER3 overexpression, amplification or mutation. In total, 19 patients received TAS0728 at escalating doses from 50 to 200 mg BID for 21-day cycles. Following escalation of the dose to 200 mg BID, a total of two DLTs were observed, both cases of Grade 3 diarrhea (lasting >48 h and not responsive to aggressive antidiarrheal treatment). Following de-escalation of the dose to 150 mg BID, another DLT of Grade 3 diarrhea was observed in one patient. Additionally, at 150 mg BID, one patient had a fatal cardiac arrest after receiving 1 cycle (21 days) of TAS0728. The etiology of the cardiac arrest event was not clear, however causal relationship to TAS0728 could not be excluded due to the temporal association observed. Partial responses were observed in 2 of 14 patients evaluable for TAS0728 treatment response. The study was stopped due to unacceptable toxicity during the dose-escalation as the overall risk-benefit ratio no longer favored the dose level being tested, therefore the MTD was not determined. ClinicalTrials.gov registration number: https://clinicaltrials.gov/ct2/show/NCT03410927 ; registered on January 25, 2018.


Assuntos
Neoplasias/tratamento farmacológico , Piperidinas/uso terapêutico , Inibidores de Proteínas Quinases/uso terapêutico , Purinas/uso terapêutico , Receptor ErbB-2/antagonistas & inibidores , Adulto , Idoso , Relação Dose-Resposta a Droga , Feminino , Humanos , Masculino , Dose Máxima Tolerável , Pessoa de Meia-Idade , Neoplasias/genética , Neoplasias/patologia , Piperidinas/administração & dosagem , Piperidinas/efeitos adversos , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/efeitos adversos , Purinas/administração & dosagem , Purinas/efeitos adversos , Receptor ErbB-2/genética , Receptor ErbB-3/antagonistas & inibidores , Receptor ErbB-3/genética
15.
Biochem Biophys Res Commun ; 553: 148-153, 2021 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-33770580

RESUMO

The interaction of human epidermal growth factor receptor 3 (HER3) and heregulin (HRG) is involved in resistance to human epidermal growth factor receptor 2 (HER2)-targeted cancer treatment, such as therapies using anti-HER2 monoclonal antibody. Therefore, inhibition of the HER3/HRG interaction is potentially valuable therapeutic target for cancer treatment. In this study, we used in vitro selection, also known as systematic evolution of ligands by exponential enrichment (SELEX) against the extracellular domain of human HER3, and discovered a novel RNA aptamer. Pull-down and bio-layer interferometry assays showed that RNA aptamer discovered specifically bound to HER3 with a dissociation constant (KD) of 700 nM. Pull-down assays using chemiluminescence detection also revealed that the HER3-binding RNA aptamer inhibited interactions between HER3 and human HRG. These results indicated that the novel HER3-binding RNA aptamer has potential to be used as basic tool in a range of applications involving HER3/HRG interactions, including research, therapeutic, and diagnostic applications.


Assuntos
Aptâmeros de Nucleotídeos/análise , Receptores ErbB/antagonistas & inibidores , Neuregulina-1/antagonistas & inibidores , Neuregulina-1/metabolismo , Receptor ErbB-3/antagonistas & inibidores , Receptor ErbB-3/metabolismo , Técnica de Seleção de Aptâmeros , Aptâmeros de Nucleotídeos/isolamento & purificação , Sequência de Bases , Receptores ErbB/metabolismo , Humanos , Cinética , Luminescência , Ligação Proteica/efeitos dos fármacos , Receptor ErbB-3/química
16.
Mol Cancer Ther ; 20(6): 1142-1152, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33782100

RESUMO

ErbB3, a member of the ErbB receptor family, is a potent mediator in the development and progression of cancer, and its activation plays pivotal roles in acquired resistance against anti-EGFR therapies and other standard-of-care therapies. Upon ligand (NRG1) binding, ErbB3 forms heterodimers with other ErbB proteins (i.e., EGFR and ErbB2), which allows activation of downstream PI3K/Akt signaling. In this study, we developed a fully human anti-ErbB3 antibody, named ISU104, as an anticancer agent. ISU104 binds potently and specifically to the domain 3 of ErbB3. The complex structure of ErbB3-domain 3::ISU104-Fab revealed that ISU104 binds to the NRG1 binding region of domain 3. The elucidated structure suggested that the binding of ISU104 to ErbB3 would hinder not only ligand binding but also the structural changes required for heterodimerization. Biochemical studies confirmed these predictions. ISU104 inhibited ligand binding, ligand-dependent heterodimerization and phosphorylation, and induced the internalization of ErbB3. As a result, downstream Akt phosphorylation and cell proliferation were inhibited. The anticancer efficacy of ISU104 was demonstrated in xenograft models of various cancers. In summary, a highly potent ErbB3 targeting antibody, ISU104, is suitable for clinical development.


Assuntos
Antineoplásicos/uso terapêutico , Receptor ErbB-3/antagonistas & inibidores , Animais , Antineoplásicos/farmacologia , Proliferação de Células , Feminino , Humanos , Ligantes , Camundongos
17.
Oncol Rep ; 45(2): 776-785, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33416143

RESUMO

Liver cancer (LC) is an aggressive disease with a markedly poor prognosis. Therapeutic options are limited, and, until recently the only FDA­approved agent for first­line treatment of patients with LC was the multi­kinase inhibitor sorafenib, which exhibits limited activity and an increased overall survival (OS) of only 3 months over placebo. Therefore, the development of alternative therapeutic molecules for the treatment of LC is an urgent medical need. Antibody­drug conjugates (ADCs) are an emerging class of novel anticancer agents, which have been developed recently for the treatment of malignant conditions, including LC, and are being studied in preclinical and clinical settings. Our group has recently generated an ADC [EV20/monomethyl auristatin F (MMAF)] by coupling the HER3 targeting antibody (EV20) to MMAF via a non­cleavable maleimidocaproyl linker. This ADC was revealed to possess potent therapeutic activity in melanoma and breast carcinoma. In the present study, using western blot and flow cytometric analysis, it was reported that HER­3 receptor was highly expressed in LC and activated by its ligand NRG­1ß in a panel of LC cell lines, thus indicating that this receptor may serve as a suitable target for ADC therapy. A novel ADC [EV20­sss­valine­citrulline (vc)/MMAF] was generated, in which the cytotoxic payload MMAF was site­specifically coupled to an engineered variant of EV20 via a vc cleavable linker. Cytotoxicity assays were performed to investigate in vitro antitumor activity of EV20­sss­vc/MMAF and it was compared to EV20/MMAF, which revealed only modest activity in LC.EV20­sss­vc/MMAF exhibited a significant cell killing activity in several LC cell lines. Additionally, in vivo xenograft experiments revealed that EV20­sss­vc/MMAF inhibited growth of LC tumors. The present data indicated that EV20­sss­vc/MMAF is a worthy candidate for the treatment of HER­3 positive LC.


Assuntos
Imunoconjugados/farmacologia , Neoplasias Hepáticas/tratamento farmacológico , Oligopeptídeos/farmacologia , Receptor ErbB-3/antagonistas & inibidores , Idoso , Idoso de 80 Anos ou mais , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Imunoconjugados/uso terapêutico , Fígado/patologia , Neoplasias Hepáticas/patologia , Masculino , Camundongos , Pessoa de Meia-Idade , Oligopeptídeos/uso terapêutico , Receptor ErbB-3/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
18.
J Mol Neurosci ; 71(8): 1589-1597, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32964398

RESUMO

Peptide G protein-coupled receptors (GPCRs) for pituitary adenylate cyclase activating polypeptide (PACAP) regulate the growth of non-small cell lung cancer (NSCLC) cells. PACAP binds with high affinity to PAC1, which causes transactivation of receptor tyrosine kinases (RTK) for the EGFR and HER2 but its effect on HER3 is unknown. Using 3 NSCLC cell lines (NCI-H358, NCI-H441, and Calu-3), proteins for EGFR, HER2, HER3, and PAC1 were detected. The increase in EGFR tyrosine phosphorylation caused by PACAP was blocked by the EGFR tyrosine kinase inhibitor (TKI) gefitinib, or PACAP(6-38), a PAC1 antagonist. The increase in HER2 tyrosine phosphorylation caused by PACAP was inhibited by trastuzumab, a monoclonal antibody (mAb) for HER2, or PACAP(6-38). The increase in HER3 tyrosine phosphorylation caused by PACAP was inhibited by HER3 mAb3481 or PACAP(6-38). Immunoprecipitation experiments indicated the PACAP addition to Calu-3 cells resulted in the formation of EGFR/HER3 and HER2/HER3 heterodimers. Addition of the HER3 agonist neuregulin (NRG)-1 increased HER3 tyrosine phosphorylation in non-small-cell lung cancer (NSCLC) cells. PACAP or NRG-1 increased the proliferation of NSCLC cells, whereas PACAP(6-38), gefitinib, trastuzumab, or mAb3481 inhibited proliferation. The results indicate that PAC1 regulates the proliferation of NSCLC cells as a result of transactivation of the EGFR, HER2, and HER3.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/metabolismo , Receptor ErbB-3/metabolismo , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Humanos , Fosforilação , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Receptor ErbB-2/antagonistas & inibidores , Receptor ErbB-2/metabolismo , Receptor ErbB-3/antagonistas & inibidores
19.
J Biol Chem ; 296: 100157, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33273014

RESUMO

Meningiomas (MNs), arising from the arachnoid/meningeal layer, are nonresponsive to chemotherapies, with ∼50% showing loss of the Neurofibromatosis 2 (NF2) tumor suppressor gene. Previously, we established NF2 loss activates mechanistic target of rapamycin complex 1 (mTORC1) and mechanistic target of rapamycin complex 2 (mTORC2) signaling, leading to clinical trials for NF2 and MN. Recently our omics studies identified activated ephrin (EPH) receptor and Src family kinases upon NF2 loss. Here, we report increased expression of several ligands in NF2-null human arachnoidal cells (ACs) and the MN cell line Ben-Men-1, particularly neuregulin-1/heregulin (NRG1), and confirm increased NRG1 secretion and activation of V-ERB-B avian erythroblastic leukemia viral oncogene homolog 3 (ERBB3) receptor kinase. Conditioned-medium from NF2-null ACs or exogenous NRG1 stimulated ERBB3, EPHA2, and mTORC1/2 signaling, suggesting pathway crosstalk. NF2-null cells treated with an ERBB3-neutralizing antibody partially downregulated mTOR pathway activation but showed no effect on viability. mTORC1/2 inhibitor treatment decreased NRG1 expression and downregulated ERBB3 while re-activating pAkt T308, suggesting a mechanism independent of NRG1-ERBB3 but likely involving activation of another upstream receptor kinase. Transcriptomics after mTORC1/2 inhibition confirmed decreased ERBB3/ERBB4 while revealing increased expression of insulin-like growth factor receptor 1 (IGF1R). Drug treatment co-targeting mTORC1/2 and IGF1R/insulin receptor attenuated pAkt T308 and showed synergistic effects on viability. Our findings indicate potential autocrine signaling where NF2 loss leads to secretion/activation of NRG1-ERBB3 signaling. mTORC1/2 inhibition downregulates NRG1-ERBB3, while upregulating pAkt T308 through an adaptive response involving IGF1R/insulin receptor and co-targeting these pathways may prove effective for treatment of NF2-deficient MN.


Assuntos
Comunicação Autócrina/genética , Neuregulina-1/genética , Neurofibromina 2/genética , Receptor ErbB-3/genética , Receptor IGF Tipo 1/genética , Serina-Treonina Quinases TOR/genética , Anticorpos Monoclonais Humanizados/farmacologia , Benzamidas/farmacologia , Benzoxazóis/farmacologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica , Humanos , Lapatinib/farmacologia , Neoplasias Meníngeas/genética , Neoplasias Meníngeas/metabolismo , Neoplasias Meníngeas/patologia , Meningioma/genética , Meningioma/metabolismo , Meningioma/patologia , Morfolinas/farmacologia , Neuregulina-1/antagonistas & inibidores , Neuregulina-1/metabolismo , Neurofibromina 2/deficiência , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Pirazóis/farmacologia , Pirimidinas/farmacologia , Receptor EphA2/genética , Receptor EphA2/metabolismo , Receptor ErbB-3/antagonistas & inibidores , Receptor ErbB-3/metabolismo , Receptor IGF Tipo 1/antagonistas & inibidores , Receptor IGF Tipo 1/metabolismo , Transdução de Sinais , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo , Transcriptoma , Triazinas/farmacologia
20.
Oral Oncol ; 112: 105074, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33142224

RESUMO

OBJECTIVE: We aimed to develop novel combinations of inhibitors targeting EGFR family members and c-Met for the treatment of recurrent SCCHN. MATERIALS AND METHODS: Three different c-Met inhibitors in combination with a pan-HER inhibitor (crizotinib/afatinib, tivantinib/afatinib and cabozantinib/afatinib) were investigated for their anti-tumor effects on SCCHN cell lines in vitro. In vivo activity of the combinations was tested in SCCHN cell line xenografts and patient-derived xenograft (PDX) animal models generated from patients with recurrent SCCHN. RESULTS: Western blot assay indicated that activation of EGFR, HER2, HER3, and c-Met was blocked by all three combinations and the downstream PI3K/AKT and ERK signaling pathways were inhibited. Sulforhodamine B colorimetric assay revealed SCCHN cell growth was more effectively inhibited by the combinations than by single agents, particularly in cell lines with high c-Met expression. Furthermore, the combinations were more potent in inducing apoptosis than each of the single agents. In the PDX models, the combination treatments exhibited significantly better efficacy in tumor growth inhibition compared to the respective single agents. CONCLUSION: In conclusion, we demonstrated that the simultaneous targeting of EGFR, HER2, and c-Met is more effective than the individual inhibition of these targets in vitro and in SCCHN cell line xenograft and PDX models. Our findings pave the way for further clinical investigation of such combinations in SCCHN.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Recidiva Local de Neoplasia/tratamento farmacológico , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Receptor ErbB-2/antagonistas & inibidores , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Afatinib/uso terapêutico , Anilidas/uso terapêutico , Animais , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Crizotinibe/uso terapêutico , Receptores ErbB/antagonistas & inibidores , Xenoenxertos , Humanos , Camundongos , Camundongos Nus , Recidiva Local de Neoplasia/metabolismo , Recidiva Local de Neoplasia/patologia , Inibidores de Proteínas Quinases/uso terapêutico , Piridinas/uso terapêutico , Pirrolidinonas/uso terapêutico , Quinolinas/uso terapêutico , Distribuição Aleatória , Receptor ErbB-3/antagonistas & inibidores , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...